/ooKeeper Tutorial

Part 2
The service

ZooKeeper Introduction

* Coordination kernel
— Does not export concrete primitives
— Recipes to implement primitives

* File system based API
— Manipulate small data nodes: znodes

/ooKeeper: Overview

Ensemble

ZooKeeper

Client A Follower
PP Client Lib Session
Leader
Leader atomically
broadcast
updates
_ ZooKeeper
Client A Foll
PP Client Lib Session TN
Replicated
ZooKeeper system

Follower

Client App

Client Lib

Session

Eurosys 2011 - Tutorial 3 m

/ooKeeper: Read operations

Ensemble

Read
: ZooKeeper Read “x” operations
Client App Client Lib Follower processed
locally

Client App Zgl(i)eKrweteSte)r Follower

ZooKeeper
Client App Client Eb Follower

Eurosys 2011 - Tutorial 4 iﬁ

/ooKeeper: Write operations

Ensemble
Write “x”,11 ‘ .
Client App Zglci)eK:teEEr Follower

Leader

Client App Zgl(i)eKrweteSte)r Follower i

ZooKeeper
Client App Client Eb Follower

Replicates across a quorum Iﬁ

Eurosys 2011 - Tutorial 5

ZooKeeper: Semantics of Sessions

* A prefix of operations submitted through a
session are executed

* Upon disconnection
— Client lib tries to contact another server
— Before session expires: connect to new server

— Server must have seen a transaction id at least as
large as the session

ZooKeeper: API

Create znodes: create
— Persistent, sequential, ephemeral

Read and modify data: setData, getData
Read the children of znode: getChildren
Check if znode exists: exists

Delete a znode: delete

ZooKeeper: API

e Order

— Updates: Totally ordered, linearizable

— FIFO order for client operations

— Read: sequentially ordered

Client 1:

Client 2:

Sequential: |

write(x, 10)
| |
write(x, 11)|
I I

write(x, 10) write(x, 11)
| | |

ZooKeeper: API

* Order
— Updates: Totally ordered, linearizable
— FIFO order for client operations
— Read: sequentially ordered

write(x, 10) read(x)
Client 1: I I |
I | | I
| read(x)
Client 2: | I
read(x) write(x, 10) read(x)

Sequential: |

/ooKeeper: Example

1- create “/C-”, “Ci”, sequential, ephemeral
2-getChildren “/”
3- If not leader, getData “first node”

Eurosys 2011 - Tutorial 10

/ooKeeper: Znode changes

* /node changes
— Data is set

— Node is created or deleted
— Etc...

* To learn of znode changes
— Set a watch
— Upon change, client receives a notification
— Notification ordered before new updates

/ooKeeper: Watches

e

getData “/foo”, tru d
L< /
return 10

/ooKeeper: Watches

o

setData “/foo”,

11

o

Eurosys 2011 - Tutoria

return ok

13

/ooKeeper: Watches

w notification /
/foo

=

Eurosys 2011 - Tutoria 14

Watches, Locks, and the herd effect

* Herd effect
— Large number of clients wake up simultaneously

* Load spikes

— Undesirable

Watches, Locks, and the herd effect

-

Watches, Locks, and the herd effect

4 N

Watches, Locks, and the herd effect

4 N

notification —@ /C-2
notification \ /
4 A

Eurosys 2011 - Tutoria 18

Watches, Locks, and the herd effect

e A solution
— Use order of clients
— Each client

* Determines the znode z preceding its own znode in the
sequential order

 Watch z
— A single notification is generated upon a crash

* Disadvantage for leader election

— One client is notified of a leader change

Linearizability

e Correctness condition

 |Informal definition

— Order of operations is equivalent to a sequential
execution

— Equivalent order satisfies real time precedence order

write(x, 10) read(x)
Client 1: I I | |
I I
read(x)
Client 2: i i
read(x) write(x, 10) read(x)

Sequential: |

Linearizability

e Correctness condition

 |Informal definition

— Order of operations is equivalent to a sequential
execution

— Equivalent order satisfies real time precedence order
write(x, 10)

Client 1:

Client 2:

Sequential: |

Linearizability

e Correctness condition

 |Informal definition

— Order of operations is equivalent to a sequential
execution

— Equivalent order satisfies real time precedence order

write(x, 10) read(x)

, : I I I I
Client 1: | | | |

| read(x) |
Client 2: | |

write(x, 10) read(x) read(x)

Sequential: |

)
I
I

Linearizability

* |sitimportant? It depends...

* Implements universal object
— Herlihy’s result

— Implement consensus for n processes

Implementing consensus

* Each process p proposes then decides

* Propose (V)

— setbhata “/c/proposal-", “w”, sequential
e Decide ()

— getChildren “/c”

— Select znode z with smallest sequence number

— v’ = getData “/c/z”

— Decide upon v’

Linearizability

* |sitimportant? It depends...

* Implements universal object
— Herlihy’s result
— Implement consensus for n processes
— ... but it is affected by hidden channels

b

Hidden channels

ZK1

ZK2

ZK3

Hidden channels

4 I
0y N
/config
\ J
4 I
/
K2
/conﬁgj

N
setData “/config”, C2 (4 /)
q
« ZK3
return OK /conﬁg
\\ J/.
I

Eurosys 2011 - Tutorial 27

Hidden channels

M

| have changed the config,
please read it!

w

Eurosys 2011 - Tutorial

28

ZK1

ZK2

Hidden channels

E i getData “/config”
return C1

// B
/
/config
\ J
; I
/
i@ /conﬁgj
~

o

Eurosys 2011 - Tutorial 29

ZK1

ZK2

ZK3

A hat trick...

SYync

— Asynchronous operation

— Before read operations getData “/foo

sync

— Flushes the channel

between follower and Follower

leader

i foo = C1

— Makes operations el

linearizable

Leader

setData

A hat trick...

°* sync
— Asynchronous operation
— Before read operations

— Flushes the channel

between follower and Follower
leader getData
sync
' f = C1
— Makes operations /foo
linearizable
Leader

setData

A hat trick...

sync ‘ |
— Asynchronous operation

— Before read operations

— Flushes the channel

between follower and Follower
leader getData
/f C]_ Sync
— Makes operations 00 =
linearizable lsync
Leader
setData
sync

A hat trick...

sync ‘ |
— Asynchronous operation

— Before read operations

— Flushes the channel

between follower and Follower
leader getData
sync
' f = C2
— Makes operations /foo ‘r
linearizable setData “/foo”, C2
Leader

sync

A hat trick...

sync ‘ |
— Asynchronous operation

— Before read operations

— Flushes the channel

between follower and Follower
leader getData
/f C2 Sync
— Makes operations 9= ‘r
linearizable .
Leader

A hat trick...

sync
— Asynchronous operation
— Before read operations

— Flushes the channel
between follower and
leader

— Makes operations
linearizable

return sync

Follower

/foo =

C2

getData

Leader

A hat trick...

sync
— Asynchronous operation
— Before read operations

— Flushes the channel
between follower and
leader

— Makes operations
linearizable

return “/foo”,

Follower

/foo =

C2

Leader

C2

Summary of Part 2

Zo0oKeeper
— Replicated service
— Propagate updates with a broadcast protocol

Updates use consensus

Reads served locally

Workload not linearizable because of reads
sync () makes it linearizable

