Hedwig Team
Yahoo! Research

9_’ What Hedwig Offers

« Guaranteed-delivery topic-based pub-sub system
_ Durability: acknowledged published get delivered

_ Subscribers guaranteed to get all publishes after subscription
(even if subscribers fail and come back)

— Messages delivered in publisher order

Elastically scalable
_ Deployed over commodity machines
_ Capacity can be added on-the-fly by adding machines

Low Operational Complexity
_ Tolerate failures without manual intervention
— Automatic load balancing

Optimized for multiple data-centers

9’ History

* Has been a relatively low-key effort
* Started gaining steam in June 20009.

* 2-2.5 engineers (+1 intern) over the
summetr.

@’ Architecture

subscriptions, how

Asle)<==is1= | much they have
e consumed, etc.

Bookkeeper published
MeSsSages

4

Hedwig instances in
other data centers

@’ Architecture

ookeeper

much they have

Tubscriptions, how
consumed, etc.

Bookkeeper published
MeSsSages

/

9’ ZooKeeper coordination

ZooKeeper
Service

L Cllent \ Client Cllent

* Data organized in a hierarchal namespace

* Nodes in the namespace, called znodes, can be persistent or
empheral (znode will be deleted in service detects client failure)

* Strong durability guarantee

* Strong ordering guarantee

* API allows for clients to watch for changes

* Data stored in memory for low latency and consistent
performance, but changes logged to disk for performance

* Reads processed using local server information, changes are
linearalized through leader.

9! Zookeeper

« Used for configuration storage
— Locations of ledgers
— Subscriber information
 Topic leader election
— Discovering topic leader
— Ensuring single topic leader
— Detecting topic leader failure
 Membership
— Discovering available bookies

&9/ BookKeeper

* Model a write-ahead log as an
append-only sequence of entries,
called a ledger

* Simple interface
— Create/openLedger
—addEntry

—readEntry
— deletelLedger

@’ Bookkeeper Architecture

metadata

(Hedwig Hub)

- Zookeeper
striping, replication

—,

Bookkeeper
Servers

—,

» Like distributed RAID 1,0 (with append-only)
— Configurable redundancy

— Bookkeeper servers handle append-only, hence
highly optimized.

« Open-source as contrib to Zookeeper

@’ Performance

IaddEntry()

Vv

5

2. append to file for topic,
No sync

‘\h

Data

Can get close to sequential disk bandwidth due to group commit

9’ Hedwig Hubs

 Topics horizontally partitioned across hubs

— A topics belong to only one hub (for per-topic
ordering guarantees).

— A hub can have multiple topics.

- Manages delivery to subscribers

— Caches recently published data in process, to
avoid trip to Bookkeeper.

« Subscribes to hubs in other data centers

@’ Automatic Faillover

publish(T)

Virtual IP / DNi Round Robin

“*handle if owner

@’ Automatic Faillover

Zookeeper

publish(T)
lookup owner
(choose least-loaded

hub if no owner exists)

Virtual IP / DNi Round Robin

@’ Automatic Faillover

Zookeeper

o publish

Client
%4 handle if owner

9! Automatic Failover
| _Zookeeper

meral
| node to establish

ownership

If B fails, ephemeral node disappears, and a new owner
is chosen automatically

9! Publish

Zookeeper

publish(T) (redirected) [-] log message

Client

Bookkeeper

Bookkeeper

- Zookeeper

9’ Subscribe
. Find last message
consumed

o

Client

@’ Subscribe

- Zookeeper

Client

9’ Testing

Hardware

— Old, relatively-crappy, commodity boxes
— 2 cores, 2.13 GHz, 4GB RAM

— 2 disks, 7.2K rpm SATA

Most results on 4-box farm (1 hub, 3
bookies)

Performance Tests
Failure Tests
Stability Tests

| Performance (Latency v/s

@- Throughput)

(1 hub, 3 bookies, 100 topics,
1K messages, 1 subscriber per topic)

(Y
N

(Y
o

Latency (ms)

O N B OO

0 2000 4000 6000 8000 10000 12000 14000 16000
Throughput (msgs/sec)

@’ Scalability

Throughput against # of servers
(100 topics, 1K messages,
1 subscriber per topic)

35000

30000

5000

NN

0000

(Y
Ul
o
o
o

10000 -
5000 -

Throughput (pubishes/sec)

1 hub, 3 bookies 2 hubs, 3 bookies 3 hubs, 4 bookies 4 hubs, 5 bookies

@’ Large message sizes

Percentage of NIC Bandwidth against msg size
(100 topics, 1 hub, 3 bookies,
1 subscriber/topic)

100

% of NIC bandwidth used

100 1K 4K 8K 16K
Msg Size

9’ Failure Handling

« Able to shoot down a bookie
— Operations continue without a single failure

 Able to shoot down a hub

— Operations going to that hub fail, but only for
a second (depending on our ZK timeout)

— Topic gets taken up automatically by another
hub

9! Stability

* Able to run the system for days
without anything going wrong.

* Recovery tools done, but just started
testing.

9! Recent improvements

* Scaling with number of topics.

— Currently every topic gets its own file,
which doesn’t scale.

— Patch in progress to share files among
topics
— Preliminary numbers indicate scalability

of up to 10s of thousands of topics per
bookie

&9! Recent improvements

* Collection of consumed logs
* Bookie recovery

9’ What's Missing

* C++ Client Library
— Have an initial implementation

* JMX binding

* Operational/Monitoring tools (1.5
months)

— A promising approach is to write
adapters so that existing tools just work.

9’ Harder, Longer-term Things

 Notifications (3-4 months)

« Adaptive replication

— Relatively easy with current design (3
weeks)

» Support for non-star topologies and
changing data-center topology on the
fly (4-5 months)

@’ More information

http://zookeeper.apache.org

http://zookeeper.apache.org/

