
Hedwig
A Shared-Nothing Message

Broker

Hedwig Team
Yahoo! Research

What Hedwig Offers

• Guaranteed-delivery topic-based pub-sub system

– Durability: acknowledged published get delivered

– Subscribers guaranteed to get all publishes after subscription
(even if subscribers fail and come back)

– Messages delivered in publisher order

• Elastically scalable
– Deployed over commodity machines

– Capacity can be added on-the-fly by adding machines

• Low Operational Complexity
– Tolerate failures without manual intervention

– Automatic load balancing

• Optimized for multiple data-centers

History

• Has been a relatively low-key effort

• Started gaining steam in June 2009.

• 2-2.5 engineers (+1 intern) over the
summer.

Architecture

Client

Hub

Hub

Hub

p
ro

to
c o

l

Zookeeper

Bookkeeper

subscriptions, how
much they have
consumed, etc.

protocol

Internet

published
messages

Hedwig instances in
other data centers

Client
Client

Architecture

Client

Hub

Hub

Hub

p
ro

to
c o

l

Zookeeper

Bookkeeper

subscriptions, how
much they have
consumed, etc.

protocol

Internet

published
messages

Hedwig instances in
other data centers

Client
Client

3.4
KLOC 6.6

KLOC

6.3
KLOC

ZooKeeper coordination

Client

ServerServerServer

Client Client

ZooKeeper
Service

● Data organized in a hierarchal namespace
● Nodes in the namespace, called znodes, can be persistent or

empheral (znode will be deleted in service detects client failure)
● Strong durability guarantee
● Strong ordering guarantee
● API allows for clients to watch for changes
● Data stored in memory for low latency and consistent

performance, but changes logged to disk for performance
● Reads processed using local server information, changes are

linearalized through leader.

Zookeeper

• Used for configuration storage
– Locations of ledgers
– Subscriber information

• Topic leader election
– Discovering topic leader
– Ensuring single topic leader
– Detecting topic leader failure

• Membership
– Discovering available bookies

BookKeeper

• Model a write-ahead log as an
append-only sequence of entries,
called a ledger

• Simple interface
– create/openLedger
– addEntry
– readEntry
– deleteLedger

Bookkeeper Architecture

Client
 (Hedwig Hub)

striping, replication
Zookeeper

metadata

• Like distributed RAID 1,0 (with append-only)
– Configurable redundancy

– Bookkeeper servers handle append-only, hence
highly optimized.

• Open-source as contrib to Zookeeper

Bookkeeper
Servers

Performance

Bookkeeper
Server

Log Data

addEntry()

1. append to log, sync() 2. append to file for topic,
 no sync

Can get close to sequential disk bandwidth due to group commit

Hedwig Hubs

• Topics horizontally partitioned across hubs
– A topics belong to only one hub (for per-topic

ordering guarantees).

– A hub can have multiple topics.

• Manages delivery to subscribers
– Caches recently published data in process, to

avoid trip to Bookkeeper.

• Subscribes to hubs in other data centers

V
ir

tu
a
l
IP

 /
 D

N
S

 R
o
u

n
d

 R
o
b

in

Automatic Failover

Client

Hub
A

Hub
B

Hub
C

Zookeeper

publish(T)

handle if owner

V
ir

tu
a
l
IP

 /
 D

N
S

 R
o
u

n
d

 R
o
b

in

Automatic Failover

Client

Hub
A

Hub
B

Hub
C

Zookeeper

publish(T)
lookup owner

(choose least-loaded
hub if no owner exists)

redirect(B)

Automatic Failover

Client

Hub
A

Hub
B

Hub
C

Zookeeper

publish(T) (redirected)

handle if owner

Automatic Failover

Client

Hub
A

Hub
B

Hub
C

Zookeeper

publish(T) (redirected)
create ephemeral
node to establish

ownership

If B fails, ephemeral node disappears, and a new owner
is chosen automatically

Publish

Client

Hub
A

Hub
B

Hub
C

Zookeeper

publish(T) (redirected)

Bookkeeper

log message

Publish

Client

Hub
A

Hub
B

Hub
C

Zookeeper

ack publish

Bookkeeper

br
oa

dc
as

t

Client
Client

Client

Subscribe

Client

Hub
A

Hub
B

Hub
C

Zookeeper

subscribe(T) (redirected)
Find last message

consumed

Subscribe

Client

Hub
A

Hub
B

Hub
C

Zookeeper

Bookkeeper

Retrieve messages not
In cache

broadcast

Testing

• Hardware
– Old, relatively-crappy, commodity boxes

– 2 cores, 2.13 GHz, 4GB RAM

– 2 disks, 7.2K rpm SATA

• Most results on 4-box farm (1 hub, 3
bookies)

• Performance Tests

• Failure Tests

• Stability Tests

Performance (Latency v/s
Throughput)

Scalability

Large message sizes

Failure Handling

• Able to shoot down a bookie
– Operations continue without a single failure

• Able to shoot down a hub
– Operations going to that hub fail, but only for

a second (depending on our ZK timeout)

– Topic gets taken up automatically by another
hub

Stability

• Able to run the system for days
without anything going wrong.

• Recovery tools done, but just started
testing.

Recent improvements

• Scaling with number of topics.
– Currently every topic gets its own file,

which doesn’t scale.
– Patch in progress to share files among

topics
– Preliminary numbers indicate scalability

of up to 10s of thousands of topics per
bookie

Recent improvements

• Collection of consumed logs
• Bookie recovery

What’s Missing

• C++ Client Library
– Have an initial implementation

• JMX binding
• Operational/Monitoring tools (1.5

months)
– A promising approach is to write

adapters so that existing tools just work.

Harder, Longer-term Things

• Notifications (3-4 months)

• Adaptive replication
– Relatively easy with current design (3

weeks)

• Support for non-star topologies and
changing data-center topology on the
fly (4-5 months)

More information

http://zookeeper.apache.org

http://zookeeper.apache.org/

