Sqooping 50 Million Rows a Day from MySQL

SELLING SOURCE®

Marketing. Technology. Data.

AYele

MySQL Active
Writer Instance

Current Month

One Month
Ago

Two Months
Ago

3 Month Rotational Life Cycle

MySQL Archive
Long-Term Storage Instance

Two Months
Ago

Three Months
Ago

Problem: Data Analyst have to pull data from two different sources.

One of the goals of our project is to create a single data
source for analyst to mine.

MySQL Active
Writer Instance

MySQL Archive
Long-Term Storage Instance

Two Months

Current Month
Ago

Three Months
Ago

One Month
Ago

Data Analyst with Hadoop only have to pull from one data source.

Hadoop Cluster
Hive

MySQL Active

Writer Instance With all data,

current

to the last 24 hours.
Current Month

One Month
Ago

Attempt 1.0 Sgooping in Data from MySQL
Sqoop entire table into hive every day at 0030

Parent 201108 Merge

9 Node Child_201108_0
Hadoop Cluster

Child_201108 1

4 TB Available Storage
Child_201108 2

Child 201108 3

Child_201108_4

Hive Table Child_201108_5
Child_201108 6
2011-08-01 Child 201108 7

5 Million Rows Per Table

2 Minutes Sqoop time Per Table

20 Minute Total Time

Total 50 Million Rows into Hive Table

Child_201108_8

Child_201108 9

2011-08-02

10 Million Rows Per Table

4 Minutes Sgoop time Per Table

40 Minutes Total Time

Total 100 Million Rows into Hive Table

Attempt 2.0 Incremental Sqoop of Data from MySQL

Child_YearMonth Schema

ID BIGINT MISC \INe \YINe Date Created
Auto Increment Column Column Column TimeStamp

Parent 201108 Merge

Child_201108_0

Child 201108 _9

sqoop import --where "date_created between 'S{DATE} 00:00:00' and 'S{DATE} 23:59:59””

Attempt 2.0 Incremental Sqoop of Data from MySQL

9 Node Parent_201108_Merge

Hadoop Cluster P witp Child_201108_0

- '€ “Child_201108 T |
4 TB Available Storage 2Urs frop, Sl i Lo
D Child 201108 2
Child 201108 3

.
Hive Table

Child_201108_9

2011-08-01
5 Million Rows Per Table
2 Minutes Sqoop time Per Table

10 Minute Total Time 5 Million Rows Per Table
Total 50 Million Rows into Hive Table 2 Minutes Sqoop time Per Table

10 Minute Total Time
Total 50 Million Rows into Hive Table

2011-08-02

5 Million Rows Per Table

2 Minutes Sqoop time Per Table

10 Minute Total Time

Total 50 Million Rows into Hive Table

Consistent run times for sqoop jobs achieved

After our 2.0 Incremental Process we had achieved consistent run times
however, two new problems surfaced.

1) Each day 10 new parts would be added to the Hive table which caused 10 more map
tasks per hive query.

2) Space consumption on hadoop cluster.

Too many parts and map tasks per query.

Hive Table

2011-08-01

2011-08-02

2011-08-03

Sqoop

Parent 201108 Merge

Child_201108_0

Child 201108 1

Child_201108_2

Child_201108 3
Child_201108_4

Child_201108_5

Child_201108_6
Child_201108_7
Child_201108_8

Child 201108 9

5000P

2011-08-01

To sqoop 10 tables into one partition
| choose to dynamically create a partition based on date
and Sqoop the data into partition directory with an append

2011-08-02 # Set date to yesterday

DATE="date +%Y-%m-%d -d "1 day ago""

#Create Partition

echo "ALTER TABLE S{TABLE} ADD IF NOT EXISTS PARTITION (dt='S{DATE}') location
'S{PARTITION_DIR}'; exit;" | /usr/bin/hive

Sqoop in event_logs
TABLE_DIR=/user/hive/warehouse/S{TABLE}
PARTITION_DIR=STABLE_DIR/S{DATE}

2011-08-03

sqoop import --where "date_created between 'S{DATE} 00:00:00' and 'S{DATE}
23:59:59'" --target-dir SPARTITION_DIR --append

Parent_201108 Merge

Child_201108_0

Sqoop

Partition

2011-08-01 = 55011-08-01

Child_201108_9

2011-08-02 Partition
dt=2011-08-02

As a result of sgooping into hive partitions only a
minimal amount map task have to be processed.

1 Day = 10 Map Tasks
- 2 Days = 20 Map Tasks

S
2011-08-03 o e prrE— 30 Days = 300 Map Tasks
W

dt=2011-08-03

Space Consumption

Parent_201108 Merge

Child_201108_0
Child_201108_1

Child_201108 2

Child_201108_3

Child_201108 4

Child_201108_5
Child_201108_6

Child_201108_7

Child_201108_8

Child_201108_9

Sqgooping with Snappy

Parent 201108 Merge

Child_201108 0
Child_201108_1

Child_201108 2
Child_201108 3
Child_201108 4

Child_201108_5

Child_201108_6

Child_201108 7

Child_201108_8
Child_201108 9

Summary

1)

2)

Develop some kind of incremental import when sqooping in large active tables. If you
do not, your sqoop jobs will take longer and longer as the data grows from the

RDBMS.
Limit the amount of parts that will be stored in HDFS, this translates into time

consuming map tasks, use partitioning if possible.

Compress data in HDFS. You will save space in HDFS as your replication factor makes
multiple copies of your data. You may also benefit in processing as your Map/Reduce
jobs have less data to transfer and hadoop becomes less 1I/0 bound.

