

ZooKeeper Atomic Broadcast

The heart of the ZooKeeper coordination
service

Benjamin Reed, Flavio Junqueira
Yahoo! Research

ZooKeeper Service

Request
Processor

Request

DB

Atomic Broadcast

Response

Transforms a
request into an

idempotent
transaction

ZooKeeper Servers

ZooKeeper Service

ServerServer ServerServerServerServer

Client ClientClientClientClientClient ClientClient

Leader

Goals

1)Must be able to tolerate failures

2)Must be able to recover from correlated recoverable
failures (power outages)

3)Must be correct

4)Must be easy to implement correctly

5)Must be fast (high throughput, low latency)
− Bursty throughput
− Homogeneous servers with non homogeneous

behavior (some will inevitably be faster than others
because of HW or runaway processes etc)

ZooKeeper Leader Election

ZooKeeper Service

ServerServer 1 Server 5Server 4Server 3Server 2

1)UDP or TCP based

2)Server with the highest logged transaction gets
nominated

3)Election doesn't have to be absolutely successful, just
very likely successful

Starting assumption

1)Ability to create FIFO channels

− We use TCP
− Theoretically not a stronger assumption than

classic lossy unordered channel since that is
what TCP is built on

2)Crash fail

− Digests to detect corruption
3)2f+1 servers to handle f failures

− Service must be able to recover from
correlated recoverable failures (power
outages)

ZooKeeper Servers

ServerServer ServerServer

Leader

1) Forward Request

2) Send Proposal

3) Ack Proposal

2) Send Proposal

3) Ack Proposal

4) Commit4) Commit

Create a
proposal and

stamp with zxid

Log txn, but
don't use until

committed

Update in memory
database and
make visible

These steps make up
a pipeline that will fill

with thousands of
pipelined requests

Nice Properties

1)Leader always proposes in order

2)Because we use TCP, followers always receive in order

3)Followers process proposals in order

4)TCP means that Leader will get ACKs in order and thus
commit in order

5)Followers only need to connect to a single server

6)Leader just waits for connections

Everything is cool until...

Leader Failure!
2) Make sure that the what has been delivered to some get

delivered to all

3) Make sure that what gets forgotten stays forgotten

4) We get to choose what to do with the stuff in between

Missed deliveries

Pa,Pb,Pc,Ca,Cb,Pd

Pa,Pb,Pc,Ca
Pa,Pb,PcX

b better
eventually be
committed!

Bad Recall

Pa,Pb,Pc,Ca,Cb,Pd

Pa,Pb,Pc,Ca Pa,Pb,Pc

d better go away
and never come

back

Cb,Cc,Pe,Pf,Ce,Cf

Ca,Cb,Cc,Pe,Pf,Ce,Cf

Never forget

1)If we elect the right guy, we will not forget anything

− A new leader is elected by a quorum of
followers

− Committed messages must be seen by at
least someone in the quorum

− Elect the server that has seen the highest
message in a quorum

− New leader will commit all proposals it has
seen from the previous leader

Missed deliveries

Pa,Pb,Pc,Ca,Cb,Pd

Pa,Pb,Pc,Ca Pa,Pb,Pc

X
b better

eventually be
committed!

Ca, Cb,Cc

Cb,Cc

Letting go

1)We use epochs to make sure that we only recover the
last leaders outstanding proposals once.

− Zxid is a 64-bit number: 32-bit of epoch and
32-bit counter

− A new leader will increment the epoch
− A new leader will only start proposing once

the previous epoch is cleaned

Bad Recall

Pa,Pb,Pc,Ca,Cb,Pd

Pa,Pb,Pc,Ca Pa,Pb,Pc

Cb,Cc,Pe,Pf,Ce,Cf

Ca,Cb,Cc,Pe,Pf,Ce,Cf

Truncate to c,Cc,Pe,Pf,Ce,Cf

Leader Protocol in a nutshell
1)At startup wait for a quorum of followers to connect

2)Sync with a quorum of followers

− Tell the follower to delete any txn that the
leader doesn't have (easy since it will only
differ in one epoch)

− Send any txns that the follower doesn't have
3)Continually

− Assign and zxid to any message to be
proposed and broadcast proposals to
followers

− When a quorum has acked a proposal
broadcast a commit

(Broadcast means queue the message to the TCP channel of each follower)

Follower protocol in a nutshell

1)Connect to a leader

2)Delete any txns in the txn log that the leader says to
delete

3)Continually

− Log to the txn log proposed transactions and
send an ack to leader

− Deliver any committed txn

Performance

Status

1)An Apache project http://hadoop.apache.org/zookeeper

2)Used extensively at Yahoo! Also used by non Yahoo!
Projects

3)Future work:

− Observers
− Tree distribution network

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

