
Apache ZooKeeper

Patrick Hunt (@phunt)
Cloudera/ZooKeeper PMC

Agenda

● The fallacies of distributed computing
● A quick history
● What is ZooKeeper?
● Use cases
● Guidelines for success
● Common problems, limitations

Let me know if you have questions

Fallacies of Distributed Computing

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

History

● December 2006 - first commit (cvs!)
● November 2007 - 0.0.1 on Sourceforge
● June 2008 - moved to Apache
● October 2008 - 3.0.0 on Apache
● June 2010 - Usenix "Best Paper" award

○ "ZooKeeper: Wait-free Coordination for Internet-scale Systems"

● November 2010 - ZooKeeper moves to TLP
● November 2011 - ZooKeeper 3.4 released
● Current: 3.4.9 & 3.5.2-alpha are out

What is ZooKeeper?

ZooKeeper is much more than a distributed lock
server!

A highly available, scalable, distributed,
configuration, consensus, group membership,

leader election, naming, and coordination service

Why use ZooKeeper?

● Difficulty of implementing these kinds of
services reliably
○ brittle in the presence of change
○ difficult to manage
○ different implementations lead to management

complexity when the applications are deployed

What is ZooKeeper again?

● File API without partial reads/writes
● No renames
● Ordered updates and strong persistence

guarantees
● Conditional updates (version)
● Batch updates (multi)
● Watches for data changes
● Ephemeral nodes
● Generated file names

Any Guarantees?

1. Clients will never detect old data.
2. Clients will get notified of a change to data

they are watching within a bounded period of
time.

3. All requests from a client will be processed in
order.

4. All results received by a client will be
consistent with results received by all other
clients.

Data Model

● Hierarchical namespace
● Each znode has data and

children
● data is read and written

in its entirety

/

service

users

cluster
locks

servers

mail

read-1

backup

primary

pat
mary

host1
host2

ZooKeeper API

String create(path, data, acl, flags)

void delete(path, expectedVersion)

Stat setData(path, data, expectedVersion)

(data, Stat) getData(path, watch)

Stat exists(path, watch)

String[] getChildren(path, watch)

void sync(path)

List<OpResult> multi(ops)

ZooKeeper Service

● All servers store a copy of the data (in memory)
● A leader is elected at startup
● Followers service clients, all updates go through leader
● Update responses are sent when a majority of servers have persisted the change

ZooKeeper Service

ServerServer ServerServerServerServer
Leader

Client ClientClientClientClient ClientClient

A sampling of use cases

● Configuration Management
● Leader Election
● Group Membership
● Work Queues
● Cluster Management
● Load Balancing
● Sharding

Configuration Management

Administrator
1. setData(“/config/param1”, "value", -1)

Consumer
1. getData("/config/param1", true)

/config

param1

param2

param3

Leader Election

1. getdata(“/servers/leader”, true)
2. if successful follow the leader

described in the data

and exit

3. create(“/servers/leader”,
hostname, EPHEMERAL)

4. if successful lead and exit
5. goto step 1

/servers

s1

s2
leader

contains:
 "s1"

** Don't confuse this with ZooKeeper Ensemble Leader Election

Leader Election in Python

handle = zookeeper.init("localhost:2181", my_connection_watcher, 10000, 0)

(data, stat) = zookeeper.get(handle, “/app/leader”, True);

if (stat == None)

path = zookeeper.create(handle, “/app/leader”, hostname:info,
[ZOO_OPEN_ACL_UNSAFE], zookeeper.EPHEMERAL)

if (path == None)

(data, stat) = zookeeper.get(handle, “/app/leader”, True)

#someone else is the leader

parse the string path that contains the leader address

else

we are the leader continue leading

else

#someone else is the leader

 #parse the string path that contains the leader address

Cluster Management

Monitoring process:

1. Watch on /nodes
2. On watch trigger do

getChildren(/nodes, true)
3. Track which nodes have

gone away

Each Node:

1. Create /nodes/node-${i} as ephemeral nodes
2. Keep updating /nodes/node-${i} periodically for node status changes (status

updates could be load/iostat/cpu/others)

node-3node-2node-1

/nodes

Work Queues
Assigner process:

1. Watch /tasks for published tasks
2. Pick tasks on watch trigger from /tasks
3. assign it to a machine specific queue

by creating
create(/machines/m-${i}/task-${j})

4. Watch for deletion of tasks
(task completed)

Machine process:
1. Machines watch for /(/machines/m-${i})

for any creation of tasks
2. After executing task-${i} delete task-${i}

from /tasks and /m-${i}

task-3task-2task-1

/tasks

m-1

task-1

/machines

Ensemble Size?

What's the right size for the ensemble?

● Majority rule voting
○ Don't use an even number of servers

● 1 - standalone, no reliability
● 3 - allows for one failure
● 5 - optimal for online production serving

Performance Numbers.

Maintenance

● Minimal
○ Ensure that you clean the datadir (autopurge

added in 3.4)

● The rest is automatic
○ e.g. servers bootstrap from the Leader

Monitoring Tools

● Command port (four letter words - 4lw)
● JMX
● slf4j/log4j logging

HTTP/JSON:

● Jetty is in 3.5.x - ZOOKEEPER-1346

Where are we?

● Multi Tenant
● Observers
● Recipes

○ Reusable code libraries

● Bindings

Java, C, Perl, Python, REST, Ruby?

● Third party code - Apache Curator!

Who is using ZooKeeper?

● Mesosphere!
● Many Apache projects including;

○ HBase, Hadoop, Solr, Kafka, Blur, Helix, Pig, Hive...
● Yahoo!
● Twitter
● LinkedIn
● Netflix
● Youtube
● Facebook
● Pinterest
● Airbnb
● Many more (see the "powered by" wiki page)

What do we do next?

● ZooKeeper ensemble dynamic reconfig
○ Added in 3.5.0, stabilizing

● More security work
○ transport & auth - e.g. ZOOKEEPER-1045

● Usability – timeouts from zookeeper clients
are a headache – ZOOKEEPER-22

● Scaling
● More/better multi-tenancy

Common Problems

● Sessions timing out frequently
○ Client side GC or swapping?
○ Heartbeating - session timeout vs expiration

● High latency on client operations
○ Dedicated spindle?
○ Monitoring - low cost, high ROI

● Remember - there is no magic
○ Network/disk/cpu/memory

Limitations

● Not a db/filesystem/K-V/etc...
● ZooKeeper is not horizontally scalable

○ Max session count
○ Max operations per second (see graph above)

● 1mb max data size (configurable)

Q&A

● Questions?

● Links:

http://zookeeper.apache.org

https://github.com/phunt

http://hadoop.apache.org/zookeeper/
https://twitter.com/phunt

