
Airflow OpenTelemetry POC 1

🚀
Airflow OpenTelemetry POC
Journal on OpenTelemetry Proof of Concept for Airflow.

Period: Feb 22 ~ Mar 4, 2022

By Howard Yoo

Table of Contents

Overview
1. Setup Airflow on your local machine

a. Put instrumentation code to produce:

i. Metrics

ii. Traces

iii. (optionally) Logs

2. Setup the Otel Collecting Agent

3. Setup the Backend (Wavefront)

Then, monitor the airflow using Wavefront.

Overview
Running the Otel Collector

Building the Otel Collector
Installing Wavefront Proxy
Running the OTEL collector
Ports
Python

Python packages to install
Initial Test
How to describe a DAG run

Branching the Airflow github repo
Working on configs
Adding Traces
Traces for Scheduler
Traces for DAG Runs

Manual DAG Runs
Scheduled DAG Runs

Adding Metrics
Works to be done
Source Codes

Airflow OpenTelemetry POC 2

Running the Otel Collector
Using docker to run it would be the easiest:

💡
docker run otel/opentelemetry-collector

https://github.com/open-telemetry/opentelemetry-collector

Traces exporter for wavefront (tanzu observability) is available here: https://github.com/open-telemetry/opentelemetry-collector-
contrib/tree/main/exporter/tanzuobservabilityexporter

The following yaml config file (otel-local-config.yaml) was created (referenced from the example config here:
https://github.com/open-telemetry/opentelemetry-collector/blob/main/examples/local/otel-config.yaml)

extensions:
 memory_ballast:
 size_mib: 512
 zpages:
 endpoint: 0.0.0.0:55679

receivers:
 otlp:
 protocols:
 grpc:
 http:

processors:
 batch:
 memory_limiter:
 # 75% of maximum memory up to 4G
 limit_mib: 1536
 # 25% of limit up to 2G
 spike_limit_mib: 512
 check_interval: 5s

exporters:
 logging:
 logLevel: debug
 tanzuobservability:
 traces:
 endpoint: "http://localhost:30001"
 metrics:
 endpoint: "http://localhost:2878"

service:
 pipelines:
 traces:
 receivers: [otlp]
 processors: [memory_limiter, batch]
 exporters: [logging, tanzuobservability]
 metrics:

https://github.com/open-telemetry/opentelemetry-collector
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/exporter/tanzuobservabilityexporter
https://github.com/open-telemetry/opentelemetry-collector/blob/main/examples/local/otel-config.yaml

Airflow OpenTelemetry POC 3

 receivers: [otlp]
 processors: [memory_limiter, batch]
 exporters: [logging, tanzuobservability]

 extensions: [memory_ballast, zpages]

The following run script was then devised to easily run the open telemetry docker image:

#!/bin/bash

docker run --rm -p 13133:13133 -p 14250:14250 -p 14268:14268 \
 -p 55678-55679:55678-55679 -p 4317:4317 -p 8888:8888 -p 9411:9411 \
 -v "${PWD}/otel-local-config.yaml":/otel-local-config.yaml \
 --name otelcol otel/opentelemetry-collector \
 --config otel-local-config.yaml; \

** The docker image did not run, due to the fact that the official image did NOT contain the tanzuobservability exporter (since it’s
classified as contrib package). Therefore, downloading the binary and running it from here : https://github.com/open-
telemetry/opentelemetry-collector-contrib/releases was needed. The latest version id NOT have any binaries (but only source code),
so had to build one on my macbook. Well, golang is kind of easy(?) to build, so just ran

Building the Otel Collector
1. Install the golang on your macOS (otel collector is written in golang)

2. go install github.com/google/addlicense@latest

a. Note that go binaries (built) do get built under ~/go/bin directory. Best to make a path into that for it to run (or copy the
command to the usual user path)

3. check out the source of otel collector using the command git clone https://github.com/open-telemetry/opentelemetry-go-build-tools

4. go into this directory, and run make command to build the commands.

5. copy the following:

a. cp ./checkdoc/checkdoc /usr/local/bin

6. Get the impi package by go get -u github.com/pavius/impi/cmd/impi

a. cp ~/go/bin/impi /usr/local/bin

7. Get the misspel package by go get -u github.com/client9/misspell/cmd/misspell

a. cp ~/go/bin/misspell /usr/local/bin

8. Get the golangci-lint go install github.com/golangci/golangci-lint/cmd/golangci-lint@v1.44.2

a. cp ~/go/bin/golangci-lint /usr/local/bin

9. run make otelcontribcol inside the opentelemetry source directory...

This would have opentelemetry collector to have ALL the exporters available in its binary, which ... will be kind of too much. So, I
would say perhaps have only tanzu observability (wavefront) exporters instead of buildling everything - might be more sensible thing
to do.

Anyway, the binary otelcontribcol_darwin_arm64 will be located inside ./bin directory after the build is finished. Change the name (it’s
too long) to just otelcol and put it into the ~/otel/collector directory where the otel-local-config.yaml resides.

Installing Wavefront Proxy
Install using brew:

brew tap wavefrontHQ/wavefront
brew install wfproxy

https://github.com/open-telemetry/opentelemetry-collector-contrib/releases
https://github.com/open-telemetry/opentelemetry-go-build-tools
http://github.com/golangci/golangci-lint/cmd/golangci-lint@v1.44.2

Airflow OpenTelemetry POC 4

Installed and used Open JDK 13 instead of the provided jdk (inside wf proxy) - due to some security restrictions. Running fine.

Followed the following instructions to set things up. https://docs.wavefront.com/opentelemetry.html

Setup the proxy on wavefront.conf

setting the target Wavefront instance to try.wavefront.com

Assign correct tokens - proxy is registered and visible.

Running the OTEL collector
Run using the following command (assuming that you are in the same directory as the otelcol :

./otelcol --config ./otel-local-config.yaml

Right now, there won’t be too many data entering into the Wavefront Proxy, since we do not have any applications sending metrics /
traces to it. However, as we will start instrumenting Airflow on OpenTelemetry, we’ll be getting metrics and traces into Wavefront!

Ports

2022-02-22T18:37:12.642-0600 info builder/receivers_builder.go:68 Receiver is starting... {"kind": "receiver", "name": "otlp"}
2022-02-22T18:37:12.642-0600 info otlpreceiver/otlp.go:69 Starting GRPC server on endpoint 0.0.0.0:4317 {"kind": "receiver", "name": "otl
2022-02-22T18:37:12.642-0600 info otlpreceiver/otlp.go:87 Starting HTTP server on endpoint 0.0.0.0:4318 {"kind": "receiver", "name": "otl
2022-02-22T18:37:12.642-0600 info otlpreceiver/otlp.go:147 Setting up a second HTTP listener on legacy endpoint 0.0.0.0:55681 {"kind":
2022-02-22T18:37:12.642-0600 info otlpreceiver/otlp.go:87 Starting HTTP server on endpoint 0.0.0.0:55681 {"kind": "receiver", "name": "o
2022-02-22T18:37:12.642-0600 info builder/receivers_builder.go:73 Receiver started. {"kind": "receiver", "name": "otlp"}
2022-02-22T18:37:12.642-0600 info service/telemetry.go:95 Setting up own telemetry...
2022-02-22T18:37:12.643-0600 info service/telemetry.go:115 Serving Prometheus metrics {"address": ":8888", "level": "basic", "service.i

By looking at the log, it looks like the following ports are listening:

4317 (OTLP on GRPC)

4318 (OTLP on HTTP)

55681 (OTLP on HTTP - for legacy support)

There is also a prom endpoint that produces metrics for prometheus:

https://docs.wavefront.com/opentelemetry.html

Airflow OpenTelemetry POC 5

Python
https://opentelemetry.io/docs/instrumentation/python/

Since Airflow is pretty much written in python, I’ll have to take a look into how to write a code in python to instrumentalize metrics in
airflow first, and then the traces.

Python packages to install
The following packages need to be installed (as dependency to airflow) in order for airflow to be able to run opentelemetry:

opentelemetry-api

opentelemetry-sdk

opentelemetry-exporter-otlp

Run a simple pip install opentelemetry-* listed above to install them.

Initial Test
Created this simple test python client(?) to emit trace

from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import(
 OTLPSpanExporter,
)
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.sdk.resources import Resource

exporter will be using port 4317 which is GRPC
added http:// in the endpoint, since it looks like otel collector
does not handle https by default. Since this is only a local test,
this is perfectly fine.
span_exporter = OTLPSpanExporter(
 endpoint="http://localhost:4317"
)

resource = Resource(attributes={
 "service.name": "test-service",
 "application": "test-application"
})

tracer_provider = TracerProvider(resource=resource)
trace.set_tracer_provider(tracer_provider)

https://opentelemetry.io/docs/instrumentation/python/

Airflow OpenTelemetry POC 6

span_processor = BatchSpanProcessor(span_exporter)
tracer_provider.add_span_processor(span_processor)

tracer = trace.get_tracer_provider().get_tracer(__name__)

with tracer.start_as_current_span("foo") as span:
 print("Hello world!")
 span.add_event("event message", {"event_attributes": 1})
 trace.get_current_span().set_attribute("some.message", "some message here")
 trace.get_current_span().set_attribute("TASK run id", "123123123132")

 with tracer.start_as_current_span("bar") as span2:
 print("say hi")
 span2.add_event("event two", {"log": "this is a log"})
 trace.get_current_span().set_attribute("TASK run id", "9087676")

and ran with python oteltest.py

and got following response in otel collector’s console output:

2022-02-23T11:36:30.879-0600 warn zapgrpc/zapgrpc.go:191 [transport] transport: http2Server.HandleStreams failed to read frame: read tcp
2022-02-23T11:36:31.061-0600 INFO loggingexporter/logging_exporter.go:40 TracesExporter {"#spans": 2}
2022-02-23T11:36:31.061-0600 DEBUG loggingexporter/logging_exporter.go:49 ResourceSpans #0
Resource SchemaURL:
Resource labels:
 -> service.name: STRING(test-service)
 -> application: STRING(test-application)
InstrumentationLibrarySpans #0
InstrumentationLibrarySpans SchemaURL:
InstrumentationLibrary __main__
Span #0
 Trace ID : f27200bfeff315e5d62bc1d562621ac0
 Parent ID : 50e763f80bed85e0
 ID : 230904234409e501
 Name : bar
 Kind : SPAN_KIND_INTERNAL
 Start time : 2022-02-23 17:36:30.86448 +0000 UTC
 End time : 2022-02-23 17:36:30.864496 +0000 UTC
 Status code : STATUS_CODE_UNSET
 Status message :
Attributes:
 -> TASK run id: STRING(9087676)
Span #1
 Trace ID : f27200bfeff315e5d62bc1d562621ac0
 Parent ID :
 ID : 50e763f80bed85e0
 Name : foo
 Kind : SPAN_KIND_INTERNAL
 Start time : 2022-02-23 17:36:30.864418 +0000 UTC
 End time : 2022-02-23 17:36:30.864505 +0000 UTC
 Status code : STATUS_CODE_UNSET
 Status message :
Attributes:
 -> some.message: STRING(some message here)
 -> TASK run id: STRING(123123123132)
Events:
SpanEvent #0
 -> Name: event message
 -> Timestamp: 2022-02-23 17:36:30.86445 +0000 UTC
 -> DroppedAttributesCount: 0
 -> Attributes:
 -> event_attributes: INT(1)
SpanEvent #1
 -> Name: event two
 -> Timestamp: 2022-02-23 17:36:30.864489 +0000 UTC
 -> DroppedAttributesCount: 0
 -> Attributes:
 -> log: STRING(this is a log)

For now, I’m going to ignore the warnings - but I was glad to see the trace being received correctly.

I also checked the Wavefront side and found the following traces:

http://oteltest.py/

Airflow OpenTelemetry POC 7

So, there’s obviously ‘service’ or ‘application’ that needs to be defined somewhere (by default, if wavefront does not detect a specific
service id, it will simply define it as ‘unknown_service’ - in the future we should be putting the ‘DAG name’ as its service name.

So, the initial test is successful. We’ll be doing some more tests to test linkages, parent-child relationships, etc.

How to describe a DAG run
After doing some tests, have decided to try out these:

Trace has resource def. of application and service . Looks like application should be of a particular instance of airflow (e.g.
deployment) and hence should have the deployment name (or ID) of an airflow. This might be something that we can put into
the configuration (airflow.conf) file.

Service should be the ‘DAG’ (like DAG ID) - which should identify a particular service.

DAG run should be root Span

TASK run should be child Span of the root span (DAG run)

Optionally, Executor should be the child Span of the TASK run.

TASK runs should be linked to each other using span links - type of ‘dependency.’ The dependency should have the directional
aspect of which is pointing to which.

Any other notes should be taken as we go along the test.

Airflow OpenTelemetry POC 8

Branching the Airflow github repo
I forked apache airflow in https://github.com/apache/airflow into my howardyoo account, and then further created a fork called
opentelemetry-poc-1 and pulled it into my local env.

Working on configs
The first thing that I wanted to work on was the configuration. Currently, there’s a configuration for statsd_* inside airflow.cfg file, so
I wanted to follow the same convention by introducing a bunch of configuration parameter of otel_* configs.

[metrics]

StatsD (https://github.com/etsy/statsd) integration settings.
Enables sending metrics to StatsD.
statsd_on = False
statsd_host = localhost
statsd_port = 8125
statsd_prefix = airflow

OpenTelemetry (https://github.com/open-telemetry) integration settings.
enables metrics and traces to Otel collecting agent
otel_on = True
otel_host = localhost
otel_port = 4317
otel_prefix = airflow

Assumption is that http:// protocol will be used, and 4317 should be the otel collector’s GRPC port.

Adding Traces
Tracer - should be singleton on a single Apache instance (usually resides inside a module)

Usually traces works ‘tail’ based - which means the Trace information will be finalized and submitted not when it STARTs, but when
it ENDS. Therefore, the following cases can be considered for producing trace / spans

When DAG run ends (closes off with the run)

When TASK run ends

https://github.com/apache/airflow

Airflow OpenTelemetry POC 9

When Executor run ends(?)

I have to dig into the details, but it looks like the one that produces when the tasks are ended - is driven by the ‘scheduler.’ So, it is
possible that the scheduler should be the one that produces such traces.

Added codes similar to how Stats works in current airflow, named it Trace .

Has dummy tracer which will get instantiated when configuration is not available or disabled.

OtelTraceLogger will be instantiated when otel_on is detected in airflow.cfg file.

Accessing it will be via class method as such:

from airflow.stats import Trace
...
tracer = Trace.get_tracer("my_tracer")
with tracer.start_as_current_span("something") as span:

First goal is to create traces for DAG runs, followed by TASK runs.

there has to be a consideration for creating span with specific Trace ID either from context or from database, as task runs can
be executed remotely / asynchronously outside of the parent’s domain.

Traces for Scheduler
Adding traces for scheduler involves using Trace to generate tracer which can then be either used inside a function or as a
decorator. The following traces were implemented to monitor the performance of each ‘schedule loop’ that scheduler goes through
every 1~2 seconds.

Airflow OpenTelemetry POC 10

Traces for DAG Runs
DAG runs are a little bit difficult than tracing scheduler runs. That is because a DAG run does not necessarily run everything at the
‘run time,’ but can span across wider time periods. Also, a single DAG run consists of ‘asynchronous’ execution of executors
fetching the task instance commands and running them separately - so propagating the proper span context can be challenging.

So, when the DAG is created (and eventually sync’ed into DB later), a new span is also created, and its span’s JSON representation
would be stored inside an additional column called ‘span_json’ on dag_run and task_instance table.

At the end of the DAG execution (probably going to be triggered by something, but it doesn’t matter), the code will than extract the
JSON data from span_json column, and then it will parse it back to a span object. Then, we can call span.end() to then emit the data
to open telemetry, without having to worry about the context or the attributes - as those will be safely persisted and maintained
inside the database.

Airflow OpenTelemetry POC 11

Here is an example of how a DAG run looks in two categories, manually triggered DAG runs, and DAG runs triggered by the
scheduler. Each has different characteristics, as scheduler would contain scheduler triggering the run, while manual DAG run does
not.

Manual DAG Runs

Airflow OpenTelemetry POC 12

Scheduled DAG Runs

Airflow OpenTelemetry POC 13

So, if you see something in airflow that looks something like this:

By using the ‘run_id’ scheduled__2022-03-04T10:59:25.269270+00:00, you can easily search in the trace list to see the details of
the run as such:

Airflow OpenTelemetry POC 14

Errors

Traces also capture events like error cases in a form of span logs, a good example is when a schedule loop fails:

Which can then get to the trace the resulted in error:

By looking at the traces, we can diagnose that ‘executor’ heartbeat was the root case of the error:

Airflow OpenTelemetry POC 15

Opening up the error will reveal the error message that has Traceback of the code where the error has happened, pretty convenient
to quickly troubleshoot any runs failing.

Adding Metrics
https://open-telemetry.github.io/opentelemetry-python/getting-started.html#add-metrics describes examples of how you should add
metrics. I did not want to introduce too much additional coding to replace what’s currently been implemented using stats.py , and
thus was thinking maybe I could use much of existing framework, but only replace what’s implemented in stats.py to change the
behavior. A good example of how dogstatsd was implemented would give me much of the precursor.

⚠ Due to the fact that opentelemetry’s Metric implementation was NOT complete on version 1.9.1 (which was installable via pip), I
had to clone the main branch of opentelemetry (master) and do a editable build(?) as such:

pip uninstall opentelemetry-sdk
pip uninstall opentelemetry-api
....
git clone https://github.com/open-telemetry/opentelemetry-python.git
cd ./opentelemetry-python

https://open-telemetry.github.io/opentelemetry-python/getting-started.html#add-metrics
http://stats.py/

Airflow OpenTelemetry POC 16

pip install -e ./opentelemetry-sdk
pip install -e ./opentelemetry-api

But running my test metric python script yielded in error:

There was a minor bug at _view_instrument_match.py line 71, which was corrected as such:

if attributes not in self._attributes_aggregation.keys():
 with self._lock:
 # self._attributes_aggregation[attributes] = self._aggregation()
 self._attributes_aggregation[attributes] = self._aggregation

And the whole thing started to work perfectly! So, went ahead and created a PR for this bug fix in open telemetry git repo :
https://github.com/open-telemetry/opentelemetry-python/pull/2479

this produced a counter metric which looked like this in Wavefront:

from re import I
import time
from opentelemetry._metrics import get_meter_provider, set_meter_provider
from opentelemetry.sdk._metrics.export import ConsoleMetricExporter
from opentelemetry.exporter.otlp.proto.grpc._metric_exporter import (
 OTLPMetricExporter,
)
from opentelemetry.sdk._metrics import MeterProvider
from opentelemetry.sdk._metrics.export import PeriodicExportingMetricReader

print("setting up OTLP metric exporter..")
exporter = OTLPMetricExporter(endpoint="http://localhost:4317", insecure=True)
exporter = ConsoleMetricExporter()

print("setting up metric reader..")
reader = PeriodicExportingMetricReader(exporter=exporter, export_interval_millis=1000)
provider = MeterProvider(metric_readers=[reader])

print("setting meter provider..")
set_meter_provider(provider)

print("getting meter provider..")
meter = get_meter_provider().get_meter("getting-started")
meter = provider.get_meter("howard")
print(meter)

print("creating counter..")
counter = meter.create_counter("first_counter")
print("adding 1")
counter.add(1)

time.sleep(3)
print("adding 5")
counter.add(5)

time.sleep(5)
print("adding 5")
counter.add(5)

https://github.com/open-telemetry/opentelemetry-python/pull/2479

Airflow OpenTelemetry POC 17

So, essentially, we are now ready to also instrument OTEL on airflow to produce metrics.

So, where should I be adding these metrics? Well, at the same location as the existing code that produces metrics on stats.

Did some research yesterday - and found out that while counters work pretty well, Gauges require a completely different
strategy to collect and report data. Opentelemetry pretty delegate the collection(or observing) of gauge data using call back
method, which needs to report all the measurements (and perhaps maintain them) as necessary.

Today, worked on to modify stats.py (which contains statsd implementation of airflow) to also process and send metrics to OTEL
(using OTEL exporter) - along with additional configuration that user can enable otel instead of statsd. Currently, the same set of
metrics are being delivered to Wavefront.

http://stats.py/

Airflow OpenTelemetry POC 18

Next step would be to not only send the same metrics, but send in more advanced way (such as supporting point tags) so that
metrics could have much more context. Also, possibly adding additional instrumentation to collect additional metrics could be
explored.

Also used a section called [metrics_tags] section to denote any static tags (e.g. deployment_id, cluster_id, etc..) to attach to the
metrics.

Works to be done
add default metrics tags to Traces as well - there isn’t much automation that can be done, so looking for a nicer way to do it.

Source Codes

Airflow OpenTelemetry POC 19

Here are the list of sources that has changed for this poc:

Please refer to here :

GitHub - howardyoo/airflow at opentelemetry-poc-1

Apache Airflow (or simply Airflow) is a platform to programmatically author, schedule, and monitor workflows.
When workflows are defined as code, they become more maintainable, versionable, testable, and collaborative.
Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your

https://github.com/howardyoo/airflow/tree/opentelemetry-poc-1

for details related to the source codes.

Note that the source code was created from the branch 2.2.4 .

https://github.com/howardyoo/airflow/tree/opentelemetry-poc-1

