A Flexible API for State Transfer in the JavaGroups Toolkit

Bela Ban
Dept. of Computer Science
Cornell University
bba@cs.cornell.edu

Abstract

When a group member needs to retrieve the group state, it usually solicits it from one or
more of the existing members and sets its local state accordingly. There are various criteria
for state transfer, such as pull or push, size of the state, blocking or non-blocking etc. We
will examine the different criteria for state transfer, and present the API and protocol used
in JavaGroups [Ban, Ban98] to transfer state. We focus on how the API and implementation
provided can be customized to different application needs.

1 Introduction

This paper discusses state transfer in the context of process groups using the virtual synchrony
model. A process group is an entity which processes join for the purpose of exchanging messages.
In contrast to one-to-one communication usually encountered in distributed systems, groups offer
one-to-many communication, in which a message sent to the group address' is received by all
members currently in the group.

An important part of group communication is membership management, that is keeping track of
who’s currently in the group. Membership may be dynamic, e.g. new processes can join a group
at any time, old members may leave, or crash?, in which case they must be excluded from the
group by the membership service.

Virtual synchrony offers a model in which each member has a list of members currently in the
group (a view). Whenever the membership changes, a new view is installed in all members. Views
are uniquely identified by the issuer of the view and a sequence number. There is usually one
designated member that broadcasts new views (the coordinator). Every non-faulty group member
will receive the same sequence of views. At the core of virtual synchrony is the guarantee that
(1) all members receive the same set of messages between consecutive views and (2) a message
sent in view V1 will be received in V1. Virtual synchrony does not make any guarantees about
the order of messages within views: to for example deliver all messages in the same order at all
receivers, one would have to employ another model (total order) in addition to virtual synchrony.
For a more detailed discussion of process groups and virtual synchrony see [Bir96]

Group communication often involves members maintaining a shared state, where every member
has the same state, e.g. in a replicated directory service where every member maintains its
own local copy of a directory. Updates are sent to all members and applied in the same order,
modifying the local states identically. When a new member joins, it needs to obtain its initial
copy of the directory from an existing member before it can become operational.?

L Also called broadcasting or multicasting.

2A crash will eventually be detected by a failure detector which leads to exclusion of that process. The effect
is the same as if that process left the group voluntarily.

3When members are deterministic, that is the same input causes the same behavior (without any external
stimuli) in all members, this approach is called the state machine approach [Sch86].

It is also possible that, in some groups, only a few designated members maintain (share) the state
and synchronize state changes among each other, and the other members do not maintain any
state.

Depending on whether the state is shared among all members, or only among a small subset, a
new member joining the group may want to retrieve the state from an existing member, from
several members or from all the group members. The first case would typically be used when
all members share the state: in that case, knowing that all member states are guaranteed to be
identical, the group state may be retrieved from just one member (e.g. the oldest). Contacting
more than one of the existing members may be used for security reasons (e.g. no tampering
with the state by a single member) or to ensure, by comparison of multiple states, that the state
retrieved is correct. Retrieving the states of all members may be used when the member states
are disjunct: this may be useful in a load-balancing application when a new member wants to
inform itself about the progress of the other workers in the group by looking at their states.
This paper discusses the various aspects of state transfer and its consequences on the design of a
state transfer API. As each application has different requirements on state transfer, we believe
that there cannot be a single implementation that fits all needs. However, we will argue that a)
different implementations of a state transfer API can be hidden in protocol layers and b) different
state transfer APIs can be offered by different components (or objects) layered on top of a simple
group communication API.

We will start by looking at a (non-exhaustive) list of aspects of state transfer, and derive from
it the requirements for a flexible state transfer API. The design and implementation of the API
are then discussed in the context of a Java based toolkit for reliable group communication,
JavaGroups [Ban98].

2 Criteria for State Transfer

2.1 Roles

Participants of a state transfer can be divided into three categories: (a) state requesters, (b)
state providers and (c) non-participants. State requesters are usually new members (clients)
that need to acquire the current group state to become operational members. Non-operational
members (clients) cannot provide state yet. Operational members can choose to provide state
or not. When they do, they are potential state providers (servers), and when they don’t, they
are non-participants. The division between servers and non-participants is important because
it permits operational members to ignore state transfer requests, therefore being able to serve
other tasks. The choice whether to serve state requests or not should be reflected in the API
and should be modifiable at runtime, therefore allowing a state-serving member to become a
non-participant and vice versa. A possible setup may for example have a small subset of group
members that serve state requests (all state transfer requests have to be directed to one or all
members of that subset) and — when one of them leaves or crashes — a non-participant would
become state serving.

2.2 Sharing

The degree of state sharing depends on the type of application involved. In the state machine
approach [Sch86], all members receive the same sequence of messages which trigger the same
state transitions in all members. Members have to be deterministic, i.e. their state transitions
depend solely on messages received, and there may not be any sources of non-determinism, such
as threads, semaphores, shared memory or timers. As each message advances the member states
in the same manner, all members have the same state.

When a new member joins a group consisting of replicated servers, it will need to contact only a
single existing member to obtain the shared group state (typically the oldest member). As soon
as it has integrated the state, it will become a server and is able to pass its state on to others.

At the other extreme of state sharing are groups without (or with minimal) shared state, e.g.
load balancing groups, where each member works on a subset of the problem and maintains state
only for its specific task. A coordinator typically divides the problem space and assigns each
member a different slice. Then it waits for completion of all tasks, re-assigning tasks to new (or
finished) members if existing members crash, and combines the partial results. In this case, a
new member joining the group does not need to acquire any shared group state, but will typically
be assigned its initial state by the coordinator.*

Between the two extremes of sharing all the state and sharing no state at all, there may be
groups that only share a minimal state, e.g. for coordination purposes, or groups where a subset
of the members share some state. In the latter case, a mechanism must be provided by the state
transfer API to obtain the state from a specific member or a set of members (see 2.3).

If a process is member of multiple groups, the degree of sharing state may vary with each group
(see 2.11).

2.3 One or Many State Providers

A state transfer API should provide functions to retrieve state from a single member, or from a
set of members where the set may include all group members.

With such a mechanism, a new member may retrieve the initial state from a single member, e.g.
the oldest member, or from a number of group members, e.g. to make sure that the state is
correct by comparing the results and incorporating the state of the majority. For example, if
3 members return states S2, S2 and S1 respectively (where the numbers signify state versions),
then the quorum state S2 would be assumed to be the most recent state.® The selection of
members from which to solicit state may be highly application-specific, e.g. obtain state from
the fastest servers in the group, or from the 3 servers that provide state (whereas the rest of the
members don’t).

2.4 Time

The time when state can be acquired may vary. A group communication toolkit may return
the current group state to the new member when it joins the group. A new member indicates
(by setting a flag in the JOIN request) whether it wishes to receive the current group state. If
set to true, the state is returned either as result of the JOIN request, as first message the new
member receives, or as part of the first view installed. Returning state with a view change avoids
having to account for messages sent during the state transfer: members typically do not send
messages during view changes anyway®, therefore this is an ideal time for state transfer (see 2.7
for a discussion of blocking vs. non-blocking state transfer).

However, in some settings, it is the application rather than the toolkit that may want to specify
the time of state transfer: one could think of applications that obtain the shared group state more
than once (repeatability), or control members that regularly fetch all member states, compare
them and — if not all states are equal — initiate a state correction protocol that installs the correct
state” in all members having incorrect state.

Separating state transfer from the JOIN API and making it an independent abstraction results
in greater flexibility: a new group member may choose to acquire state when joining, and/or it
may do so at any time afterwards.

41t is assumed here that when a member crashes, a new member will have to start work on a task from scratch.
However, if it takes a long time to complete a task, other schemes such as making the state persistent, or having
a backup member which is initialized to the same state, are possible. In this case, state transfer would need to
be done from the primary worker to the backup worker (cf. 2.10).

5In certain applications where the member states always have to be the same, such a scenario is regarded as
an error and may trigger a synchronization protocol to make all members agree on a new shared state.

6E.g. after a FLUSH protocol [Bir96, ch. 13.12.4] has been run.

"Correctness e.g. based on quorum state.

Duration of state transfer is also an important aspect: if a state transfer implementation involves
blocking other group members, then a long duration (e.g. due to a large state) is detrimental to
group availability.

2.5 Active or Passive

There are essentially two ways of obtaining state: the application may actively pull the state
from one or more group members, or the group communication toolkit may push the state to the
application when it sees fit. An example of the latter is when a network partition heals and a
group G1 is merged with another group G2: in such a case, the toolkit has to select (e.g. based
on state version numbers, or primary partition flags) the group whose state is the one to which
the combined group’s state should be set. If it was G2, then all members of G1 would be updated
with G2’s state by the group communication toolkit. Another example of pulling vs. pushing
state is when a new member joins a group: adopting the pull-mechanism, a new member would
retrieve the state from one or more members, whereas a push-mechanism would involve a number
of existing members (possibly all) pushing their state to the new member as described in [Bir96,
ch. 15.3.2]. Note that the latter approach is redundant when all members share the same state
and may not scale well with group size.®

A pull-approach tends to give more flexibility to the application, e.g. the time of state transfer can
be determined by the application, whereas a push-approach may sometimes be needed to update
members incorporating an incorrect state (e.g. after merging network partitions). However, the
two approaches can be combined: a member’s state is updated whenever triggered by the toolkit,
and it in turn may actively retrieve the state whenever necessary.

2.6 Size of State

The size of the state to be transferred influences both the API and the implementation chosen
for state transfer.

A protocol implementation that requires blocking (see 2.7) should avoid blocking for a long time,
therefore it is more suitable for transfer of small state. An implementation that only blocks the
receiver of state with respect to all other members during state transfer is not susceptible to
blocking for a long time, as the receiver is not yet a group member and providing any service,
therefore it is more suitable for transferring larger state.

The choice of API heavily depends on how a large state is transferred, for example large state
may be transferred in multiple messages, or it may be prefetched before joining a group and then
only the update state would be transferred, or members may rely entirely on external state, as
discussed below.

2.6.1 Transfer in Multiple Pieces

When a state is large, an application may decide to fetch it in multiple pieces, or a toolkit (in
the push-approach) may decide to push the state to the joiner in several steps. When a state
is transferred in multiple pieces, the end of the transfer is typically signalled, e.g. by a done()
message as described in [Maf95].

The main advantage of such a scheme is that — if state transfer is performed over the same
communication line as regular group communication traffic — the additional load can be kept
rather small, depending on the size and transmit interval of the individual pieces.

2.6.2 Prefetching of State

When a state is large, a process wishing to join a group may prefetch the bulk of the group
state either from existing member(s) or an external source before joining the group and becoming

8 Joining a large group may lead to message overflow in the joiner due to the large number of state messages
sent to it by other members.

operational. At some time after the process actually joined the group, an update protocol would
retrieve the remaining state, that is the state modifications that were applied after retrieval of the
initial state. Thus, by performing the larger work of state transfer offline before joining a group,
acquiring state when the member is online would require only a small amount of time, making
the new member operational quickly. See section 3.4.4 for an example of an update protocol.

2.6.3 External Shared State

If shared state is too big to be transferred efficiently (clogging up network bandwidth), then a
possibility is to store it externally, for example in a shared database. Thus, members would
not maintain their own state (or very minimal state), and all state-related access would be
directed towards the database. Since updates to a database are serialized, all members would
always see the same state. However, having a common database means that every member may
potentially want to update the database (reflecting its state) after receiving a message, and —
since all members receive the same message (in the state machine approach) — they would all try
to apply the same modification to the database, which is redundant. Therefore, sharing state
via an external source typically involves some kind of primary-backup scheme (cf. 2.10) where
the primary server updates the database, and backup servers are only permitted to read from
the database (passive replication). When the primary server crashes, a deterministic mechanism
will make one of the backup servers the new primary, without having to transfer state to it in
order to start work.

If shared group state is kept in a database, which represents a single point of failure, such schemes
typically involve a backup database.

2.7 Blocking vs. Non-Blocking

State transfer may involve blocking the involved members for a period of time, e.g. until the
state receiver has successfully integrated the group state. If messages were delivered to the group
while a state transfer was in progress, the received state would already be stale and not reflect
the up-to-date group state. Therefore, schemes involving blocking all members often allow state
to be transferred only with view changes, i.e. at a time when the group is blocked anyway
(see [Vay98, Bir96, Maf95]). Vaysburd for example describes a protocol where a transfer view is
installed for a state transfer, followed by a regular view when the transfer is completed.
Blocking all members during state transfers decreases availability and may lead to slow response
times for larger group sizes. This is aggravated when a large state has to be transferred: the time
needed for the transfer is the time that all members are blocked. Therefore, blocking of members
is more suitable where only small state is shared, or in situations where no state is shared at all,
for example load balancing, or state that is stored externally.

An alternative to blocking all group members is blocking the joiner: all messages sent to the
group are delivered at all members during a state transfer, except at the joining process which
queues them until it has integrated the state (by obtaining the latter from a member). Then
it applies all queued messages to the state and from now on delivers all messages directly. The
advantage is that only a single member is blocked, and since it is not yet operational anyway
(because it is not yet a real group member), it does not affect the group service as a whole
anyway. All other members are allowed to make progress, thus increasing the availability of the
group. This mechanism is described in more detail in section 3.3.

2.8 Concurrency

Multiple state transfers may be running concurrently, initiated by different members at almost
the same time. To discern between different states, they have to be tagged with state version
numbers. As proposed in [Vay98], a version might consist of a major and a minor number. The
major number would be the view ID and the minor number the number of updates to that specific

state. The state version would have to be specified in each request in the state transfer protocol
implementation, but would not necessarily need to be reflected in the API.

2.9 Transfer Medium

Transferring large state over the regular group channel may adversely affect throughput of regular
group messages. Therefore some applications may want to open a separate ’out-of-band’ channel
to transfer large chunks of state without impairing regular messages. Such a channel would be
used exclusively for state transfer. It might be created at startup, or whenever state transfer is
needed.

2.10 Primary—Backup Replication and Snapshots

In primary-backup replication clients send all requests to a primary server which in turn updates
a number of backup servers (all in the same group). When the primary crashes or is shut down,
a backup becomes the new primary. There are various methods to keep the backup servers
updated: a simple scheme for example is one where the primary multicasts all updates to all
members of the backup group. A different scheme involves logging all updates at the primary to
stable storage and periodically multicasting snapshots to all backup servers. In case the primary
crashes, the log written by the primary after the last snapshot can be used to reconstruct the
current state. Yet another solution may have a designated backup server periodically solicit the
state from the primary and — when received — distribute it to all backup servers. The latter is
an example of a case where state is not transferred to a joining process, but to a member that
may have been operational for a long time.

In a snapshot approach, the transfer of state from the primary to the backup servers should not
take a long time, as the primary will not respond to requests during that period. Therefore, a
non-blocking state transfer protocol is preferred in situations involving long transfer times.

2.11 MultiGroups

Members of multiple groups must have a means to differentiate between states from different
groups. In the provider role, a member solicited for its state must be able to return the state for
the correct group. By the same token, a receiver of state must be able to tell from which group
the state was sent and initialize that state accordingly.

A multigroup application may choose to use pull-style for some groups and push for others. Also,
sharing of state may vary between the different groups of which it is a member. Hence it is
mainly the responsibility of the application to coordinate multiple groups.

In addition to the issue of state transfer, multigroups face a number of other problems such as
preserving causal and total order for multigroup multicasts, atomic broadcasts to multigroups
and multigroup membership management (e.g. how can a member join a number of groups at
once). As these issues are very complex, in-depth treatment cannot be given here. Instead, we
refer to [Bir96, ch. 14.2] for details.

3 State Transfer in JavaGroups

This section describes the API and implementation of the default state transfer mechanism pro-
vided by JavaGroups. As was discussed previously, requirements on state transfer differ, both
in terms of API and implementation. Therefore the task of providing a common API for all
different needs is daunting. We adopt the view that there cannot be a single API, covering all
different aspects. Hence, our approach is to provide a minimal API (integrated into a Java-
Groups channel) and protocol implementation for state transfer. In 3.4, we will discuss how to
replace API, implementation, or both, to adapt to different needs in cases where the default
API/implementation is not sufficient. Thus, a solution is provided that is flexible enough to be

tailored to different needs and yet provides a certain base functionality so that applications don’t
need to re-implement state transfer.

3.1 Architecture of JavaGroups

The architecture of JavaGroups is shown in fig. 1. At the top is a channel, which is a simple
socket-like group communication endpoint. It has a local address which is attached to every
message sent over it so that receivers may send replies, and a group address (usually a name)
indicating the group associated with it. Applications send messages via channels to all or single
members (multicast/unicast), receive messages, receive notifications when members join or leave
the group, get the membership and so on. A channel is deliberately rather primitive so that it
fits the needs of various applications. More powerful abstractions can be placed between it and
the application to provide more sophisticated functionality.

Application

| send || Reov || state |

GET_STATE
GET_STATE_OK

B S S —

Channel

: Protocol Stack

GET_STATE GET STATE OK |
STATE_TRANSFER ‘
I

GMS

Figure 1: Architecture of JavaGroups

The channel is connected to a protocol stack, the composition of which is defined by the appli-
cation when creating a channel. The stack essentially consists of a linked list of layers which are
connected bidirectionally by two FIFO queues. Layers receive events (class Event) from their
neighboring layers, process them and possibly pass them on to the layer above/below. A special
event is a message (class Message). When the application sends a message, the protocol stack
wraps it in an event and passes it down the stack. Each layer may modify, reorder, pass on
or discard the event. The bottom layer sends messages to their destination(s). The difference
between messages and events is that events never leave the stack, whereas messages (wrapped in
events) are unwrapped by the bottom layer and put on the network. When a message is received,
it is wrapped into an event and passed up the stack.

Each layer may or may not respond to an event, i.e. handle it. Each event has a type and an
argument. Depending on the type, a layer determines what to do with the event. The default is
to forward it to the next layer.

Layers that respond to certain events may advertize this (e.g. STATE_TRANSFER responds to
GET_STATE). Layers that require that certain layers above/below them respond to certain events,
may advertize this too. When a stack is created the protocol stack object checks whether all
requirements are matched. If this is not the case, the stack will not be created. For example,
layer STATE_TRANSFER requires events START_QUEUEING and STOP_QUEUEING to be handled by

some layer above it. It therefore advertizes this fact (not shown in the figure). Since layer QUEUE
advertizes that it handles these two events, stack creation is successful. It would fail if QUEUE
was missing.”

In fig. 1, the state transfer API generates event GET_STATE and expects response event
GET_STATE_OK. It requires a layer below to respond to the former event and reply with the latter
to successfully perform state transfer. It does not need to know which layer actually handles
the event, and how state transfer is implemented, it only needs to know the format of the state
transfer event and that some layer will take care of the rest. This loose coupling will allow us to
replace APT and protocol implementation independently as discussed in section 3.4.

3.2 API

The API for state transfer is part of the Channel interface [Ban98]. A channel can choose whether
to serve state transfer requests by setting option GET_STATE_EVENTS to true/false (default is false).
When state transfer is disabled, the group state can be still received as long as there are other
members serving state transfer requests.

The state can be requested by calling boolean GetState(Object provider, long timeout) or
boolean GetStates(Vector providers, long timeout). The former requests the state from
a single member (the oldest member if dest is null), whereas the latter retrieves multiple states
from a number of members defined in dests. If dests is null, the states of all members (except
the initiator) are returned.

GetState(s) returns true or false, depending on whether a valid state could be retrieved. For
example, if a member is a singleton, then calling this method would always return false.'?
After GetState(s) has been called, one of the next Receive calls will return a SetStateEvent
object containing the state(s) that the initiator of the state transfer requested.

A state provider (see 2.3) will receive a GetStateEvent when calling Receive. It should make a
copy of its state and return the copy by calling Channel.ReturnState. The copy will be stored
in the STATE_TRANSFER layer until it is actually requested by a client. Note that the state has to
be serializable.

The following code fragment shows how a group member participates in state transfers:

channel=new JChannel ("UDP:PING:FD:GMS:STATE_TRANSFER:QUEUE");
channel.Set0Opt (Channel .GET_STATE_EVENTS, new Boolean(true));
channel.Connect ("TestChannel") ;

boolean rc=channel.GetState(null, 5000);

while(true) {

Object ret=channel.Receive(0);

if (ret instanceof Message)

else if(ret instanceof GetStateEvent) {
// copy=CopyState(state)
channel.ReturnState (copy) ;

}

else if(ret instanceof SetStateEvent) {
SetStateEvent e=(SetStateEvent)ret;
// set state from e.GetArg();

9 Actually, the name of the layer is not important, but which events it handles. This allows for example other
layers to replace QUEUE if the two events are handled.
10 A member will never retrieve the state from itself !

A channel has to be created whose stack includes the STATE_TRANSFER protocol. Option
GET_STATE_EVENTS should be enabled, as the channel might probably want to return its cur-
rent state if asked. A group called "TestChannelGroup" is joined calling the Connect method.
GetState() subsequently asks the channel to return the current state.!'’ If there is a current
state (there may not be any other members in the group !), then true is returned. In this case,
one of the subsequent Receive method invocations on the channel will return a SetStateEvent
object which contains the current state. In this case, the caller sets its state to the one received
from the channel.

If state transfer events are enabled, then Receive might return a GetStateEvent object, request-
ing the state of the member to be returned. In this case, a copy of the current state should be
made and returned using Channel.ReturnState. It is important to a) synchronize access to the
state when returning it since other access may modify it while it is being returned and b) make
a copy of the state since other accesses after returning the state may still be able to modify it
! This is possible because the state is not immediately returned, but travels down the stack (in
the same address space), and a reference to it could still alter it.

3.3 Protocol Implementation
3.3.1 Algorithm

The protocol for state transfer is shown in fig. 2. The process wishing to retrieve the group
state broadcasts a MAKE_COPY message to all members (including itself).'? For the state servers
to be able to differentiate between different concurrently running state transfers, the broadcast
includes a state version number, e.g. the address of the state transfer initiator and a timestamp
(P1 in the example).

When the initiating member receives this message, it starts queueing subsequent messages.'® All
other members make a copy of the current state upon reception of the message and tag it with
the assigned version number (P1).

py]

P Q
T | >

R R
MAKE_COPY (P1) R

start queueing

RETURN_STATE (P1)

\ make copy of state (name=P1)

return copy of state (name=P1)

set state (from P1)
stop queuing
deliver queued msgs

//
GC (P1)
) |

destroy copy of state (name=P1)
Figure 2: State Transfer Protocol

In the second phase, the initiator selects one member (possibly the oldest, often the coordinator)
and sends a RETURN_STATE message to it, including the state version number that was previously
assigned (P1). The receiver looks up the copy of the state that was created upon reception of
MAKE_COPY associated with P1 and returns it. The initiator sets its state from P1 and then delivers
all queued messages before accepting regular messages again. (Message will not be queued after
replaying the queued messages).

11 As the method’s destination member is null, the member from which to get the state is selected by the toolkit.

12This implies that the initiator already has to be a member.

13 A member cannot initiate several concurrent state transfers: only a single transfer is permitted to take place
at a time.

The last round of the protocol is again initiated by the state retriever and garbage collects the state
copies not needed any more by broadcasting a GC message indicating the state version number to
be deleted. This avoids having old copies around, taking up memory unnecessarily. The garbage
collection broadcast is shown as an independent message, but in a typical implementation, it will
probably be piggybacked on another message to reduce broadcast traffic.

This scheme requires that the MAKE_COPY message is delivered at all members at the same position
in the global message delivery sequence: the client starting to queue messages and the state
servers making a copy of their state are two events that have to take place at the same logical
time. This requires the presence of a total order layer in the protocol stack. Fig. 3 shows a
problem that could arise if total order was missing: the MAKE_COPY message is broadcast by P at
roughly the same time as another message m1 by R.

P Q R

ml
MAKE_COPY

RETURN_STATE

Figure 3: Ordering problem

Whereas both Q and R deliver m1 and then MAKE_COPY, the reception of m1l at P might be
slightly delayed, therefore P might deliver MAKE_COPY first and then m1. When Q and R receive
MAKE _COPY they create a copy of their current state, including m1. At P, however, m1 is queued
as it is seen after MAKE_COPY. When P later retrieves Q’s copy of the state and integrates it, the
copy includes m1, but subsequent replaying of P’s queued messages delivers m1 again. Unless
ml is idempotent, this clearly leads to problems. The situation is even worse if P sees m1 before
MAKE_COPY and Q after MAKE_COPY: Q’s copy of the state will not include m1, whereas P will see
ml, apply it to its state and then retrieve the state from Q. When integrating Q’s state, P’s own
state will be overwritten, thereby losing m1.

A total order layer overcomes these problems by either delivering MAKE_COPY before m1 or after
ml at all receivers. The problem of spurious or lost messages will not occur in this case.

This algorithm is non-blocking: group members (except the initiator) are not blocked during
state transfer. The only time an operational member is solicited is when it is asked to return
a copy of its state (which will subsequently be stored in the STATE_TRANSFER later (see below).
Members who do not support state transfer (see 2.1) will not be solicited at all, not disturbing
their processing, and a null state will be returned instead.

3.3.2 Protocol Interaction

The events exchanged between peer STATE_TRANSFER layers and their channel instances are shown
in fig. 4.1

The protocol on the left side represents the initiator of a state transfer, the one on the right the
participant (e.g. an existing group member). The protocol is started when a GET_STATE event is
received. It causes 2 messages to be sent to a) all members and b) one selected member.

The first message is MAKE_COPY (1) and it is sent to all members. Upon reception, the initiator
reacts differently from the participants: it starts queuing all subsequent messages. Participants
try to retrieve the state from the application. This is done by sending up a GET_APPLSTATE
event and waiting for a GET_APPLSTATE 0K event to be returned. If the channel does not support
state transfer events (corresponding option is not set), then the GET_APPLSTATE_OK response will

1 For simplicity, concurrency issues involving state version numbers are omitted.

10

Application Application
SetStateEvent \Ge‘s‘ﬁe‘z"e”‘
ReturnState
GetState() El

STATE|RECEIVED

I
: channel P T channel
! p

I

GET_STATE GET_STATE_OK GET_APPLSTATE_OK GET_APPLSTATE

STATE_TRANSFER

A
i
I
STATE_TRANSFER |
I
I

(6] @]

RETURN_STATE

MAKE_COPY

Figure 4: Events between STATE_TRANSFER layers and channel

contain a null state. Otherwise it will be a copy of the application’s current state.!> The copy is
then stored in the STATE_TRANSFER layer for subsequent retrieval by the initiator.

The second message is a RETURN_STATE message (2) sent only to one selected member.'6 This is
currently the oldest member (usually the coordinator). Note that the message is never sent to
the initiator itself. The receiver just returns the previously saved copy of the state.

When the initiator receives the copy from the selected member, it does two things: first it sets
its own state from the data received. Then, it blocks all message reception, replays the message
queue (to which all messages received after MAKE_COPY were queued), disables queueing and
unblocks message reception. From now on, messages received will not be queued, but passed up
to the channel and on to the application where they will be applied to the application’s current
state. Queueing ensures that any message sent after MAKE_COPY and before receiving the state
will not be lost, but properly applied to construct a valid state.

When the state has been received, a GET_STATE_OK event is passed up the stack. When processed
by channel, a STATE_RECEIVED event is created and inserted into the channel’s event queue. After
this, a caller blocked on the GetState method will return (true or false). One of the next calls to
Receive will return a SetStateEvent object (generated from STATE_RECEIVED) containing the
state, which can then be set by the application.

The implementation of STATE_TRANSFER relies on total ordering of messages multicast to all group
members: it is based on the assumption that all members receive the MAKE_COPY message at the
same logical time. If this was not the case, then the different participants might save different
versions of the state. For example if participant Q received messages m1, MAKE_COPY and m2,
and participant R received m1, m2 and MAKE_COPY then, the state saved by Q would include m1,
but R’s state would include m1 and m2.

3.4 Customization

The state transfer API and implementation may be sufficient for a number of applications so
that they can use it unchanged. However, as there are differing application requirements, some

15Note that the data type of the state has to be serializable as it will be marshaled/unmarshaled to be sent
over the network. If this is not the case, an exception will be thrown.

161f Channel.GetStates() was called, then this message will be sent to all members instead (excluding the
initiator).

11

applications may want to (1) use a different state transfer API, (2) replace the protocol imple-
mentation but keep the API, or (3) replace API and implementation altogether.

The flexible architecture of the JavaGroups protocol stack allows us to do this, as explained in
the next sections.

3.4.1 Replacing the Protocol Implementation

If an application wants to use the default state transfer API, but provide its own protocol imple-
mentation, the STATE_TRANSFER (and possibly QUEUE, which is used by the former) layers have
to be replaced (see fig. 1).

The only event that needs to be handled by the replacement layer for STATE_TRANSFER is
GET_STATE. This event is sent down by the default API whenever Channel .GetState(s) is called.
It contains information about which member(s) the state is to be retrieved from. When done,
the state transfer layer sends the state up the stack in a GET_STATE_OK event. The channel will
receive the state and return it to the application in one of the next Channel .Receive calls.

3.4.2 Replacing the API

The approach chosen in JavaGroups is to provide a minimal API for state transfer (greatest com-
mon denominator) and provide hooks to replace/extend it if it cannot be used by the application.
The way to do this is to make use of an additional building block between the channel and the
application, as shown in fig. 5.

Application

GET_STATE o
[GET_STATE_OK] Building Block
)
| sae
Channel
""" BESSEN N F Protocol Stack
QUEUE

GET_STATE GET_STATE_OK
STATE_TRANSFER

Figure 5: Replacing the default state transfer API

This building block uses the channel for communication, but represents a higher-level abstraction
(or just a different API) towards the application. The building block may or may not add
functionality, or it may just present the API (interface) differently.

An example of the former is an API that transfers state in multiple, small fragments in order to
avoid channel congestion when transferring a large state. The API would send multiple GET_STATE

12

events down the stack to be handled by a state transfer layer, each containing the number of the
fragment (plus possibly a state version number for concurrent state transfers) to be transferred.
(Note that the current STATE_TRANSFER layer would have to be modified to handle fragmented
state).

An example of the latter is the PullPushAdapter (cf. [Ban]) which converts between the pull and
push-approach of fetching messages (see 2.5). The default state transfer API requires the appli-
cation to retrieve state by calling Channel.Receive, state will be returned in a SetStateEvent
object. The PullPushAdapter building block — added between channel and application — con-
verts from a pull to a push-approach: it retrieves messages from the channel and, if the message
is a state transfer request or reply, calls the corresponding callback (GetState, SetState) in the
application (which has to implement the MessageListener interface).

3.4.3 Replacing the API and Protocol Implementation

The default state transfer layer can be abandoned altogether, replacing both the APT and the
implementation and using one’s own mechanisms. This involves (1) providing a building block
(on top of the channel) offering a state transfer API which the application uses, (2) replacing
the STATE_TRANSFER and possibly QUEUE layers, (3) generating different events from the building
block and (4) handling these events by the corresponding protocol layers that replace the existing
ones.

An example where the API would be replaced, the state transfer protocol implementation dis-
carded and an existing protocol layer (group membership) modified is given below:

The default implementation of state transfer in JavaGroups does not return the group state
to a joiner as result of the JOIN request, as for example described in [Maf95, Vay98, Bir96|.
However, one could provide a building block on top of a channel offering a byte[] Join(Object
group.name, boolean get_state method which optionally returns the state when joining a
group. The group membership protocol would have to be modified slightly to make use of the
FLUSH phase to obtain and return the group state.!”

Sliding a building block in between the channel and the application and changing the protocol
requires that the building block and the protocol 'understand’ each other: events sent down by
the building block have to be handled by the protocol, so the protocol has to know the types
and arguments of these events. By the same token, the building block has to know the types
and arguments of response events sent by the protocol. This means that, when the application
requests state by calling the building block, the latter will send one or more events down the
stack where they have to be caught and handled by the corresponding new state transfer layer.
That layer would then send response event(s)s up the stack, through the channel, which would
pass them on to the building block, where they would be received.

Thus, the JavaGroups protocol architecture permits to vary API and protocol independently as
long as they agree on the same set of events. This allows us to easily extend/adapt the state
transfer mechanism to the various needs of applications by either using the default state transfer
provided by JavaGroups, or if this is not sufficient, by selecting the right building block that suits
the application, or finally, by creating one’s own building block and protocol implementation.

3.4.4 Example

This section illustrates how the default mechanism for state transfer in JavaGroups can be
adapted. Consider a distributed replicated telephone switch which stores all the state associated
with a switch in a database. The frequency of read and write access to the database is high, as
new connections are created and torn down at a high rate. To make the switch fault tolerant,
there is a backup database, which contains the same state as the primary database. The primary

17 After running a FLUSH protocol, no more messages are sent until a new view is installed. This guarantees
that the state will not be modified as result of message reception.

13

database would update the backup whenever it receives a modification (passive replication).®

When the primary database crashes, the backup would be made primary and a new backup
created and initialized from the new primary.

Since the primary switch database is large and heavily accessed, blocking it for state transfer
is not an option, as it might take a long time to transfer state, during which neither database
would be available. Using JavaGroups’ default state transfer is not an option either, because
the transfer might take a long time, and — as messages sent during transfer are queued at the
receiver of the state — there might be a message overflow at the receiver’s side.

Therefore, the backup database server prefetches the state of the primary database and uses it
to initialize its database before actually joining the group. The primary would log all requests
received during the prefetch phase to both the database and an update log. When the backup
server is initialized, it would request the update log from the primary using the regular state
transfer, queueing all requests until the update is integrated. At this point, the primary server
would delete the update log and the backup server would be operational, replaying the queued
request and accepting requests broadcast to the group by the primary.

The protocol is shown in fig. 6.

Backup Server Primary Server
Q old membership
GET_BACKUP
- Backup DB

/ - Return location of backup DB
- Connect to backup DB

- Initialize local DB JOIN
from backup I

new membership

MAKE_COPY

RETURN_STATE

[

Figure 6: Prefetching the state

When a new backup server is created, it first contacts the primary via a communication link
different from the channel'® (e.g. a separate socket on which the primary is listening) to tell it
to create a backup of its database. Today, most modern DBMSs allow to create backups during
operation. This is necessary in our case, since we don’t want to block requests from being served
while creating a backup copy of the primary database.

When the primary server receives the GET_BACKUP request, it (a) starts the backup process and
(b) at the same time starts logging all requests to an update log (e.g. a small database). All
the requests received between the backup request and the retrieval of the update log will be
written to both the database and the update log. When the primary is done, it returns some
information about the location of the newly created backup database to the initiator.?° The
initiator (the backup server) uses this information to locate the backup database and initialize
its local database from it.

When the local database is initialized, we need to retrieve the requests sent to the primary in
the meantime and apply them to the database. To do this, the default state transfer protocol

18 Actually, an update would be sent to the group consisting of the primary and backup. This ensures that all
updates are performed in the same order.

19Not via the group channel, as it is not yet a member. Also, this way the channel is not clogged up with state
transfer data.

20Note that no requests will ever be applied to the backup database.

14

can be used. The backup server first joins the group (this is a prerequisite for participating in
state transfer) and broadcasts a MAKE_COPY to the primary server. Upon reception, the latter
stops logging to the update log and returns the update log. This may be the contents of the log,
or — as in the backup database itself — the location. The update log will be deleted later. The
former starts queueing requests until the update log has been retrieved and applied. When the
contents of the update log have been incorporated into the backup server’s database, both the
backup database and the update log at the primary will be deleted (not shown).

The advantage of the above solution is that the larger part of the state is retrieved offline (outside
the normal state transfer protocol), and the transfer protocol is only used to transfer the update
state. This avoids a long state transfer and does not overflow the receiver with messages sent
during state transfer.

To hide all the protocol interactions, a building block would typically be used (let’s call it
Prefetcher). As shown in fig. 7, it would be layered between the application and the channel.

<]
Application —_— u

[GeDB || channel Int.

Prefetcher

/T

Channel

QUEUE
STATE_TRANSFER

GMS

UDP

Figure 7: Prefetch Building Block

The application would create a channel with a prefetcher on it, and then exclusively use the
prefetcher. The latter manages the channel and offers the same interface as the channel (for-
warding requests to it) and an additional method to retrieve a reference to the local database
(GetDB). This method performs all the protocol interactions discussed above: it uses the channel’s
state transfer API to retrieve the update log, and provides its own functionality to prefetch the
database from the primary. The latter functionality could be implemented in the Prefetcher
API directly, or it might be added in the form of an additional protocol layer which which the
prefetcher would communicate via a new set of events.

The GetDB method would contact the primary via an external communication mechanism, ini-
tialize its local database, join the group and then use the default state transfer to retrieve the
update log. Then it would return a handle (or reference) of the newly created database to its
caller (e.g. the backup server) which becomes an operational member and subsequently applies
all requests to its local database.

The value of the prefetcher building block is that it hides a number of protocol interactions behind
a higher-level and easy-to-use interface tailored specifically to the application at hand.

3.5 Conclusion

We have shown that there are various differing requirements for state transfer in group commu-
nication applications. Since state and the transfer of it is often very application-specific, it is
useless to provide an API that satisfies all needs. Instead, we provide a minimal default API and

15

a framework that allows application programmers to selectively replace either API or implemen-
tation (or both) to suit the needs of their application. Programmers have a choice of the default
API, prefabricated building blocks or application-specific functionality to perform state transfer.

3.6 Acknowledgements

The author would like to thank Ken Birman for comments on a first draft of this paper.

References

[Ban]

[Ban98]

[Bir96)

[Maf95]

[Sch86]

[Vay98]

[VRBYS5]

Bela Ban. Design and Implementation of a Reliable Group Communication Toolkit for
Java. http://www.cs.cornell.edu/home/bba/Coots.ps.gz.

Bela Ban. JavaGroups User’s Guide. CS Dept. Cornell University, April 1998.
http://www.cs.cornell.edu/home/bba/user /index.html.

Kenneth P. Birman. Building Secure and Reliable Network Applications. Manning
Publications Co., 1996.

Silvano Maffeis. The Object Group Design Pattern. In USENIX Conference on Object-
Oriented Technologies (COOTS), June 1995.

Fred Schneider. The State Machine Approach: A Tutorial. Technical Report TR86-800,
CS Dept Cornell University, 1986.

Alexey Vaysburd. Building Reliable Interoperable Distributed Objects With The Maestro
Tools. PhD thesis, CS Dept Cornell University, May 1998.

Robbert Van Renesse and Kenneth P. Birman. Protocol Composition in Horus. Tech-
nical Report TR95-1505, Cornell University, March 1995.
http://www.cs.cornell.edu/Info/Projects/HORUS /Papers.html.

16

