
TECHNICAL REPORT

YL-2010-0007

DISSECTING ZAB

Flavio Junqueira, Benjamin Reed, and Marco Serafini
Yahoo! Labs
701 First Ave

Sunnyvale, CA 94089
{fpj,breed,serafini@yahoo-inc.com}

Bangalore • Barcelona • Haifa •Montreal • New York
Santiago • Silicon Valley



Yahoo! Labs Technical Report No. YL-2010-0007



Yahoo! Labs Technical Report No. YL-2010-0007

DISSECTING ZAB

Flavio Junqueira, Benjamin Reed, and Marco Serafini
Yahoo! Labs
701 First Ave

Sunnyvale, CA 94089
{fpj,breed,serafini@yahoo-inc.com}

1. Introduction

In this document, we present Zab, the ZooKeeper atomic broadcast protocol. ZooKeeper uses
Zab to propagate state updates generated by a primary process, and we refer to these state updates
as transactions. The primary produces a sequence of non-commutative transactions and broadcast
them in order. To guarantee a consistent application state, ZooKeeper requires that every replica
process delivers a prefix of the sequence of transactions. This property is necessary to guarantee
that the state used to generate the state update in a transaction corresponds to the one the transaction
is applied against.

Zab satisfies a different set of properties compared to previous atomic broadcast protocols in
the literature, in particular with respect to causality. We still refer to it as an atomic broadcast
protocol because, at a high level, we require that processes deliver the same set of transactions and
in the same order. To distinguish from previous protocols in the literature, we call the broadcast
problem we solve primary-order atomic broadcast, or simply PO atomic broadcast.

Here is a quick list of highlights of the protocol:

1. The protocol proceeds in epochs, and each epoch can have at most one process broadcasting
messages;

2. Once a process executes the first phase of the protocol, it promises to not accept proposals
from previous epochs. This property is critical to guarantee that during recovery no chosen
proposal is missing from the selected initial history of transactions;

3. For a given epoch, all processes that participate in the epoch must have the initial history of
transactions as a prefix of its own history;

4. To guarantee that transactions are generated using a consistent state, we need to make sure
that a process has completed recovery before it broadcasts new transactions.

This documents has the following structure:

• Section 2 defines sequences and related operations. We use sequences for many parts, so it
is important to make clear our assumptions for sequences;

• Section 3 presents our system model. It discusses processes, channels, and calls available;

• Section 4 presents Zab and its invariants;

• Section 5 proves that Zab satisfy five core properties. It also discusses the relation to causal
order;

• Section 6 proves auxiliary lemmas that we use to show the core set of theorems;

• Section 7 discusses claims that we naively found ourselves trying to prove every so often.

1



Yahoo! Labs Technical Report No. YL-2010-0007

2. Background: Sequences

We make extensive use of sequences in this proof, and the definitions we use follow closely
the ones in the work of Lamport on TLA+ [3]. A sequence S = s1 · s2 · · · sk of length k is an
ordered list of elements of some domain D. We use 〈〉 to denote the empty sequence. A sequence
can be represented as a function with domain 1 . . . k and range D: S : [i ∈ 1 . . . k → s[i] ∈ D].

If S and S′ are sequences, we use S ◦ S′ to denote the concatenation of the two sequences.
More formally:

S ◦ S′ = [i ∈ 1 . . . |S|+ |S′| → If i ≤ |S| then S[i] else S′[i]] (2.1)

We also define the set of elements E(S) of the sequence S as:

E(S) = {e ∈ D : ∃i ∈ 1 . . . |S| : S[i] = e} (2.2)

and the precedence relation ≺S between elements in the sequence S:

d ≺S d′ iff there are S[i] = d and S[j] = d′ such that i < j, d, d′ ∈ D.

3. System model

A system comprises a set Π = {p1, p2, . . . , pn} of processes that can crash and recover. If a
process is not crashed, then we say it is up; otherwise we say that it is down. Processes communi-
cate by exchanging messages through channels.

3.1. Processes

Application

Leader Follower

Process

abcast()

ready() abdeliver()

Zab

Call implementation

Figure 1: Process model.

Each process implements three roles: application, leader, and follower. As illustrated in Fig-
ure 1, the application role executes application steps, whereas the leader and the follower roles
correspond to roles of Zab. When up, a process always performs the application and the follower
roles. A process might also perform the leader role if the leader oracle outputs its process identifier.
If a process is a leader, then it also executes the primary steps of the application.

Algorithms 1 and 2 implement skeletons for the application and Zab, respectively. The appli-
cation algorithm uses three variables:

2



Yahoo! Labs Technical Report No. YL-2010-0007

• isReady indicates whether a process is ready to broadcast;

• instance indicates the primary instance and the epoch of transaction identifiers;

• loracle is an oracle variable: a given process reads the value of loracle to determine
which process is the current leader. Note that this oracle variable is used in both algorithms.

The Zab algorithm has two upon clauses that refer to steps enabled. These steps correspond
to the ones described in Section 4, and they map to actions enabled upon preconditions becoming
true. An example of a precondition is receiving a message of a particular type.

Algorithm 1 Application for process p
1: isReady← false
2: instance← 0
3: txns← ∅
4: upon a leader change according to loracle
5: ready← false
6: end upon
7: upon a call to ready(e) // Primary
8: isReady← true
9: instance← e

10: z← 〈e, 1〉
11: end upon
12: upon a new value v to broadcast // Primary
13: if (loracle = p) ∧ isReady then
14: abcast(〈v, z〉);
15: increment z;
16: end if
17: end upon
18: upon a call to abdeliver(〈v, z〉)
19: transactions← transactions ∪ 〈v, z〉
20: end upon

Algorithm 2 Zab for process p
1: upon a follower step enabled
2: Execute follower step
3: end upon
4: upon a leader step enabled and loracle = p
5: Execute leader step
6: end upon
7: upon a leader change according to loracle
8: Discard the content of all input and output buffers
9: Start new iteration of the Zab protocol and proceed to Phase 1

10: end upon

Zab proceeds in epochs. In each epoch, only a primary process in Π broadcasts. Such a primary
broadcasts transactions 〈v, z〉, where value v ∈ V , V is the set of broadcast values, z ∈ Z ,
and Z is a totally ordered set of transaction identifiers. Each transaction identifier z = 〈e, c〉
has two components: an epoch e ∈ N and a counter c ∈ N. We use epoch(z) to denote the

3



Yahoo! Labs Technical Report No. YL-2010-0007

epoch of a transaction identifier and counter(z) to denote the counter value of z. Incrementing
a transaction identifier z corresponds to incrementing the counter c. A transaction identifier z
precedes an identifier z′, z ≺z z′, if either epoch(z) < epoch(z′) or epoch(z) = epoch(z′) and
counter(z) < counter(z′). We also use z �z z′ to denote that either z ≺z z′ or z = z′

To broadcast a transaction, a primary invokes abcast(〈v, z〉), and processes deliver a transac-
tion by invoking abdeliver(〈v, z〉). When processing abdeliver(〈v, z〉), we simply introduce it to
the set txns. We assume that the application uses this set to generate and maintain its state, and
it is out of the scope of this work to describe how this procedure is executed. Because txns is
a set, by definition multiple deliveries of a transaction 〈v, z〉 are not reflected to the application
state. The exact semantics of broadcasting and delivering are given by five core properties, which
we present and prove below: broadcast integrity, total order, local primary order, global primary
order, primary integrity. We additionally require primary uniqueness for epochs and show two
causal order properties that follow from the core properties.

The application algorithm implements and exposes the abdeliver(〈v, z〉) call, which is called
by the follower code in the same process. For the order of broadcast and deliver events in a
process, we use ε ≺pi ε

′ to denote that process pi has executed ε before ε′, where ε and ε′ are either
an abcast(〈v, z〉) or an abdeliver(〈v, z〉) event.

Before broadcasting any transaction in a given epoch e, a primary must wait until the follower
in the same process proceeds to the broadcast phase (Phase 3, see below) and its state must reflect
all transactions delivered by its corresponding follower by the end of Phase 2. For this purpose,
the application exposes a call ready(e) that a follower uses to enable the application to broadcast
transactions. The call to ready(e) also serves the purpose of setting the value of the primary
instance (variable instance). We show below that by construction this value is unique to a
primary.

3.2. Channels

For each channel cij between a pair of processes pi and pj , we assume that processes pi and
pj have each an output buffer and an input buffer, similarly to the model of [1]. A call to send a
message m to process pj is represented by an event send(m, pj), which inserts m into the output
buffer of pi for cij . Messages are transmitted following the order of send events, and they are
inserted into the input buffer. A call to receive the next messagem in the input buffer is represented
by an event recv(m, pi).

Recall from Algorithm 2 that the Zab protocol proceeds in iterations (Line 9). To state the
channel properties, we refer to iterations, and we assume that iterations are identified uniquely.
Note that processes are not necessarily aware of such an identification scheme, since we use it
only for formalization purposes.

Let σi,jk,k′ be the sequence of messages process pi sends to process pj while iteration of pi is k
and iteration of pj is k′. Every valid sequence of send and recv events must satisfy the following:

Integrity: If there is an event recv(m, pi) at process pj that returns m, then there must be a
previous event send(m, pj) at process pi;

Prefix: If there is an event recv(m, pi) in process pj ,m ∈ σi,jk,k′ , and there ism′ such thatm′ ≺ m
in σi,jk,k′ , then there must be an event recv(m′, pi) in process pj that precedes recv(m, pi);

Single Iteration: The input buffer of a process pj for channel cij contains messages from at most
one iteration of each process.

4



Yahoo! Labs Technical Report No. YL-2010-0007

Zab

Send(m, pj)

Input buffer

Recv(m, pi)

Channel cij

Process pjProcess pi

Output buffer

Zab

Figure 2: Channel model.

4. Zab: definitions, description, and invariants

According to the system model, each process is equipped with a leader oracle loracle that
outputs a process identifier of a prospective leader. If the oracle of process pi ∈ Π says that pi
is the leader, then pi executes the leader steps along with the follower steps. Otherwise, it only
executes the follower steps.

An execution of Zab proceeds in epochs, and for each epoch, a process executes up to three
phases. Recall that we expose three calls between Zab and the application:

• abcast(〈v, z〉);

• abdeliver(〈v, z〉);

• ready(e).

We first present some terminology that we use in the following sections, and next a description
of the protocol and protocol invariants.

4.1. Terminology

Definition 1. (R phase) R phase is the recovery phase (Recovery phase: Phase 1 + Phase 2);

Definition 2. (B phase) B phase is the broadcast phase (Broadcast phase: Phase 3);

Definition 3. (Transaction) A transaction is a pair 〈v ∈ V, z ∈ Z〉, where V is the set of broadcast
values and Z is the set of transaction ids. The set Z is totally ordered and we use ≺z to denote a
strict total order relation over the elements of Z;

Definition 4. (Proposal) A proposal is a pair: current epoch, transaction.

Definition 5. (Broadcast transactions) βe is the sequence of transactions broadcast by a primary
of epoch e using abcast(〈v, z〉).

Definition 6. (Primary mapping) The primary mapping primary is a function from epoch num-
bers to processes: primary : N→ 2Π ∪ {⊥}. Process pi ∈ primary(e) if there is a call to ready(e)
in pi; ⊥∈ primary(e) iff no process has called ready(e).

5



Yahoo! Labs Technical Report No. YL-2010-0007

Definition 7. (History) Each follower f has a history hf of accepted transactions. A history is
a sequence. We also use hef to refer to the sequence of transactions follower f accepted while
f.p = f.a = e. If follower f has not joined e, then hef =⊥.

Definition 8. (Learning) A follower learns a transaction 〈v, z〉 by learning that a quorum Q of
followers has accepted a proposal 〈e, 〈v, z〉〉, for some e.

Definition 9. (Established leader) A leader `e is established for epoch e if the NEWLEADER(e, Ie)
proposal of `e is accepted by a quorum Q of followers.

Definition 10. (Established epoch) An epoch e is established if there is an established leader
for e.

Definition 11. (Initial history) The initial history of an epoch e, Ie, is the history of a prospective
leader of e at the end of phase 1 of epoch e. The initial history is defined only if the prospective
leader of e completes Phase 1.

Definition 12. (Chosen transaction) A transaction 〈v, z〉 is chosen when a quorum of followers
accept a proposal 〈e, 〈v, z〉〉 for some e.

Definition 13. (Sequence of chosen transactions) Ce is the sequence of chosen transactions in
epoch e. A transaction 〈v, z〉 is chosen in epoch e iff there exists a quorum of followers Q such
that each f ∈ Q has accepted 〈e, 〈v, z〉〉.

Definition 14. (Sequence of chosen proposals broadcast in the B phase) CBe is the sequence of
proposals chosen during the B phase of epoch e;

Definition 15. (Follower joins epoch) A follower joins epoch e if it accepts a NEWLEADER(e, Ie)
proposal in Phase 2, and participates in epoch e if its current epoch f.a is e;

Definition 16. (Earlier and later epochs) We say that an epoch e is earlier than an epoch e′ to
denote that e < e′. Similarly, we say that an epoch e is later that e′;

Definition 17. (Sequence of transactions delivered) ∆f is the sequence of transactions follower
f uniquely delivered, which is the sequence induced by the identifiers of the elements in txns.

Definition 18. (Sequence of transactions delivered in the B phase) Df is the sequence of
transactions follower f delivered while in the B phase of epoch f.a.

Definition 19. (Last committed epoch of a follower) Given a follower f , we use f.e to denote
the last epoch e such that f has learned that e has been committed.

4.2. Zab description

Each process executes one iteration of this protocol at a time, and a process at any step may
decide to drop the current iteration and start a new one in Phase 1. In the case the process is a
leader, it executes both the leader and the follower steps of the algorithm concurrently. The three
phases of the protocol are as follows:

Phase 1 (Discovery): Follower f and leader ` execute the following steps:

6



Yahoo! Labs Technical Report No. YL-2010-0007

CEPOCH(f.p) Last promise of follower e
NEWEPOCH(e) Leader proposed epoch
ACK-E(f.a, hf ) Acknowledgement of new epoch e

NEWLEADER(e, Ie) New leader proposal
ACK-LD(e) Acknowledgment of new leader proposal

COMMIT-LD(e) Commit message for epoch e
〈e, 〈v, z〉〉 Proposal message for transaction 〈v, z〉 in epoch e

ACK(e, 〈v, z〉) Acknowledgement for proposal 〈e, 〈v, z〉〉
COMMIT(e, 〈v, z〉) Commit for proposal 〈e, 〈v, z〉〉

Table 1: Summary of messages

f.p Last new epoch proposal acknowledged by follower f , initially ⊥
f.a Last new leader proposal acknowledged by follower f , initially ⊥
hf History of follower f , initially 〈〉

f.zxid zxid of the last accepted transaction in hf , initially ⊥

Table 2: Summary of follower persistent variables

Step f.1.1 A follower sends to the prospective leader ` its last promise in a CEPOCH(f.p)
message.

Step `.1.1 Upon receiving CEPOCH(e) messages from a quorumQ of followers, the prospec-
tive leader ` proposes NEWEPOCH(e′) to the followers inQ. Epoch number e′ is such
that it is later than any e received in a CEPOCH(e) message.

Step f.1.2 Once it receives a NEWEPOCH(e′) from the prospective leader `, if f.p < e′,
then make f.p← e′ and acknowledge the new epoch proposal NEWEPOCH(e′). The
acknowledgment ACK-E(f.a, hf ) contains the current epoch f.a of the follower and
its history. Follower completes Phase 1.

Step `.1.2 Once it receives a confirmation from each follower in Q, it selects the history
of one follower f in Q to be the initial history Ie′ . Follower f is such that for every
follower f ′ in Q, f ′.a < f.a or (f ′.a = f.a) ∧ (f ′.zxid �z f.zxid). Prospective
leader completes Phase 1.

Phase 2 (Synchronization): Follower f and leader ` execute the following steps:

Step `.2.1 The prospective leader ` proposes NEWLEADER(e′, Ie′) to all followers in Q.

Step f.2.1 Upon receiving the NEWLEADER(e′, T ) message from `, the follower starts a
new iteration if f.p 6= e′. If f.p = e′, then it executes the following actions atomically:

1. It sets f.a to e′;
2. For each 〈v, z〉 ∈ E(Ie′), it accepts 〈e′, 〈v, z〉〉, and make hf = T .

Finally, it acknowledges the NEWLEADER(e′, Ie′) proposal to the leader, thus accept-
ing the transactions in T .

Step `.2.2 Upon receiving acknowledgements to the NEWLEADER(e′, Ie′) from a quo-
rum of followers, the leader sends a commit message to all followers and completes
Phase 2.

7



Yahoo! Labs Technical Report No. YL-2010-0007

Step f.2.2 Upon receiving a commit message from the leader, it delivers all transactions in
the initial history Ie′ by invoking abdeliver(〈v, z〉) for each transaction 〈v, z〉 in Ie′ ,
following the order of Ie′ , and completes Phase 2.

Phase 3 (Broadcast): Follower f and leader ` execute the following steps:

Step `.3.1: Leader ` proposes to all followers in Q in increasing order of zxid, such that
for each proposal 〈e′, 〈v, z〉〉, epoch(z) = e′, and z succeeds all zxid values previously
broadcast in e′.

Step `.3.2: Upon receiving acknowledgments from a quorum of followers to a given pro-
posal 〈e′, 〈v, z〉〉, the leader sends a commit COMMIT(e′, 〈v, z〉) to all followers.

Step f.3.1: Follower f initially invokes ready(e′) if it is leading.

Step f.3.2: Follower f accepts proposals from ` following reception order and appends
them to hf .

Step f.3.3: Follower f commits a transaction 〈v, z〉 by invoking abdeliver(〈v, z〉) once it
receives COMMIT(e′, 〈v, z〉) and it has committed all transactions 〈v′, z′〉 such that
〈v′, z′〉 ∈ E(hf ), z′ ≺z z.

Step `.3.3: Upon receiving a CEPOCH(e) message from follower f while in Phase 3,
leader ` proposes back NEWEPOCH(e′) and NEWLEADER(e′, Ie′ ◦ βe′).

Step `.3.4: Upon receiving an acknowledgement from f of the NEWLEADER(e′, Ie′ ◦βe′)
proposal, it sends a commit message to f . Leader ` also makes Q← Q ∪ {f}.

CEPOCH

CEPOCH

NEWEPOCH

NEWEPOCH

ACK-E

ACK-E

NEWLEADER

NEWLEADER

ACK-LD

ACK-LD

PROPOSE

PROPOSE

ACK

ACK

COMMIT

COMMIT

Follower

Leader

Follower

BroadcastSynchronization

COMMIT-LD

COMMIT-LD

PROPOSE = Leader proposes a new transaction
ACK = Follower acknowledges leader proposal
COMMIT = Leader commits proposal 

Discovery

CEPOCH = Follower sends its current epoch e to the prospective leader
NEWEPOCH = Leader proposes a new epoch e'
ACK-E = Follower acknowledgement new epoch proposal
NEWLEADER = Prospective leader proposes itself as the new leader of epoch e'
ACK-LD = Acknowledgement for the new leader proposal
COMMIT-LD = Commit new leader proposal

Figure 3: Zab protocol summary

4.3. Some insight

Here we give examples showing how Zab handles each one of them. These examples illustrate
how the mechanisms Zab implements ensure that our safety properties hold.

In the two example we show in Figures 4 and 5, we have three processes, and for each process
we show the follower history. In Example 1, we have that all three processes participate in moving
to a new epoch and send their current history along with their latest epoch. Note that we omit the
state of the leader in the figure, since the leader simply selects the initial history out of a set of
histories received. The initial history chosen is the one of the follower with highest zxid, which is
follower 1, and this history includes all transactions chosen so far.

8



Yahoo! Labs Technical Report No. YL-2010-0007

f1 f2 f3

⟨0,1⟩

⟨0,3⟩
⟨0,2⟩

⟨0,1⟩
⟨0,2⟩

⟨0,1⟩

New epoch
f1.a = 0, 
⟨0,3⟩

f2.a = 0, 
⟨0,2⟩

f3.a = 0, 
⟨0,1⟩

Initial history of 
new epoch

Figure 4: Example 1

Example 2 shows a scenario that leads to violation of safety. By the protocol, however, this
scenario is impossible with Zab. From the example, if f3.a = 3, then there must have been a
quorum of followers promising not to accept transactions from an epoch earlier than 3 in Phase 1
of epoch 3. If such a promise is made before epochs 1 and 2 become established, then the leaders
of epochs 1 and 2 would not be able to obtain a quorum in Phase 1 to establish these epochs. If the
promise comes after epochs 1 or 2 are established, then the initial history of epoch 3 must include
at least transaction 〈1, 1〉. Consequently, this scenario is impossible with Zab.

f1 f2 f3

⟨0,1⟩

⟨1,1⟩
⟨0,2⟩

⟨0,1⟩
⟨0,2⟩

⟨0,1⟩

New epoch

f1.a = 2, 
⟨2,1⟩

f2.a = 2, 
⟨1,1⟩

f3.a = 3, 
⟨0,2⟩

⟨2,1⟩
⟨1,1⟩

⟨0,2⟩

Can't happen!
Figure 5: Example 2

4.4. Protocol invariants

The following are invariants guaranteed by the protocol.

Invariant 20. A process executes Phase 1, 2, and 3 in this order for any epoch e. A process can
abandon its current epoch e at any time and start executing the steps of Phase 1 for a new epoch.

9



Yahoo! Labs Technical Report No. YL-2010-0007

Invariant 21. Followers receive proposals during the B phase of an epoch e in zxid order.

Invariant 22. A follower f accepts a proposal 〈e, 〈v, z〉〉 only if its current epoch f.a = e.

Invariant 23. During the B phase of epoch e, a follower f such that f.a = e accepts proposals
and delivers transactions following the zxid order.

Invariant 24. A follower f sets its current epoch f.a and accepts the leader history in Phase 2
atomically.

Invariant 25. In Phase 1, a follower f promises, before it provides its history hf as the initial
history of epoch e, not to accept proposals from the leader of any epoch e′ < e.

Invariant 26. The initial history Ie of an epoch e is the history of some follower. Messages
ACK-E(f.a, hf ) (Phase 1) and NEWLEADER(e, Ie) (Phase 2) do not alter, reorder, or lose trans-
actions in hf and Ie, respectively.

Invariant 27. A follower delivers 〈v, z〉 ⇒ ∃Q ∈ Q : ∀f ∈ Q : f has accepted 〈e, 〈v, z〉〉, for
some epoch e.

Invariant 28. Let f be a follower. Df v βf.e.

The integrity property of channels guarantees that messages are not corrupted or generated
spontaneously. Corruption and spontaneous generation of a message might lead to incorrect be-
havior as the message content does not necessarily reflect the state of the sender. The prefix and
single iteration properties enable the protocol to accept proposals and deliver transactions follow-
ing the order of proposal and commit messages received, without further verification. In fact,
Invariants 23 and 28 are trivially satisfied with these channel properties.

5. Properties

5.1. Primaries are unique

With the following claim, we show that for any epoch e there can be at most one primary.

Claim 29. Zab satisfies primary uniqueness: For every epoch number e, there is at most one
process that calls ready(e).

FORMULA: ∀e ∈ N : |primary(e)| = 1

Proof:
By the protocol, a process calls ready(e) once it becomes an established leader and it delivers the
transactions in the initial history. By Lemma 46, there is at most one established leader for a given
epoch e, and consequently the claim follows.
2

In the following sections, we use ρe to denote the unique primary of an established epoch e
and ρe ≺ ρe′ to denote that e < e′.

10



Yahoo! Labs Technical Report No. YL-2010-0007

5.2. Core properties

Claim 30. Zab satisfies broadcast integrity: If some follower f delivers 〈v, z〉, then there is some
epoch e such that the primary ρe has broadcast 〈v, z〉.

FORMULA: ∃f ∈ Π, v ∈ V, z ∈ Z : 〈v, z〉 ∈ ∆f ⇒ ∃e : 〈v, z〉 ∈ βρe

Proof:
By the protocol, only transactions broadcast by primaries are delivered. By the integrity property
of channels, only messages sent are received.
2

Claim 31. Zab satisfies agreement: If some follower f delivers 〈v, z〉 and some follower process
f ′ delivers 〈v′, z′〉, then f ′ delivers 〈v, z〉 or f delivers 〈v′, z′〉.

FORMULA: 〈v, z〉 ∈ E(∆f ) ∧ 〈v′, z′〉 ∈ E(∆f ′) ⇒ 〈v, z〉 ∈ E(∆f ′) ∨
〈v′, z′〉 ∈ E(∆f )

Proof:
If 〈v, z〉 = 〈v′, z′〉 or f = f ′, then the claim is vacuously true. Assuming that 〈v, z〉 6= 〈v′, z′〉
and f 6= f ′, we have by Lemma 46 and the protocol, no two leaders propose different transactions
with the same zxid. Suppose without loss of generality that z ≺z z′. By assumption, we have that
〈v, z〉 ∈ E(∆f ). By Lemma 56, we have that 〈v, z〉 ∈ E(If.e) or 〈v, z〉 ∈ E(Df ). There are two
cases to consider:

epoch(z) = epoch(z′) : By Invariant 23, followers accept 〈v, z〉 and 〈v′, z′〉 following their zxid
order. Assuming that 〈v′, z′〉 ∈ E(Df ′), we have also by Invariant 23 that:

〈v, z〉 ∈ E(Df ′) (5.1)

Otherwise, we have that 〈v′, z′〉 ∈ If ′.e. By the assumption that 〈v, z〉 has been delivered,
we have that 〈v, z〉 has been chosen (Invariant 27). Consequently, by Lemma 55, we have
also that 〈v′, z′〉 ∈ If ′.e. By Lemma 56:

〈v, z〉, 〈v′, z′〉 ∈ E(∆f ′) (5.2)

epoch(z) < epoch(z′) : By Invariant 22 and the protocol, we have that:

〈v′, z′〉 ∈ E(∆f ′)⇒ epoch(z′) has been established (5.3)

〈v, z〉 ∈ E(∆f )⇒ ∃e′ : 〈v, z〉 ∈ Ce′ (5.4)

By Lemma 55: ∧
Eq. 5.3∧
Eq. 5.4

⇒ 〈v, z〉 ∈ E(Iepoch(z′)) (5.5)

By Lemma 52:
Eq. 5.5⇒ 〈v, z〉 ∈ E(If ′.e) (5.6)

By assumption, we have that 〈v′, z′〉 ∈ E(∆f ′). By Lemma 56, we have that ∆f ′ =
If ′.e ◦Df ′ , and we conclude that 〈v, z〉, 〈v′, z′〉 ∈ E(∆f ′)

11



Yahoo! Labs Technical Report No. YL-2010-0007

2

Claim 32. Zab satisfies total order: If some follower delivers 〈v, z〉 before 〈v′, z′〉, then any
follower that delivers 〈v′, z′〉 must also deliver 〈v, z〉 and deliver 〈v, z〉 before 〈v′, z′〉.

FORMULA: 〈v, z〉 ≺∆f
〈v′, z′〉 ∧ 〈v′, z′〉 ∈ E(∆f ′)⇒ 〈v, z〉 ≺∆f ′ 〈v′, z′〉

Proof:
By assumption, we have that 〈v, z〉 ≺∆f

〈v′, z′〉 and 〈v′, z′〉 ∈ ∆f ′ . By Lemma 57, we have that
∆f v Cf.e. We then have that:

(∆f v Cf.e) ∧ 〈v, z〉 ≺∆f
〈v′, z′〉 ⇒ 〈v, z〉 ≺Cf.e

〈v′, z′〉 (5.7)

and that:
(∆f ′ v Cf ′.e) ∧ 〈v′, z′〉 ∈ E(∆f ′)⇒ 〈v′, z′〉 ∈ E(Cf ′.e) (5.8)

Case f ′.e < f.e: By Corollary 54 and Lemma 47, we have that:

Cf ′.e v Cf.e (5.9)

and that:
Eq. 5.7 ∧ Eq. 5.8 ∧ Eq. 5.9⇒ 〈v, z〉 ≺Cf ′.e 〈v

′, z′〉 (5.10)

Consequently, we have that:

Eq. 5.10 ∧ Lemma 57 ∧ 〈v′, z′〉 ∈ ∆f ′ ⇒ 〈v, z〉 ≺∆f ′ 〈v′, z′〉 (5.11)

Case f ′.e ≥ f.e: By Corollary 54 and Lemma 47, we have that:

Cf.e v Cf ′.e (5.12)

and that:
Eq. 5.12 ∧ Eq. 5.8 ∧ Eq. 5.7⇒ 〈v, z〉 ≺Cf ′.e 〈v

′, z′〉 (5.13)

Consequently, we have that:

Eq. 5.13 ∧ Lemma 57 ∧ 〈v′, z′〉 ∈ ∆f ′ ⇒ 〈v, z〉 ≺∆f ′ 〈v′, z′〉 (5.14)

2

Claim 33. Zab satisfies local primary order: If a primary broadcasts 〈v, z〉 before it broadcasts
〈v′, z′〉, then a follower f that delivers 〈v′, z′〉 must also deliver 〈v, z〉 before 〈v′, z′〉.

FORMULA: 〈v, z〉 ≺βe 〈v′, z′〉 ∧ 〈v′, z′〉 ∈ ∆f ⇒ 〈v, z〉 ≺∆f
〈v′, z′〉

Proof:
Let f be a follower process. There are two cases to consider:

12



Yahoo! Labs Technical Report No. YL-2010-0007

Case f.e = e: By Invariant 28, we have that:

Df v βf.e (5.15)

and by the same invariant:

〈v, z〉 ≺βe 〈v′, z′〉 ∧ 〈v′, z′〉 ∈ ∆f ⇒ 〈v, z〉 ≺Df
〈v′, z′〉 (5.16)

Finally we have that by Lemma 56:

〈v, z〉 ≺Df
〈v′, z′〉 ⇒ 〈v, z〉 ≺∆f

〈v′, z′〉 (5.17)

Case f.e > e: By Lemma 56 and Invariant 28, we have that:

〈v, z〉 ≺βe 〈v′, z′〉 ∧ 〈v′, z′〉 ∈ ∆f ⇒ 〈v′, z′〉 ∈ E(If.e) (5.18)

By Invariants 23 and 26:

〈v, z〉 ≺βe 〈v′, z′〉 ∧ Eq. 5.18 ⇒ 〈v, z〉 ≺If.e
〈v′, z′〉 (5.19)

Finally we have that by Lemma 56:

〈v, z〉 ≺If.e
〈v′, z′〉 ∧ 〈v′, z′〉 ∈ ∆f ⇒ 〈v, z〉 ≺∆f

〈v′, z′〉 (5.20)

2

Claim 34. Zab satisfies global primary order: Let transactions 〈v, z〉 and 〈v′, z′〉 be as follows:

• A primary ρe broadcasts 〈v, z〉

• A primary ρe′ , ρe ≺ ρe′ , broadcasts 〈v′, z′〉

If a follower f delivers both 〈v, z〉 and 〈v′, z′〉, then f must deliver 〈v, z〉 before 〈v′, z′〉.

FORMULA: 〈v, z〉 ∈ βρe ∧ 〈v′, z′〉 ∈ βρe′ ∧ ρe ≺ ρe′ ∧ 〈v, z〉 ∈ ∆f ∧ 〈v′, z′〉 ∈
∆f ⇒ 〈v, z〉 ≺∆f

〈v′, z′〉

Proof:
By Lemma 57, we have that:

〈v, z〉 ∈ E(∆f )⇒ 〈v, z〉 ∈ E(Cf.e) (5.21)

〈v′, z′〉 ∈ E(∆f )⇒ 〈v′, z′〉 ∈ E(Cf.e) (5.22)

Case f.e = e′: We have by Invariant 28 that 〈v, z〉 6∈ E(Df ). By Lemma 56 we have that
∆f = If.e ◦Df . Consequently, 〈v, z〉 ∈ E(If.e) and 〈v, z〉 ≺∆f

〈v′, z′〉.

Case f.e > e′: We have by Invariant 28 that 〈v, z〉, 〈v′, z′〉 ∈ E(If.e). By Invariant 27, we
have that 〈v, z〉 ∈ E(∆f ) implies that 〈v, z〉 has been chosen. By Lemma 55, 〈v, z〉 ∈
Iepoch(z′), and by Lemma 52, we have that Iepoch(z′) v If.e and that 〈v, z〉 ≺If.e

〈v′, z′〉.
By Lemma 56, we conclude that 〈v, z〉 ≺∆f

〈v′, z′〉.

13



Yahoo! Labs Technical Report No. YL-2010-0007

2

Claim 35. Zab satisfies primary integrity: If ρe broadcasts 〈v, z〉 and some follower f delivers
〈v′, z′〉 such that 〈v′, z′〉 has been broadcast by ρe′ , e′ < e, then ρe must deliver 〈v′, z′〉 before it
broadcasts 〈v, z〉.

FORMULA: ∧
〈v, z〉 ∈ E(βe)∧
∃f, e′′ : f.e = e′′ ∧ 〈v′, z′〉 ∈ E(∆f )∧
epoch(z′) < e

⇒ abdeliver(〈v′, z′〉) ≺ρe abcast(〈v, z〉)

Proof:
If some follower has delivered 〈v′, z′〉, then 〈v′, z′〉 has been chosen, and by Lemma 55 〈v′, z′〉 ∈
E(Iepoch(z)). Suppose by way of contradiction that ρe broadcasts 〈v, z〉 before it delivers 〈v′, z′〉.
There are two cases to consider:

• Process pi invokes abcast(〈v, z〉) before it delivers the initial history of epoch e. This is not
possible by Algorithm 1 and the Zab protocol: a primary only broadcasts a transaction if
isReady evaluates to true and a follower only calls ready(e) once it finishes delivering the
transactions in the initial history;

• Process pi delivers 〈v′, z′〉while in the B phase of epoch e. This action violates Invariant 23.

2

5.3. Relation to causal order

The definition of causal order is based on the precedence (or happens before) relation of Lam-
port [2], which is defined as follows:

Definition 36. (Precedence) Let ε and ε′ be two events in a distributed system. The transitive
relation ε→ ε′ holds if any one of the following conditions holds:

1. ε and ε′ are two events on the same process and ε comes before ε′;

2. ε is the sending of a messagem by one process, and ε′ is the receipt ofm by another process;

3. There exists a third event ε′′ such that ε→ ε′′ and ε′′ → ε′.

For broadcast protocols, the events are either broadcast or deliver events. We use 〈v, z〉 ≺c
〈v′, z′〉 to denote that abcast(〈v, z〉) → abcast(〈v′, z′〉). The Causal Order property for atomic
broadcast protocols is typically defined as:

Definition 37. (Causal order) If 〈v, z〉 ≺c 〈v′, z′〉 and a process p delivers 〈v′, z′〉, then process p
must also deliver 〈v, z〉 and deliver 〈v, z〉 before 〈v′, z′〉.

14



Yahoo! Labs Technical Report No. YL-2010-0007

Process pi

Process pj
abdeliver(⟨v'',z''⟩)

abdeliver(⟨v'',z''⟩)

abcast(⟨v'',z''⟩)

abdeliver(⟨v',z'⟩)abcast(⟨v,z⟩) abcast(⟨v',z'⟩)

abdeliver(⟨v',z'⟩)

Figure 6: Counterexample of causal order.

This property, however, cannot be satisfied by Zab. Figure 6 gives an example in which two
transactions are causally related, 〈v, z〉 and 〈v′′, z′′〉, but transaction 〈v, z〉 is not delivered. To
simplify the discussion, we present only events for two processes.

PO atomic broadcast implements a causal ordering based on a weaker precedence relation.

Definition 38. (PO precedence) Let ε and ε′ be two events in a distributed system. Events are
either abcast(〈v, z〉) or abdeliver(〈v, z〉) events. The transitive relation ε →po ε

′ holds if any one
of the following conditions holds:

1. ε and ε′ are local to the same process, ε occurs before ε′, and at least one of the following
holds: ε 6= abcast(〈v, z〉), ε′ 6= abcast(〈v′, z′〉), or epoch(z) = epoch(z′);

2. ε = abcast(〈v, z〉) and ε′ = abdeliver(〈v, z〉);

3. There is a third event ε′′ such that ε→po ε
′′ and ε′′ →po ε

′.

This weaker form of the precedence relation defines a partial order of transactions ≺po that is
strictly weaker than≺c. We use 〈v, z〉 ≺po 〈v′, z′〉 to denote that abcast(〈v, z〉)→po abcast(〈v′, z′〉).
The PO causal order property enforced by PO atomic broadcast is the same as causal order but
considers the ≺po relation.

Definition 39. (PO causal order) If 〈v, z〉 ≺po 〈v′, z′〉 and a process p delivers 〈v′, z′〉, then
process p must also deliver 〈v, z〉 and deliver 〈v, z〉 before 〈v′, z′〉.

The example of Figure 6 does not violate this variant of causal order.. PO atomic broadcast
additionally enforces a property that we call conflict freedom.

Definition 40. (Strict causality) If a process p delivers 〈v, z〉 and 〈v′, z′〉, then either 〈v, z〉 ≺po
〈v′, z′〉 or 〈v′, z′〉 ≺po 〈v, z〉.

Figure 7 shows that an execution satisfying causal order atomic broadcast that may violate
conflict-freedom order, thus showing that PO atomic broadcast is neither weaker nor stronger than
causal order atomic broadcast.

Claim 41. PO atomic broadcast implements PO causal order: If 〈v, z〉 ≺po 〈v′, z′〉 and a follower
f delivers 〈v′, z′〉, then follower f must also deliver 〈v, z〉 and deliver 〈v, z〉 before 〈v′, z′〉.

FORMULA: 〈v, z〉 ≺po 〈v′, z′〉 ∧ 〈v′, z′〉 ∈ E(∆f )⇒ 〈v, z〉 ≺∆f
〈v′, z′〉

15



Yahoo! Labs Technical Report No. YL-2010-0007

Process pi

Process pj
abdeliver(⟨v'',z''⟩)abcast(⟨v',z'⟩) abdeliver(⟨v,z⟩)abdeliver(⟨v',z'⟩)

abcast(⟨v'',z''⟩)abcast(⟨v,z⟩) abdeliver(⟨v,z⟩)abdeliver(⟨v',z'⟩)

Figure 7: Example of an execution that satisfies causal order (and PO Causal
Order), but not strict causality, epoch(z) < epochz′ < epoch(z′′).

Proof:
According to PO precedence, there are three cases when 〈v, z〉 ≺po 〈v′, z′〉 holds. We show the
claim for the first two base cases. The third case follows by a simple induction on the sequence of
transitive causal relations ≺po, starting from 〈v′, z′〉 and proceeding backward until 〈v, z〉.

By local primary order (Claim 33), transactions broadcast by the same primary ρe must be
delivered according to the broadcast order, so the claim holds if epoch(z) = epoch(z′).

We now consider the case where epoch(z) 6= epoch(z′). Let pi and pj be the processes
broadcasting 〈v, z〉 and 〈v′, z′〉, respectively. By the definition of ≺po, 〈v, z〉 ≺po 〈v′, z′〉 implies
that pj delivers 〈v, z〉 before broadcasting 〈v′, z′〉. Note that if pi = pj , then the last observation
holds due to the relaxation of the first case of the precedence relation. By agreement (Claim 31),
either f or pj delivers both 〈v, z〉 and 〈v′, z′〉.

If epoch(z) > epoch(z′), then we reach a contradiction. By the global primary order property
(Claim 34), either f or pj delivers 〈v′, z′〉 before 〈v, z〉, a contradiction with the total order property
(Claim 32) since pj delivers 〈v, z〉 before broadcasting 〈v′, z′〉 by assumption.

Consequently, we must have that epoch(z) < epoch(z′). By the assumption epoch(z) <
epoch(z′) and the global primary order property, 〈v, z〉 is delivered before 〈v′, z′〉 by some process.
The claim follows by the total order property.
2

Claim 42. PO atomic broadcast implements strict causality: If a follower f delivers 〈v, z〉 and
〈v′, z′〉, then 〈v, z〉 ≺po 〈v′, z′〉 or 〈v′, z′〉 ≺po 〈v, z〉.

FORMULA: ∃f : 〈v, z〉, 〈v′, z′〉 ∈ E(∆f ) ⇒ 〈v, z〉 ≺po 〈v′, z′〉 ∨ 〈v′, z′〉 ≺po
〈v, z〉

Proof:
If epoch(z) = epoch(z′), then we have by the uniqueness of primaries that either 〈v, z〉 ≺po
〈v′, z′〉 if z ≺z z′ or 〈v′, z′〉 ≺po 〈v, z〉 if z′ ≺z z.

If epoch(z) 6= epoch(z′), then, since 〈v′, z′〉 ∈ E(∆f ), we have that either 〈v, z〉 ≺∆f
〈v′, z′〉

or 〈v′, z′〉 ≺∆f
〈v, z〉. Suppose without loss of generality that 〈v, z〉 ≺∆f

〈v′, z′〉. There are two
other cases to consider:

epoch(z) < epoch(z′): By primary integrity, before broadcasting 〈v′, z′〉 the primary of epoch
epoch(z′) delivers every transaction from previous epochs that is ever delivered by any pro-
cess. Consequently, 〈v, z〉 ≺po 〈v′, z′〉;

16



Yahoo! Labs Technical Report No. YL-2010-0007

epoch(z) > epoch(z′): This case cannot happen by global primary order.

2

6. Lemmata

Lemma 43. For every follower f and epoch e, if f participates in e, then Ie v hf .

FORMULA: f.a = e⇒ Ie v hf

Proof:
In Phase 2, a follower f receives a sequence T of transactions from a prospective leader of epoch
e executing Phase 2 or from the established leader of e executing Phase 3. In the former case,
hf = Ie once the follower processes the new leader proposal, before it completes Phase 2. In the
latter case, T might contain transactions broadcast in the B phase of epoch e, and they constitute a
suffix of the sequence (Invariant 20 and behavior of the leader in Phase 3). Consequently Ie v hf
at the end of Phase 2.

Once f proceeds to the B phase, it accepts proposals in order of zxid and adds them to its
history (Invariant 23). Consequently, if f.a = e, then Ie v hf .
2

Lemma 44. For every two followers f and f ′ that participate in epoch e, either hf v hf ′ or
hf ′ v hf .

FORMULA: ∀f, f ′ : f.a = f ′.a = e⇒ hf v hf ′ ∨ hf ′ v hf

Proof:
For a follower f participating in e, Ie v hf (Lemma 43). Followers accept proposals for an epoch
following the order of the leader of e (Invariants 21, 23, and 26). Consequently, one must be a
prefix of the other.
2

Lemma 45. Let e, e′ be epochs such that e′ < e. If a quorum Q′ of followers accept a proposal
〈e′, 〈v, z〉〉 once a quorum Q of followers completes Phase 1 of epoch e, then at least one follower
in Q is such that 〈v, z〉 ∈ E(hf ) at the end of Phase 1.

FORMULA: ∧
∃Q′ ⊆ Π : ∀f ∈ Q′ : f has accepted 〈e′, 〈v, z〉〉∧
∃Q ⊆ Π : ∀f ∈ Q : f has completed Phase 1 of e∧
e′ < e

⇒ ∃f ∈ Q : 〈v, z〉 ∈ he′f

17



Yahoo! Labs Technical Report No. YL-2010-0007

Proof:
By the protocol, once a follower completes Phase 1 of e, it has promised not to accept proposals
from the leader of earlier epochs (Invariant 25). Once a quorum of followers complete Phase 1 for
epoch e, then a leader of e′ < e is not able to obtain a quorum of followers to accept and choose
proposals of epoch e′. Consequently, at least one follower in Q must have accepted 〈e′, 〈v, z〉〉
before completing Phase 1 of e.
2

Lemma 46. If a quorum Q acknowledges the NEWEPOCH(e) message of leader ` and a quorum
Q′ acknowledges the NEWEPOCH(e) message of leader `′, then ` = `′.

FORMULA:

∃ Q,Q′ ⊆ Π :∧
Q acknowledges the NEWEPOCH(e) message of leader `∧
Q′ acknowledges the NEWEPOCH(e) message of leader `′

⇒ ` = `′

Proof:
The claim is trivial if Q = Q′. Assuming that Q 6= Q′, suppose by way of contradiction that
` 6= `′. A follower f only acknowledges the NEWEPOCH(e) from a prospective leader ` if
f.p < e. Once a quorum Q acknowledges the NEWEPOCH(e) message of a given leader `, no
other quorum Q′ is able to acknowledge the NEWEPOCH(e) message of a leader `′ 6= ` by the
intersection of quorums, otherwise some follower has acknowledged a NEWEPOCH(e) from two
different leaders, which violates the pre-condition to accept a NEWEPOCH(e) message.
2

Lemma 47. If e is an established epoch, then Ce = Ie ◦ CBe

Proof:

Ie ◦ CBe v Ce: No follower accepts a proposal in the B phase of epoch e before accepting the
proposals in Ie (Lemma 43). Followers accept proposals of the R phase in the order of Ie
(Invariant 26) and of the B phase in zxid order (Invariant 23). Consequently, the sequence
of chosen proposals in epoch e must be such that the initial history Ie is a prefix of Ce and
that Ie ◦ CBe v Ce.

Ce v Ie ◦ CBe: Suppose by way of contradiction that Ce 6v Ie ◦ CBe. In this case, there is at
least one position i such that Ce[i] 6= (Ie ◦ CBe)[i]. Consequently, a quorum of followers
participating in e:

• has skipped proposals or accepted proposals of the initial history out of order (impos-
sible by Invariant 26);

• has accepted proposals in the B phase of e violating the order of zxid (impossible by
Invariant 23);

• has accepted a proposal from the leader of a different epoch (impossible by Invari-
ant 22);

18



Yahoo! Labs Technical Report No. YL-2010-0007

• has accepted a proposal from multiple leaders for epoch e (impossible by Lemma 46).

2

Corollary 48. For each epoch e, there is at most one initial history Ie.

FORMULA: ¬∃pi, pj ∈ Pi : pi sends NEWLEADER(e, Ie) ∧
pj sends NEWLEADER(e, I ′

e) ∧ Ie 6= I ′
e

Proof:
By Lemma 46, if ` is able to complete Phase 1 of epoch e, then there is a quorum Q of followers
such that for each f ∈ Q, e ≤ f.p. Consequently, once ` completes Phase 1 for epoch e, no
quorum of followers acknowledge a new epoch proposal for e′ ≤ e.
2

Lemma 49. 〈v, z〉 ∈ E(Ce)⇒ ∀e′ > e : 〈v, z〉 ∈ Ie′ .

Proof:
The epoch epoch(z) in which 〈v, z〉 is broadcast is such that epoch(z) ≤ e. If a proposal 〈v, z〉
is chosen in epoch e, then a quorum of followers have accepted 〈v, z〉 in e. To have an operation
chosen in epoch e, a quorum of followers must have current epoch e when they accept such a
transaction by Invariant 22.

FORMULA:

〈v, z〉 ∈ E(Ce)⇒ ∃Q ⊆ Π :
∨
∀f ∈ Q : f has sent ACK(e, 〈v, z〉)∨
∀f ∈ Q : pi has sent ACK-LD(e)

Suppose now that a new prospective leader ` attempts to establish a new epoch e′ > e (running
Phase 1 for e′). There are three cases to consider:

• The latest current epoch ` receives in Phase 1 from a quorum Q is e. By Lemma 43, every
follower f , f.a = e, is such that Ie v hf , and there is exactly one such a history by
Corollary 48. If 〈v, z〉 ∈ E(Ce) ∧ 〈v, z〉 ∈ E(Ie), then the claim follows by Lemma 43.
If 〈v, z〉 ∈ E(CBe), then by Invariant 23 all followers accept proposals in order and by the
intersection of quorums, the quorum Q′ that chooses an operation in e and Q must have at
least one follower f in common. By Invariant 25, a follower that completes Phase 1 of e′

does not accept proposals from an earlier epoch, and by Lemma 45, there is no transaction
〈v, z〉 chosen in epoch e such that 〈v, z〉 6∈ E(hf ), for some follower f ∈ Q ∩Q′. Finally,
the initial history Ie′ is by the protocol the history of a follower f after completing Phase 1
of e′ such that f.a = e and it has the highest f.zxid among all followers of Q. We conclude
that 〈v, z〉 ∈ E(Ie′)

FORMULA: ∃f ∈ Q : f.a = e ∧ Ie′ = hef ⇒ 〈v, z〉 ∈ E(hf )

Note that if a follower f participates in establishing a new epoch e′′, e < e′′ < e′, but
f.a = e, then its history does not change (Invariant 24). If a follower does change its
history, then it changes its current epoch to e′′ according to the protocol;

19



Yahoo! Labs Technical Report No. YL-2010-0007

FORMULA: (Follower f sends ACK-E(e′′, hf )) ∧ (f.a = e)⇒ hf = hef

• The latest current epoch ` receives in Phase 1 from a quorumQ is e′′, e′ > e′′ > e. We show
by induction that a follower participating in epoch e′′ must contain 〈v, z〉 in its history:

Base case: Let e′′ be the first epoch later than e such that some follower f sets current epoch
to e′′. If f sets f.a ← e′′, then a quorum of followers has promised not to accept proposals
from a leader of an epoch earlier than e′′. Moreover, the initial history of e′′ must contain
〈v, z〉, since:

– it must contain chosen proposals of e: if some follower f has set f.a← e′′, then a quo-
rum Q′ of followers must have promised not to accept proposals from earlier epochs
in Phase 1. If 〈v, z〉 is chosen in e, then there must be some follower f ′ in Q′ such
that 〈v, z〉 ∈ E(hf ′) by the intersection of quorums and the assumption that a quo-
rum of followers has acknowledged the NEWEPOCH(e′′) in Phase 1 of e′′. Moreover,
since by assumption e′′ is the first epoch later than e such that some follower f sets
f.a ← e′′, then the latest current epoch among the followers of Q must be e, and the
follower f in Q with current epoch e and highest zxid must contain 〈v, z〉 in its history
by Invariants 23 and 26;

FORMULA: ∃f ∈ Q : 〈v, z〉 ∈ E(hf )

– A follower atomically changes its current epoch and accepts the initial history when
executing the R phase for a given epoch (Invariant 24). Consequently, if there has been
any attempt to establish an epoch later than e and earlier than e′′, but a follower has
not changed its current epoch, then it does not change its history.

FORMULA: (Follower f sends ACK-E(e′′′, hf )) ∧ (f.a = e)⇒ hf = hef

Induction hypothesis and step: Suppose the claim holds for e′′ − 1 and earlier epochs
later than e, and show for e′′. Let Q be a quorum of followers that send a current epoch
message to the prospective leader in Phase 1 of e′′ and f be a follower with the highest
epoch and highest zxid. By assumption that 〈v, z〉 ∈ E(Ce), we have that f.a ≥ e. By the
protocol, the history of hf is selected as the initial history of Ie′′ . By the induction hypothesis
and the assumption that no transaction is lost or reordered during recovery (Invariant 26),
〈v, z〉 ∈ E(hf ) and consequently 〈v, z〉 ∈ Ie′′ . By Lemma 43, a follower participating in e′′

must contain 〈v, z〉 in its history.

Back to the claim, there is by assumption a follower f with current epoch e′′ that sent a
CEPOCH(e′′) message during Phase 1 of e′. Also by assumption, e′′ is the latest epoch
among followers in Q′ and f.zxid is the highest among the followers with current epoch e′′

in Q. By the previous argument, 〈v, z〉 ∈ E(hf ).

• The latest current epoch leader ` receives in Phase 1 from a quorum Q is e′′, e′′ < e. By
assumption a quorum of followers have accepted a proposal in epoch e. Such followers can
only accept proposals in epoch e if their current epoch is e, either by Invariant 24 or by the
construction of the protocol (a follower only accepts a proposal in the B phase of e if its
current epoch is e). By the protocol, a follower does not go back to a previous epoch, and
by the intersection of quorums Q must contain at least one follower with epoch at least e.

2

20



Yahoo! Labs Technical Report No. YL-2010-0007

Corollary 50. In Phase 1 of epoch e, the history hf of the follower f with the latest f.a and
highest f.zxid contains all proposals chosen in epoch e′, for all e′ < e.

Proof sketch:
By Lemma 49.
2

Lemma 51. If the history of a follower participating in epoch e is such that 〈v, z〉, 〈v′, z′〉 ∈
E(hf ) and 〈v, z〉, 〈v′, z′〉 ∈ E(Ce) and there is no 〈v′′, z′′〉 ∈ E(hf ) such that 〈v, z〉 6= 〈v′′, z′′〉,
〈v′, z′〉 6= 〈v′′, z′′〉, and 〈v, z〉 ≺hf

〈v′′, z′′〉 ≺hf
〈v′, z′〉, then there is no follower participating

in epoch e′ > e such that 〈v, z〉, 〈v′, z′〉 ∈ E(hf ′) and there is 〈v′′, z′′〉 ∈ E(hf ′) such that
〈v, z〉 6= 〈v′′, z′′〉, 〈v′, z′〉 6= 〈v′′, z′′〉, and 〈v, z〉 ≺hf ′ 〈v′′, z′′〉 ≺hf ′ 〈v′, z′〉.

FORMULA:

∃ f ∈ Π :∧
f.a = e∧
〈v, z〉, 〈v′, z′〉 ∈ E(hf )∧
〈v, z〉, 〈v′, z′〉 ∈ E(Ce)∧
¬∃〈v′′, z′′〉 ∈ E(hf ) : 〈v, z〉 6= 〈v′′, z′′〉 ∧

∧〈v′, z′〉 6= 〈v′′, z′′〉 ∧ 〈v, z〉 ≺hf
〈v′′, z′′〉 ≺hf

〈v′, z′〉
⇒
¬∃ f ′ ∈ Π :∧

f ′.a = e′, e′ > e∧
〈v, z〉, 〈v′, z′〉 ∈ E(hf ′)∧
∃〈v′′, z′′〉 ∈ E(hf ′) : 〈v, z〉 6= 〈v′′, z′′〉 ∧

〈v′, z′〉 6= 〈v′′, z′′〉 ∧ 〈v, z〉 ≺hf ′ 〈v′′, z′′〉 ≺hf ′ 〈v′, z′〉

Proof:
Suppose by way of contradiction that such f ′, 〈v′′, z′′〉, and e′ exist. There are two cases to
consider:

• epoch(z) = epoch(z′). This case can’t happen by the protocol: proposals of the same epoch
are processed in order (Invariant 23) and there can’t be multiple established leaders for the
same epoch so that proposals of different leaders interleave (Lemma 46);

• epoch(z) 6= epoch(z′). There are two sub-cases to consider:

– epoch(z) ≤ epoch(z′′) < epoch(z′): If 〈v′, z′〉 ∈ E(Ce), then e is an established
epoch. We prove with a simple induction argument over epoch numbers that 〈v′′, z′′〉 6∈
Ie′ for any epoch number e′ > e such that f ′.a = e′ for some follower f ′.

Base case: Let e′ be the first epoch greater than epoch(z′) such that some follower
f ′ makes f ′.a = e′. The initial history Ie′ must be such that the epoch of the
highest zxid of Ie′ is e by the intersection of quorums and the assumption that

21



Yahoo! Labs Technical Report No. YL-2010-0007

there is no established epoch e′′ such that e < e′′ < e′. By Lemma 44, the
assumption that 〈v′, z′〉 ∈ E(Ce), and the assumption that 〈v′′, z′′〉 ≺hf ′ 〈v′, z′〉,
there is no follower f ′′ that participated in e and 〈v′′, z′′〉 ∈ hf ′′ . Consequently,
〈v′′, z′′〉 6∈ Ie′ .

Induction hypothesis: If a follower f ′ is such that f ′.a = e′, e′ > e, then 〈v′′, z′′〉 6∈
Ie′ .

Induction step: Let the claim hold for all e′′ > e. We prove it for e′ > e′′. We
have by the algorithm that Ie′ = hf ′′ , for some f ′′ (Invariant 26). If f ′′.a = e,
then it follows from the base case. Otherwise, we have that 〈v′′, z′′〉 6∈ If ′′.a by
the induction hypothesis. By Invariant 22, f ′′ does not accept proposals from
an epoch other than f ′′.a, and by the algorithm, the leader `e′′ in the B phase
proposes transactions such that the zxid epoch is e′′. Consequently, f ′′ does not
accept 〈v′′, z′′〉 in epoch f ′′.a, and we have that 〈v′′, z′′〉 6∈ Ie′ .

– epoch(z) < epoch(z′′) = epoch(z′): There cannot be such a z′′, otherwise some
follower has violated Invariant 23.

2

Lemma 52. Let e, e′ be epochs, e < e′, and e be an established epoch. Ie v Ie′ .

FORMULA: ∧
e is an established epoch∧
e < e′

⇒ Ie v Ie′

Proof:
By Lemma 49:

〈v, z〉 ∈ E(Ie)⇒ 〈v, z〉 ∈ E(Ie′)

By Invariants 23, 26:

(〈v, z〉, 〈v′, z′〉 ∈ E(Ie)) ∧ (〈v, z〉 ≺Ie 〈v′, z′〉)
⇒ (〈v, z〉, 〈v′, z′〉 ∈ E(Ie′)) ∧ (〈v, z〉 ≺Ie′ 〈v′, z′〉)

By Lemma 49 and Invariant 26 we also have that Ie[1] = Ie′ [1]. Finally, by Lemma 51 we
have that Ie v Ie′ .

2

Lemma 53. Let e, e′ be epochs such that e < e′, e is established, and there is no established epoch
e′′, e < e′′ < e′. Ce v Ie′ .

22



Yahoo! Labs Technical Report No. YL-2010-0007

FORMULA: ∧
e is an established epoch∧
∀e′′, e < e′′ < e′ : e′′ is not established

⇒ Ce v Ie′

Proof:
By Lemma 47, Ce = Ie ◦ CBe. By Lemma 52, Ie v Ie′ and by Lemma 49 a transaction chosen in
e is in the initial history of later epochs. We prove by induction on the length k that Ie · 〈v1, z1〉 ·
〈v1, z2〉 · · · 〈v, zk〉 v Ie′ , where all proposals 〈e, 〈vi, zi〉〉 have been chosen during the B phase of
epoch e, 1 ≤ i ≤ k, epoch(zi) = e, and zi ≺z zj if i < j.

Base case: k = 1. If 〈v1, z1〉 has been chosen, then by Lemma 45, there is a follower f in
Phase 1 of e′ such that f.p = e′, f.a = e and 〈v1, z1〉 ∈ E(hef ). By the protocol (choice of initial
history of e′ and Invariant 23), Ie · 〈v1, z1〉 v Ie′ .

Induction hypothesis: Claim holds for k.
Induction step: Assume that Ie · 〈v1, z1〉 · 〈v2, z2〉 · · · 〈vk, zk〉 v Ie′ and show for k +

1. If 〈vk+1, zk+1〉 has been chosen, then a quorum of followers participating in e has accepted
〈vk+1, zk+1〉. By assumption, we have that Ie ·〈v1, z1〉·〈v2, z2〉 · · · 〈vk, zk〉 v Ie′ . By the protocol,
a follower that accepts 〈vk+1, zk+1〉 must also have accepted all 〈vi, zi〉, i ≤ k. By the protocol
(choice of initial history), Ie · 〈v1, z1〉 · 〈v2, z2〉 · · · 〈vk+1, zk+1〉 v Ie′ .

By the definition of initial history, Ie′ is the history of the prospective leader of e′ selects for
epoch e′ at the end of Phase 1.
2

Corollary 54. Let e, e′ be epochs such that e < e′, e is established. Ce v Ie′ .

Proof:
By Lemmas 52 and 53, and a simple induction on the epoch numbers.
2

Lemma 55. If e is an established epoch and 〈v, z〉 ∈ E(Ce′) for some e′, epoch(z) < e, then
〈v, z〉 ∈ E(Ie).

FORMULA: e is an established epoch ∧∃e′ : 〈v, z〉 ∈ E(Ce′)∧epoch(z) <
e⇒ 〈v, z〉 ∈ E(Ie)

Proof:
There are three cases to consider:

e′ < e : If 〈v, z〉 has been chosen in an epoch earlier than e, then 〈v, z〉 ∈ E(Ie) by Corollary 54;

e′ = e : We have that 〈v, z〉 ∈ E(Ie) by Invariant 22;

e < e′ : Suppose by way of contradiction that 〈v, z〉 6∈ E(Ie). By the protocol, we have that:

∃f, e′′ : he
′′
f = Ie′ ∧ 〈v, z〉 ∈ E(he

′′
f ) (6.1)

23



Yahoo! Labs Technical Report No. YL-2010-0007

By Equation 6.1 and Corollary 48, we have that:

∃e′′ :
∧
e′ ≥ e′′ > e (6.2)∧
〈v, z〉 ∈ E(Ie′′)∧
∃f, e′′′ : Ie′′ = he

′′′
f ∧ e′′′ < e

By the protocol, the initial history is provided by a follower with latest current epoch among
a quorum of followers. By the intersection of quorums and the assumption that e′′ is later
than e, we have that Equation 6.2 cannot hold.

2

Lemma 56. For every follower f ∈ Π, ∆f = If.e ◦Df .

Proof:
When a follower f learns that a new epoch e has been established by receiving a commit message
from the established leader of e, it delivers the transactions in the initial history Ie. Once it moves
to Phase 3, the B phase, the follower delivers transactions following the order of βe (Invariant 28).
Consequently, ∆f = If.e ◦Df .
2

Lemma 57. For every follower f ∈ Π, ∆f v Cf.e

Proof:
By Invariant 28, we have that:

Df v βf.e (6.3)

By Invariant 21, Invariant 23, and the definition of chosen:

CBe v βe (6.4)

By Lemma 47 and Lemma 56, ∆f and Cf.e have If.e as a common prefix. It remains to show
that Df v CBf.e. We know by Invariant 28 and by Equation 6.4 that either Df v CBf.e or
CBf.e v Df . By Invariant 27, we have that Df v CBf.e.
2

7. Fallacies

Fallacy 58. A quorum Q of followers during Phase 1 of epoch e is such that there is f ∈ Q such
that for all f ′ ∈ Q, hf ′ v hf .

Counterexample:
We construct an execution as follows:

• A quorum Q of followers does not crash in this execution;

• A follower f participates in epoch e′′, and all other followers have participated in epoch e′′

and currently participate in epoch e′ > e′′;

• In the B phase of e′′, follower f has accepted proposals with zxid up to z, whereas all other
followers have accepted up to z′ ≺z z;

24



Yahoo! Labs Technical Report No. YL-2010-0007

• All followers in Q \ {f} accept a proposal in the B phase of e′;

• All followers in Q execute the phase 1 of e > e′, and there is no follower f ′ such that hf ′ is
a prefix of all other followers in the phase 1 of e.

2

Fallacy 59. Once a quorum of followers Q completes Phase 1, no transaction can be chosen in
previous epochs.

Counterexample:
Messages from a previous leader might still reach a minority of followers. If there are enough
followers in Q that have accepted a given proposal, then along with followers in the minority that
leader is still able to reach, we have a quorum and chosen proposals in a previous epoch.
2

Fallacy 60. Let e be an epoch. Once a quorum of followers completes Phase 1 for e, no other
e′ < e becomes established.

Counterexample:
An epoch e becomes established once a quorum of followers acknowledge the NEWLEADER(e, Ie)
proposal. Say that each follower in a quorumQ′ acknowledges the NEWLEADER(e′, Ie′). Assum-
ing that Π\{f}, f ∈ Q′, contains a quorum Q, it is straightforward to construct an execution such
that f acknowledges the NEWLEADER(e′, Ie′) after each follower in Q′ \ {f} has acknowledged
NEWLEADER(e′, Ie′) and each follower in Q has acknowledged the NEWLEADER(e, Ie) pro-
posal.
2

References

[1] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics (2nd edition), chapter 7. John Wiley Interscience, March 2004.

[2] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21:558–565, July 1978.

[3] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

25


