
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325591192

Apache Flagon (frmrly SensSoft) Project Proposal

Research Proposal · April 2016

DOI: 10.13140/RG.2.2.13187.40480

CITATIONS

0
READS

130

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Apache Flagon (Incubating) View project

Molecular genetics of the human BDNF gene View project

Joshua Poore

BAE Systems Inc. FAST Labs

28 PUBLICATIONS 275 CITATIONS

SEE PROFILE

All content following this page was uploaded by Joshua Poore on 06 June 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/325591192_Apache_Flagon_frmrly_SensSoft_Project_Proposal?enrichId=rgreq-f4d100492060d605e5b97e862b76dd55-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU5MTE5MjtBUzo2MzQzNDUwNjA1ODEzNzhAMTUyODI1MTA1Njk4NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/325591192_Apache_Flagon_frmrly_SensSoft_Project_Proposal?enrichId=rgreq-f4d100492060d605e5b97e862b76dd55-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU5MTE5MjtBUzo2MzQzNDUwNjA1ODEzNzhAMTUyODI1MTA1Njk4NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Apache-Flagon-Incubating?enrichId=rgreq-f4d100492060d605e5b97e862b76dd55-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU5MTE5MjtBUzo2MzQzNDUwNjA1ODEzNzhAMTUyODI1MTA1Njk4NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Molecular-genetics-of-the-human-BDNF-gene?enrichId=rgreq-f4d100492060d605e5b97e862b76dd55-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU5MTE5MjtBUzo2MzQzNDUwNjA1ODEzNzhAMTUyODI1MTA1Njk4NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f4d100492060d605e5b97e862b76dd55-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU5MTE5MjtBUzo2MzQzNDUwNjA1ODEzNzhAMTUyODI1MTA1Njk4NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joshua_Poore?enrichId=rgreq-f4d100492060d605e5b97e862b76dd55-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU5MTE5MjtBUzo2MzQzNDUwNjA1ODEzNzhAMTUyODI1MTA1Njk4NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joshua_Poore?enrichId=rgreq-f4d100492060d605e5b97e862b76dd55-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU5MTE5MjtBUzo2MzQzNDUwNjA1ODEzNzhAMTUyODI1MTA1Njk4NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joshua_Poore?enrichId=rgreq-f4d100492060d605e5b97e862b76dd55-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU5MTE5MjtBUzo2MzQzNDUwNjA1ODEzNzhAMTUyODI1MTA1Njk4NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joshua_Poore?enrichId=rgreq-f4d100492060d605e5b97e862b76dd55-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU5MTE5MjtBUzo2MzQzNDUwNjA1ODEzNzhAMTUyODI1MTA1Njk4NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Software as a Sensor™ Project Proposal

Abstract

The Software as a Sensor™ Project offers an open-source (ALv2.0) software tool
usability testing platform. It includes a number of components that work together to
provide a platform for collecting data about user interactions with software tools, as well
as archiving, analyzing and visualizing that data. Additional components allow for
conducting web-based experiments in order to capture this data within a larger
experimental framework for formal user testing. These components currently support
Java Script-based web applications, although the schema for “logging” user interactions
can support mobile and desktop applications, as well. Collectively, the Software as a
Sensor Project provides an open source platform for assessing how users interacted
with technology, not just collecting what they interacted with.

Proposal

The Software as a Sensor™ Project is a next-generation platform for analyzing how
individuals and groups of people make use of software tools to perform tasks or interact
with other systems. It is composed of a number of integrated components:

 User Analytic Logging Engine (User ALE) refers to a simple Application
Program Interface (API) and backend infrastructure. User ALE provides
“instrumentation” for software tools, such that each user interaction within the
application can be logged, and sent as a JSON message to an
Elasticsearch/Logstash/Kibana (Elastic Stack) backend.

o The API provides a robust schema that makes user activities human
readable, and provides an interpretive context for understanding that
activity’s functional relevance within the application. The schema provides
highly granular information best suited for advanced analytics. This
hierarchical schema is as follows:

 Element Group: App features that share function (e.g., map group)
 Element Sub: Specific App feature (e.g., map tiles)
 Element Type: Category of feature (e.g., map)
 Element ID: [attribute] id
 Activity: Human imposed label (e.g., “search”)
 Action: Event class (e.g., zoom, hover, click)

o The API can either be manually embedded in the app source code, or
implemented automatically by inserting a script tag in the source code.

o Users can either setup up their own Elastic stack instance, or use Vagrant,
a virtualization environment, to deploy a fully configured Elastic stack
instance to ship and ingest user activity logs and visualize their log data
with Kibana.

o RESTful APIs allow other services to access logs directly from
Elasticsearch.

o User ALE allows adopters to own the data they collect from users outright,
and utilize it as they see fit.

 Distill is an analytics stack for processing user activity logs collected through
User ALE. Distill is fully implemented in Python, dependent on graph-tool to
support graph analytics and other external python libraries to query
Elasticsearch. The two principle functions of Distill are segmentation and graph
analytics:

o Segmentation allows for partitioning of the available data along multiple
axes. Subsets of log data can be selected via their attributes in User ALE
(e.g. Element Group or Activity), and by users/sessions. Distill also has
the capability to ingest and segment data by additional attributes collected
through other channels (e.g. survey data, demographics).This allows
adopters to focus their analysis of log data on precisely the attributes of
their app (or users) they care most about.

o Distill’s usage metrics are derived from a probabilistic representation of
the time series of users’ interactions with the elements of the application.
A directed network is constructed from the representation, and metrics
from graph theory (e.g. betweenness centrality, in/out-degree of nodes)
are derived from the structure. These metrics provide adopters ways of
understanding how different facets of the app are used together, and they
capture canonical usage patterns of their application. This broad analytic
framework provides adopters a way to develop and utilize their own
metrics

 The Test Application Portal (TAP) provides a single, user-friendly interface to
Software as a Sensor™ Project components, including visualization functionality
for Distill Outputs leveraging Django, React, and D3.js. It has two key functions:

o It allows adopters to register apps, providing metadata regarding location,
app name, version, etc., as well as permissions regarding who can access
user data. This information is propagated to all other components of the
larger system.

o The portal also stages visualization libraries that make calls to Distill. This
allows adopters to analyze their data as they wish to; it’s “dashboard” feel
provides a way to customize their views with adopter-generated widgets
(e.g., D3 libraries) beyond what is included in the initial open source
offering.

 The Subject Tracking and Online User Testing (STOUT) application is an
optional component that turns Software as a Sensor™ Technology into a
research/experimentation enterprise. Designed for psychologists and HCI/UX
researchers, STOUT allows comprehensive human subjects data protection,
tracking, and tasking for formal research on software tools. STOUT is primarily
python, with Django back-end for authentication, permissions, and tracking,
MongoDB for databasing, and D3 for visualization. STOUT includes a number of
key features:

o Participants can register in studies of software tools using their own
preferred credentials. As part of registration, participants can be directed
through human subjects review board compliant consent forms before
study enrollment.

o STOUT stores URLs to web/network accessible software tools as well as
URLs to third party survey services (e.g., surveymonkey), this allows
adopters to pair software tools with tasks, and collect survey data and
comments from participants prior to, during, or following testing with
software tools.

o STOUT tracks participants’ progress internally, and by appending a
unique identifier, and task identifier to URLs. This information can be
passed to other processes (e.g., User ALE) allowing for disambiguation
between participants and tasks in experiments on the open web.

o STOUT supports between and within-subjects experimental designs, with
random assignment to experimental conditions. This allows for testing
across different versions of applications.

o STOUT can also use Django output (e.g., task complete) to automate
other processes, such as automated polling applications serving 3rd party
form data APIs (e.g.,SurveyMonkey), and python or R scripts to provide
automated post-processing on task or survey data.

o STOUT provides adopters a comprehensive dashboard view of data
collected and post-processed through its extensions; in addition to user
enrollment, task completion, and experiment progress metrics, STOUT
allows adopters to visualize distributions of scores collected from task and
survey data.

Each component is available through its own repository to support organic growth for
each component, as well as growth of the whole platform’s capabilities.

Background and Rationale

Any tool that people use to accomplish a task can be instrumented; once instrumented,
those tools can be used to report how they were used to perform that task. Software
tools are ubiquitous interfaces for people to interact with data and other technology that
can be instrumented for such a purpose. Tools are different than web pages or simple
displays, however; they are not simply archives for information. Rather, they are ways of
interfacing with and manipulating data and other technology. There are numerous
consumer solutions for understanding how people move through web pages and
displays (e.g., Google Analytics, Adobe Omniture). There are far fewer options for
understanding how software tools are used. This requires understanding how users
integrate a tool’s functionality into usage strategies to perform tasks, how users
sequence the functionality provided them, and deeper knowledge of how users
understand the features of software as a cohesive tool. The Software as a Sensor™
Project is designed to address this gap, providing the public an agile, cost-efficient
solution for improving software tool design, implementation, and usability.

Software as a Sensor™ Project Overview

Funded through the DARPA XDATA program and other sources, the Software as a
Sensor™ Project provides an open source (ALv2.0) solution for instrumenting software
tools developed for the web so that when users interact with it, their behavior is
captured. User behavior, or user activities, are captured and time-stamped through a
simple application program interface (API) called User Analytic Logging Engine (User
ALE). User ALE’s key differentiator is the schema that it uses to collect information
about user activities; it provides sufficient context to understand activities within the
software tool’s overall functionality. User ALE captures each user initiated action, or
event (e.g., hover, click, etc.), as a nested action within a specific element (e.g., map
object, drop down item, etc.), which are in turn nested within element groups (e.g., map,
drop down list) (see Figure 1). This information schema provides sufficient context to
understand and disambiguate user events from one another. In turn, this enables
myriad analysis possibilities at different levels of tool design and more utility to end-user
than commercial services currently offer.

Figure 1. User ALE Elastic Back End Schema, with Transfer Protocols.

Once instrumented with User ALE, software tools become human signal sensors in their
own right. Most importantly, the data that User ALE collects is owned outright by
adopters and can be made available to other processes through scalable Elastic
infrastructure and easy-to-manage Restful APIs.

Distill is the analytic framework of the Software as a Sensor™ Project, providing (at
release) segmentation and graph analysis metrics describing users’ interactions with the
application to adopters. The segmentation features allow adopters to focus their
analyses of user activity data based on desired data attributes (e.g., certain interactions,
elements, etc.), as well as attributes describing the software tool users, if that data was
also collected. Distill’s usage and usability metrics are derived from a representation of
users’ sequential interactions with the application as a directed graph. This provides an
extensible framework for providing insight as to how users integrate the functional
components of the application to accomplish tasks.

 Figure 2. Software as a Sensor™ System Architecture with all components.

The Test Application Portal (TAP) provides a single point of interface for adopters of the
Software as a Sensor™ project. Through the Portal, adopters can register their
applications, providing version data and permissions to others for accessing data. The
Portal ensures that all components of the Software as a Sensor™ Project have the
same information. The Portal also hosts a number of python D3 visualization libraries,
providing adopters with a customizable “dashboard” with which to analyze and view
user activity data, calling analytic processes from Distill.

Finally, the Subject Tracking and Online User Testing (STOUT) application, provides
support for HCI/UX researchers that want to collect data from users in systematic ways
or within experimental designs. STOUT supports user registration, anonymization, user
tracking, tasking (see Error! Reference source not found.), and data integration from
a variety of services. STOUT allows adopters to perform human subject review board
compliant research studies, and both between- and within-subjects designs. Adopters
can add tasks, surveys and questionnaires through 3rd party services (e.g.,
SurveyMonkey). STOUT tracks users’ progress by passing a unique user IDs to other
services, allowing researchers to trace form data and User ALE logs to specific users

and task sets (see Figure 4).

Figure 3. STOUT assigns participants subjects to experimental conditions and ensures the correct
task sequence. STOUT’s Django back end provides data on task completion, this can be used to drive
other automation, including unlocking different task sequences and/or achievements.

STOUT also provides for data polling from third party services (e.g., SurveyMonkey)
and integration with python or R scripts for statistical processing of data collected
through STOUT. D3 visualization libraries embedded in STOUT allow adopters to view
distributions of quantitative data collected from form data (see Error! Reference

source not
found.).

Figure 4. STOUT User Tracking. Anonymized User IDs (hashes) are concatenated with unique Task
IDs. This “Session ID” is appended to URLs (see Highlighted region), custom variable fields, and User
ALE, to provide and integrated user testing data collection service.

Figure 5. STOUT Visualization. STOUT gives experimenters direct and continuous
access to automatically processed research data.

Insights from User Activity Logs

The Software as a Sensor™ Project provides data collection and analytic services for
user activities collected during interaction with software tools. However, the Software as
a Sensor™ Project emerged from years of research focused on the development of
novel, reliable methods for measuring individuals’ cognitive state in a variety of
contexts. Traditional approaches to assessment in a laboratory setting include surveys,
questionnaires, and physiology (Poore et al., 2016). Research performed as part of the
Software as a Sensor™ project has shown that the same kind of insights derived from
these standard measurement approaches can also be derived from users’ behavior.
Additionally, we have explored insights that can only be gained by analyzing raw
behavior collected through software interactions (Mariano et al., 2015). The signal
processing and algorithmic approaches resulting from this research have been
integrated into the Distill analytics stack. This means that adopters will not be left to
discern for themselves how to draw insights from the data they gather about their
software tools, although they will have the freedom to explore their own methods as
well.

Insights from user activities provided by Distill’s analytics framework fall under two
categories, broadly classified as functional workflow and usage statistics:

Functional workflow insights tell adopters how user activities are connected, providing
them with representations of how users integrate the application’s features together in
time. These insights are informative for understanding the step-by-step process by
which users interact with certain facets of a tool. For example, questions like “how are
my users, constructing plots?” are addressable through workflow analysis. Workflows
provide granular understanding of process level mechanics and can be modeled
probabilistically through a directed graph representation of the data, and by
identification of meaningful sub-sequences of user activities actually observed in the
population. Metrics derived provide insight about the structure and temporal features of
these mechanics, and can help highlight efficiency problems within workflows. For
example, workflow analysis could help identify recursive, repetitive behaviors, and might
be used to define what “floundering” looks like for that particular tool.

Functional workflow analysis can also support analyses with more breadth. Questions
like, “how are my users integrating my tools’ features into a cohesive whole? Are they
relying on the tool as a whole or just using very specific parts of it?” Adopters will be
able to explore how users think about software as cohesive tools and examine if users
are relying on certain features as central navigation or analytic features. This allows for
insights into whether tools are designed well enough for users to understand that they
need to rely on multiple features together.

Through segmentation, adopters can select the subset of the data -software element,
action, user demographics, geographic location, etc.- they want to analyze. This will
allow them to compare, for example, specific user populations against one another in
terms of how they integrate software functionality. Importantly, the graph-based

analytics approach provides a flexible representation of the time series data that can
capture and quantify canonical usage patterns, enabling direct comparisons between
users based on attributes of interest. Other modeling approaches have been utilized to
explore similar insights and may be integrated at a later date (Mariano, et al., 2015).

Usage statistics derive metrics from simple frequentist approaches to understanding,
coarsely, how much users are actually using applications. This is different from simple
“traffic” metrics, however, which assess how many users are navigating to a page or
tool. Rather usage data provides insight on how much raw effort (e.g., number of
activities) is being expended while users are interacting with the application. This
provides deeper insight into discriminating “visitors” from “users” of software tools.
Moreover, given the information schema User ALE provides, adopters will be able to
delve into usage metrics related to specific facets of their application.

Given these insights, different sets of adopters—software developers, HCI/UX
researchers, and project managers—may utilize The Software as a Sensor™ Project for
a variety different use cases, which may include:

 Testing to see if users are interacting with software tools in expected or
unexpected ways.

 Understanding how much users are using different facets of different features in
service of planning future developments.

 Gaining additional context for translating user/customer comments into
actionable software fixes.

 Understanding which features users have trouble integrating to guide decisions
on how to allocate resources to further documentation.

 Understanding the impact that new developments have on usability from version
to version.

 Market research on how users make use of competitors’ applications to guide
decisions on how to build discriminating software tools.

 General research on Human Computer Interaction in service of refining UX and
design principles.

 Psychological science research using software as data collection platforms for
cognitive tasks.

Differentiators

The Software as a Sensor™ Project is ultimately designed to address the wide gaps
between current best practices in software user testing and trends toward agile software
development practices. Like much of the applied psychological sciences, user testing
methods generally borrow heavily from basic research methods. These methods are
designed to make data collection systematic and remove extraneous influences on test
conditions. However, this usually means removing what we test from dynamic, noisy—
real-life—environments. The Software as a Sensor™ Project is designed to allow for the
same kind of systematic data collection that we expect in the laboratory, but in real-life

software environments, by making software environments data collection platforms. In
doing so, we aim to not only collect data from more realistic environments, and use-
cases, but also to integrate the test enterprise into agile software development process.

Our vision for The Software as a Sensor™ Project is that it provides software
developers, HCI/UX researchers, and project managers a mechanism for continuous,
iterative usability testing for software tools in a way that supports the flow (and
schedule) of modern software development practices—Iterative, Waterfall, Spiral, and
Agile. This is enabled by a few discriminating facets:

Figure 6. Version to Version Testing for Agile, Iterative Software Development Methods. The Software
as a Sensor™ Project enables new methods for collecting large amounts of data on software tools,
deriving insights rapidly to inject into subsequent iterations

1. Insights enabling software tool usability assessment and improvement can
be inferred directly from interactions with the tool in “real-world”
environments. This is a sea-change in thinking compared to canonical
laboratory approaches that seek to artificially isolate extraneous influences on
the user and the software. The Software as a Sensor™ Project enables large
scale, remote, opportunities for data collection with minimal investment and no
expensive lab equipment (or laboratory training). This allows adopters to see how
users will interact with their technology in their places of work, at home, etc.

2. Insights are traceable to the software itself. Traditionally laboratory
measures—questionnaires, interviews, and physiology—collect data that is
convenient for making inferences about psychological states. However, it is
notoriously difficult to translate this data into actionable “get-well” strategies in
technology development. User ALE’s information schema is specifically designed
to dissect user interaction within the terminology of application design, providing
a familiar nomenclature for software developers to interpret findings with.

3. Granular data collection enables advanced modeling and analytics. User
ALE’s information schema dissects user interaction by giving context to activity
within the functional architecture of software tools. Treating each time-series of
user activity as a set of events nested within functional components provides
sufficient information for a variety of modeling approaches that can be used to
understand user states (e.g., engagement and cognitive load), user workflows
(e.g., sub-sequences), and users’ mental models of how software tool features
can be integrated (in time) to perform tasks.

In contrast, commercial services such as Google Analytics and Adobe Analytics
(Omniture) provide very sparse options for describing events. They generally
advocate for using “boiler plate” event sets that are more suited to capturing
count data for interactions with specific content (e.g., videos, music, banners)
and workflows through “marketplace” like pages. User ALE provides content
agnostic approaches for capturing user activities by letting adopters label them in
domain specific ways that give them context. This provides a means by which
identical user activities (e.g. click, select, etc.) can be disambiguated from each
other based on which functional sub-component of the tool they have been
assigned to.

4. Adopter-generated content, analytics and data ownership. The Software as
a Sensor™ Project is a set of open-source products built from other open-source
products. This project will allow adopters to generate their own content easily,
using open source analytics and visualization capabilities. By design, we also
allow adopters to collect and manage their own data with support from widely
used open source data architectures (e.g., Elastic). This means that adopters will
not have to pay for additional content that they can develop themselves to make
use of the service, and do not have to expose their data to third party commercial
services. This is useful for highly proprietary software tools that are designed to
make use of sensitive data, or are themselves sensitive.

Current Status

All components of the Software as a Sensor™ Project were originally designed and
developed by Draper as part of DARPA’s XDATA project, although User ALE is being
used on other funded R&D projects, including DARPA RSPACE, AFRL project, and
Draper internally funded projects.

Currently, only User ALE is publically available, however, the Portal, Distill, and STOUT
will be publically available in the May/June 2016 time-frame. The last major release of
User ALE was May, 2015. All components are currently maintained in separate
repositories through GitHub (github.com/draperlaboratory).

Currently, only software tools developed with Javascript are supported. However, we
are currently working on pythonQT implementations for User ALE that will support many
desktop applications.

Meritocracy

The current developers are familiar with meritocratic open source development at
Apache. Apache was chosen specifically because we want to encourage this style of
development for the project.

Community

The Software as a Sensor™ Project is new and our community is not yet established.
However, community building and publicity is a major thrust. Our technology is
generating interest within industry, particularly in the HCI/UX community, both Aptima
and Charles River Analytics, for example are interested in being adopters. We have
also begun publicizing the project to software development companies and universities,
recently hosting a public focus group for Boston, MA area companies.

We are also developing communities of interested within the DoD and Intelligence
community. The NGA Xperience Lab has expressed interest in becoming a transition
partner as has the Navy’s HCIL group. We are also aggressively pursuing adopters at
AFRL’s Human Performance Wing, Analyst Test Bed.

During incubation, we will explicitly seek to increase our adoption, including academic
research, industry, and other end users interested in usability research.

Core Developers

The current set of core developers is relatively small, but includes Draper full-time staff.
Community management will very likely be distributed across a few full-time staff that
have been with the project for at least 2 years. Core personnel can be found on our
website: http://www.draper.com/softwareasasensor

Alignment

The Software as a Sensor™ Project is currently Copyright (c) 2015, 2016 The Charles
Stark Draper Laboratory, Inc. All rights reserved and licensed under Apache v2.0.

Known Risks

Orphaned products

There are currently no orphaned products. Each component of The Software as a
Sensor™ Project has roughly 1-2 dedicated staff, and there is substantial collaboration
between projects.

Inexperience with Open Source

Draper has a number of open source software projects available through
www.github.com/draperlaboratory.

Relationships with Other Apache Products

Software as a Sensor™ Project does not currently have any dependences on Apache
Products. We are also interested in coordinating with other projects including Usergrid,
and others involving data processing at large scales, time-series analysis and ETL
processes.

Developers

The Software as a Sensor™ Project is primarily funded through contract work. There
are currently no “dedicated” developers, however, the same core team does work will
continue work on the project across different contracts that support different features.
We do intend to maintain a core set of key personnel engaged in community
development and maintenance—in the future this may mean dedicated developers
funded internally to support the project, however, the project is tied to business
development strategy to maintain funding into various facets of the project.

Documentation

Documentation is available through Github; each repository under the Software as a
Sensor™ Project has documentation available through wiki’s attached to the
repositories.

Initial Source

Current source resides at Github:

https://github.com/draperlaboratory/user-ale (User ALE)

https://github.com/draperlaboratory/distill (Distill)

https://github.com/draperlaboratory/stout (STOUT and Extensions)

https://github.com/draperlaboratory/

External Dependencies

Each component of the Software as a Sensor™ Project has its own dependencies.
Documentation will be available for integrating them.

User ALE

 Elasticsearch: https://www.elastic.co/
 Logstash: https://www.elastic.co/products/logstash
 Kibana (optional): https://www.elastic.co/products/kibana

STOUT

 Django: https://www.djangoproject.com/
o django-axes
o django-custom-user
o django-extensions

 Elasticsearch: https://www.elastic.co/
 Gunicorn: http://gunicorn.org/
 MySQL-python: https://pypi.python.org/pypi/MySQL-python
 Numpy: http://www.numpy.org/
 Pandas: http://pandas.pydata.org/
 psycopg2: http://initd.org/psycopg/
 pycrypto: https://www.dlitz.net/software/pycrypto/
 pymongo: https://api.mongodb.org/python/current/
 python-dateutil: https://labix.org/python-dateutil
 pytz: https://pypi.python.org/pypi/pytz/
 requests: http://docs.python-requests.org/en/master/
 six: https://pypi.python.org/pypi/six
 urllib3: https://pypi.python.org/pypi/urllib3
 mongoDB: https://www.mongodb.org/
 R (optional): https://www.r-project.org/

Distill

 Flask: http://flask.pocoo.org/
 Elasticsearch-dsl: https://github.com/elastic/elasticsearch-dsl-py
 graph-tool: https://git.skewed.de/count0/graph-tool

OpenMp: http://openmp.org/wp/

 pandas: http://pandas.pydata.org/
 numpy: http://www.numpy.org/
 scipy: http://www.numpy.org/

Portal

 Django: https://www.djangoproject.com/
 React: https://facebook.github.io/react/
 D3.js: https://d3js.org/

Required Resources

 Mailing Lists

o private@sensoft.incubator.apache.org

o dev@sensoft.incubator.apache.org

o commits@sensoft.incubator.apache.org

 Git Repos

o https://git-wip-us.apache.org/repos/asf/User-ALE.git

o https://git-wip-us.apache.org/repos/asf/STOUT.git

o https://git-wip-us.apache.org/repos/asf/DISTILL.git

o https://git-wip-us.apache.org/repos/asf/TAP.git

 Issue Tracking
o JIRA SensSoft (SENSSOFT)

 Continuous Integration

o Jenkins builds on https://builds.apache.org/

 Web

o http://SoftwareasaSensor.incubator.apache.org/

o wiki at http://cwiki.apache.org

Initial Committers

The following is a list of the planned initial Apache committers (the active subset of the
committers for the current repository on Github).

 Joshua Poore (jpoore@draper.com)

 Laura Mariano (lmariano@draper.com)

 Clayton Gimenez (cgimenez@draper.com)

 Alex Ford (aford@draper.com)

 Steve York (syork@draper.com)

 Fei Sun (fsun@draper.com)

 Michelle Beard (mbeard@draper.com)

 Robert Foley (rfoley@draper.com)

 Kyle Finley (kfinley@draper.com)

 Lewis John McGibbney (lewismc@apache.org)

Affiliations

 Draper

o Joshua Poore (jpoore@draper.com)

o Laura Mariano (lmariano@draper.com)

o Clayton Gimenez (cgimenez@draper.com)

o Alex Ford (aford@draper.com)

o Steve York (syork@draper.com)

o Fei Sun (fsun@draper.com)

o Michelle Beard (mbeard@draper.com)

o Robert Foley (rfoley@draper.com)

o Kyle Finley (kfinley@draper.com)

o Lewis John McGibbney (lewismc@apache.org)

 NASA JPL

o Lewis John McGibbney

Sponsors

Champion

 Lewis McGibbney (NASA/JPL)

Nominated Mentors

 Paul Ramirez

 Lewis John McGibbney

 Chris Mattmann

Sponsoring Entity

The Apache Incubator

References

Mariano, L. J., Poore, J. C., Krum, D. M., Schwartz, J. L., Coskren, W. D., & Jones, E. M. (2015). Modeling
Strategic Use of Human Computer Interfaces with Novel Hidden Markov Models. [Methods].
Frontiers in Psychology, 6. doi: 10.3389/fpsyg.2015.00919

Poore, J., Webb, A., Cunha, M., Mariano, L., Chapell, D., Coskren, M., & Schwartz, J. (2016).
Operationalizing Engagement with Multimedia as User Coherence with Context. IEEE
Transactions on Affective Computing, PP(99), 1-1. doi: 10.1109/taffc.2015.2512867

View publication statsView publication stats

https://www.researchgate.net/publication/325591192

