
ZooKeeper: Because building
distributed systems is a zoo

Flavio Junqueira
Yahoo! Research Barcelona

Distributed systems

• Large number of processes
• Running on heterogeneous hardware
• Communicate using messages
• Systems are often asynchronous

– Unbounded amount of time to execute a step
– Unbounded message delay
– Makes it difficult to determine if process has

failed or is just slow

Real examples

• Search engine
– Crawling
– Indexing
– Query processing

• Large scale data processing
– Map-reduce jobs
– E.g., Hadoop

Crawling

• Fetch pages from the web
• Rough estimate

– 200 billion documents (200 x 109)
• If we use a single server…

– 1s to fetch each page
– 2 billion seconds if fetching 100 in parallel
– 63 years!

• More complications
– Pages are removed
– Pages change their content
– Politeness (e.g., crawl-delay directive)

Crawling

• Fetchers
– Fetch pages from the Web

• Master commands fetchers
– Distributes work
– Politeness

• Pool of spare masters for high availability
• Which master process leads?

– Leader Election

Crawling

• Work assignment
– Pages to fetch
– Politeness constraints
– Metadata (useful when master leader fails)

• Available fetchers
– Failure detection

Hadoop
• Large-scale data processing
• Map-Reduce
• Large clusters of compute nodes

– Order of thousands of computers
– Yahoo!: 13,000+

• Jobs
– Distribute computation across nodes
– Yahoo!: hundreds of thousands a month

• An example: WebMap
– Number of links between pages in the index: roughly 1 trillion links
– Size of output: over 300 TB, compressed!
– Number of cores used to run a single Map-Reduce job: over 10,000
– Raw disk used in the production cluster: over 5 Petabytes

[http://developer.yahoo.net/blogs/hadoop/2008/02/]

http://developer.yahoo.net/blogs/hadoop/2008/02/

Hadoop

• Plain Hadoop
• HDFS + Map-Reduce
• Heads of the system

– One dedicated machine to the Namenode
• FS metadata
• E.g., mapping from data blocks to Datanodes

– One dedicated machine to Job Tracker
• Tracks status of tasks

• All other machines are Task Tracker and/or
Datanodes

Hadoop

• Hadoop virtual clusters
– Hadoop on Demand (HOD)

• Rendezvous
– Address of Job Tracker (J)

is not known in advance
– Task Trackers (T) need to

be able to find the Job
Tracker

– Client needs to be able to
find the Job Tracker (J)

• Failure detection
– Task trackers and client

need to know if Job Tracker
is up and running

Client
J T T T

Coordination service

• Coordinate processes of a distributed
application

– Synchronization primitives
– Metadata

• Why?
1. Often not the focus of large projects
2. Distributed algorithms are not trivial to understand

and implement
3. Debugging is difficult and since it is not the focus…
4. Same functionality implemented (sometimes poorly)

over and over again

ZooKeeper

• Coordination service
• A small database of metadata

Shared
Memory ZK API Recipes

Read and
Modify Use

ZooKeeper

• Shared memory
• Znodes

– Data objects
– Organized

hierarchically

/

/app1 /app2

/app1/p1 /app1/p2 /app1/p3

Applications use different
branches.

ZooKeeper: Design

• Ordered updates and strong persistence guarantees
• Conditional updates (equivalent to compare-and-swap)
• Watches for data changes
• Ephemeral nodes
• Generated file names

add what we do need:

Start with file system API and model, and strip out what
we do not need:

1) Rename
2) Partial writes/reads (takes with it open/close/seek)

Wait-free synchronization

A wait-free implementation of a concurrent data object is one that
guarantees that any process can complete any operation in a finite
number of steps, regardless of the execution speeds of the other
processes.

[Herlihy, ACM TPLS, Jan 1991]

• Advantages
– Avoids the convoy effect
– Convoy effect:

The speed of the system is driven by the slowest process

– Performance depends only on ZooKeeper

How it works – 10,000 ft view

• Ensemble of ZooKeeper
servers
– Fault tolerance
– Throughput

• Clients create a new session
with a server

• Clients submit requests
• Programming with ZooKeeper

– Client library
– Calls to the ZooKeeper API
– Callbacks

• Notifications
• Changes to the state of client

Session

Requests

ZooKeeper
Servers

ZooKeeper API

String create(path, data, acl, flags)

void delete(path, expectedVersion)

Stat setData(path, data, expectedVersion)

(data, Stat) getData(path, watch)

Stat exists(path, watch)

String[] getChildren(path, watch)

void sync(path)

ZooKeeper recipes

• Leader election
– One process eventually arises as the leader out of a group of

processes
• Locks

– Access to critical sessions
– Mutually exclusive access to resources

• Barriers
– Points of synchronization
– Guarantees that processes proceed in a computation in lock-

step
• Rendezvous

– Information to allow client processes to find each other

An example: Wait-free leader election

• Algorithm for client C
– Create a sequential | ephemeral node

representing the client as a child of “/le”
– Read the children of “/le”
– If the sequence number of C is the smallest, C

is the leader

An example: Wait-free leader election

• Why is it wait-free?
– Client C does not have to wait for other bids
– If there are no other bids, C will be the leader
– If there are concurrent bids, only one will be

assigned the smallest sequence number

An example: Wait-free leader election

ZooKeeper /

/le

/le/n1 /le/n2

Create /le/n, seq

Create /le/n, seq

Case 1: Client 1 creates node first

Client 1

Client 2

An example: Wait-free leader election

ZooKeeper /

/le

/le/n1 /le/n2

Create /le/n, seq

Create /le/n, seq

Case 2: Clients create nodes concurrently

Client 1

Client 2

An example: Wait-free leader election

• What if leader fails?

• Client nodes are ephemeral
• If not leader

– Client watches for the following node in the
sequence order

– If node goes away and there is no preceding
node, becomes leader

ZooKeeper Internals

• Updates are totally
ordered
– Leader executes update
– Atomically broadcast znode

state
• Fast read requests

served locally
• Advantages

– Strong consistency
guarantees

– High throughput for read-
dominant workloads

• Consistency guarantees
– History of writes is

linearizable
• Linearizable: sequential +

precedence ordering
– History of reads+writes

• Serializable, but not
linearizable

• Reads do not satisfy
precedence ordering

• Alternative: Slow read
requests
– sync() + fast read
– History becomes

linearizable

ZAB: ZooKeeper Atomic Broadcast

• Order of updates
• Replica servers

– Apply the same set of updates in the same order

• The classical Atomic broadcast problem
– Set of processes Π
– Agreement : If a correct process p delivers m, then a

correct process p’ also delivers m
– Order : If both processes p and p’ deliver m and m’

and p delivers m before m’, then p’ delivers m before
m’

ZAB: ZooKeeper Atomic Broadcast

• Sequence of command slots
• Slot identifier is the zxid: 〈epoch, counter〉
• Each epoch has a single leader

– Leader election
– Different from the LE recipe!

• In a given epoch
– Leader assigns operations to zxid values

sequentially

ZAB: The basic protocol

• Once we have a leader…
• Clients submit requests to servers
• Servers forward requests to leader
• Leader proposes request
• Follower accepts
• Leader

– Commits upon receiving acks from a quorum
– Tells followers to deliver (make change of state

persistent)

• Requires n > 2t ZooKeeper servers

ZAB: The basic protocol

Request

Propose

Ack

Commit

Propose

Ack

Commit

Follower FollowerLeader

ZAB: Leader failure

• New leader is elected
• ZK server with highest zxid
• Role of leader

– Leader proposes NEWLEADER
• zxid = 〈epoch, 0〉

– Follower accept after synchronizing
– Quorum of servers accepts

• During synchronization
– Can’t forget committed requests
– Let go of proposals not committed

ZAB: Can’t forget

• Some process has
delivered proposal p

• All processes deliver p
• Leader does not fail:

– All followers receive
commit message

• Leader fails:
– A quorum of followers

has accepted p
– New leader has accepted

such a proposal

P1 P2 C1 P3 C2

P1 P2P1 P2 C1

ZAB: Let it go

• Some server s has
accepted proposal p

• Server s fails and
recovers

• Proposal p is not
committed

• When s recovers, it
must drop p

P1 P2 C1 P3 C2

P1 P2
C1 C2
P10..01
P10..02
C10..01

P1 P2
C1 C2
P10..01
P10..02
C10..01

ZAB: Agreement

• Proof idea
– Server delivers proposal p by

• Receiving a commit message
• Synchronizing with a leader upon a new epoch

– Servers s1 and s2 deliver p with zxid 〈e, c〉 by receiving
a commit message

• Must be the same message
• Each epoch has at most one leader

– Server s1 delivers p with zxid 〈e, c〉 by receiving a
commit message but s2 doesn’t

• Server s2 must eventually deliver p synchronizing with leader
– Both servers deliver p with zxid 〈e, c〉 by synchronizing

with leader

ZAB: Order

• Proof idea
– Correct followers

• Receive proposals in order of zxid from leader
– Unique zxid per proposal

• Each epoch has a single leader
– Recovering or new followers

• Synchronize with leader before accepting new
proposals

• Receive committed proposals in order

Evaluation

• Cluster of PC servers
• Servers

– Xeon dual-core 3050 2.13GHz
– 4GB of RAM

• Network
– 1 Gbps

Evaluation: Throughput

Evaluation: Series of events

1. Failure and recovery
of a follower

2. Failure and recovery
of a different follower

3. Failure of the leader
4. Consecutive failures

of two followers and
recovery of both

5. Failure of the leader

Evaluation: Barriers

• Goal
– Throughput of primitives

• Double barriers
– Synchronize in the beginning

and at the end
– Operations enter() and

leave()

• Each client
– Starts n barriers sequentially
– Leaves barriers sequentially

• Throughput of barrier
operations:
– Roughly 3k ops/s

of clients

of barriers 50 100 200

200 9.4 19.8 41.0

400 16.4 34.1 62.0

800 28.9 55.9 112.1

1600 54.0 102.7 234.4

ZooKeeper: Fetching service traffic

Related work

• ISIS [Birman and Joseph, ACM SIGOPS Operating System Review, Nov 1987]

– Toolkit for distributed programming
– Based on virtual synchrony

• Chubby [Burrows, USENIX OSDI 2006]

– Google’s Lock service
• Sinfonia [Aguilera et al., ACM SOSP 2007]

– Minitransactions
– Application store its data on Sinfonia

• Paxos [Lamport, ACM TOCS, May 1998]

– Algorithm for state-machine replication

Conclusions

• ZooKeeper: Coordination service
– Synchronization and metadata
– Mitigates implementing complex synchronization primitives
– Implemented once, used many times

• Wait-free synchronization
• ZAB: ZooKeeper Atomic Broadcast

– Implementation simple and efficient
• Evaluation

– High throughput: sufficient for internal applications
– Fast recovery upon leader failures

• Distribution: http://hadoop.apache.org/zookeeper

http://hadoop.apache.org/zookeeper

	ZooKeeper: Because building distributed systems is a zoo
	Distributed systems
	Real examples
	Crawling
	Crawling
	Crawling
	Hadoop
	Hadoop
	Hadoop
	Coordination service
	ZooKeeper
	ZooKeeper
	ZooKeeper: Design
	Wait-free synchronization
	How it works – 10,000 ft view
	ZooKeeper API
	ZooKeeper recipes
	An example: Wait-free leader election
	An example: Wait-free leader election
	An example: Wait-free leader election
	An example: Wait-free leader election
	An example: Wait-free leader election
	ZooKeeper Internals
	ZAB: ZooKeeper Atomic Broadcast
	ZAB: ZooKeeper Atomic Broadcast
	ZAB: The basic protocol
	ZAB: The basic protocol
	ZAB: Leader failure
	ZAB: Can’t forget
	ZAB: Let it go
	ZAB: Agreement
	ZAB: Order
	Evaluation
	Evaluation: Throughput
	Evaluation: Series of events
	Evaluation: Barriers
	ZooKeeper: Fetching service traffic
	Related work
	Conclusions

