
Service Discovery and Load Balancing

Shivam Gupta
Sr Software Engineer

Sanjay Singh
Sr Software Engineer

Dynamic Discovery (D2)

D2 – Dynamic
Discovery

• Part of the open source Rest.li
framework

• Translates a REST resource or
endpoint to an IP-address/hostname

• A library that uses Zookeeper as the
registry store
o Implementations include Java, C++, and Python

d2://service-name/123 → http://my.hostname.biz:9520/context/123

https://linkedin.github.io/rest.li/Dynamic_Discovery

D2 – Responsibilities

Service Discovery

Maintain a registry of online hosts for each
microservice

Load Balancing

Ensure fair distribution of traffic to available
hosts for optimal performance

Why Not DNS?
Domain Name System (DNS) has several
limitations:

• Slow update propagation and less reliability

• Basic load balancing – inability to incorporate
parameters like server load or latency

• Can’t support advanced use-cases like load
tests

D2 – Service
Discovery

D2 and Zookeeper

• ZK for highly reliable coordination of
distributed applications

o Faster updates

• ZK functionality well-suited for service-
discovery

o Ephemeral data

o Watches

• D2 library builds an in-memory cache of
ZK service registry and listens for
updates

D2 – Load Balancing

• Two modes – random, degrader

• Random: picks a random host

• Degrader: passive health checks

o Tracks calls to monitor health

o Cluster-level and host-level tracking

o Active health checks done by ZK

D2 – Load Balancing

• Cluster-level health tracking

o Tracks calls to monitor health

o Drops traffic if threshold is exceeded

• Host-level health tracking

o Tracks latencies and error-rates for each host

o Assigns a weight to each host in the cluster

o weight == probability of selection

ATS-D2
Implementation

• Global + Remap plugin

• http://feed.dns.disco.linke
din.com:1234/feed/: Fallback
“map_to” URL

• d2-plugin.so: D2 plugin shared
object file

• d2://feedService/: D2 service
name to be used for routing

map /feed/
http://feed.dns.disco.linkedin.com:1234/feed/
@plugin=d2-plugin.so
@pparam=d2://feedService/

ATS-D2 Implementation

• Subclasses “atscppapi::RemapPlugin”

• Registers for
“TS_HTTP_TXN_CLOSE_HOOK” to get
feedback

ATS-D2 –
Advanced Features

map /feed/ http://127.0.0.1:1234/feed/
@plugin=d2-plugin.so
@pparam=‘{

"d2_service": "feed",
"abtest": {

"testkey”: "ats.abtest.key",
"treatments":{

"canary":{"d2_service:"feedNew"}
}

}
}’

• Service load tests by modifying D2
weights

• A/B testing and ramping new services

• Quarantine feature

• Backup of service registry data to flat
files

Summary

D2 – Challenges
… and Future Scope

• Problems due to a large ATS fleet

o Herd behavior

o Ineffective degrader load balancing, especially for low QPS
services

• Fine grained load balancing state

o Maintained at individual REST resource level

o Performance constraints

• Programming language dependence

Thank you

