A New Generation of Data Transfer Tools for Hadoop: Sqoop 2

Bilung Lee (blee at cloudera dot com)
Kathleen Ting (kathleen at cloudera dot com)
Who Are We?

• Bilung Lee
 – Apache Sqoop Committer
 – Software Engineer, Cloudera

• Kathleen Ting
 – Apache Sqoop Committer
 – Support Manager, Cloudera
What is Sqoop?

• Bulk data transfer tool
 – Import/Export from/to relational databases, enterprise data warehouses, and NoSQL systems
 – Populate tables in HDFS, Hive, and HBase
 – Integrate with Oozie as an action
 – Support plugins via connector based architecture
Sqoop 1 Architecture
Sqoop 1 Challenges

• Cryptic, contextual command line arguments
• Tight coupling between data transfer and output format
• Security concerns with openly shared credentials
• Not easy to manage installation/configuration
• Connectors are forced to follow JDBC model
Sqoop 2 Architecture

[Diagram showing the architecture of Sqoop 2, including interfaces, components, and data flow between Hadoop and relational databases.]
Sqoop 2 Themes

• Ease of Use

• Ease of Extension

• Security
Sqoop 2 Themes

• Ease of Use

• Ease of Extension

• Security
Ease of Use

<table>
<thead>
<tr>
<th>Sqoop 1</th>
<th>Sqoop 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client-only Architecture</td>
<td>Client/Server Architecture</td>
</tr>
<tr>
<td>CLI based</td>
<td>CLI + Web based</td>
</tr>
<tr>
<td>Client access to Hive, HBase</td>
<td>Server access to Hive, HBase</td>
</tr>
<tr>
<td>Oozie and Sqoop tightly coupled</td>
<td>Oozie finds REST API</td>
</tr>
</tbody>
</table>
Sqoop 1: Client-side Tool

• Client-side installation + configuration
 – Connectors are installed/configured locally
 – Local requires root privileges
 – JDBC drivers are needed locally
 – Database connectivity is needed locally
Sqoop 2: Sqoop as a Service

• Server-side installation + configuration
 – Connectors are installed/configured in one place
 – Managed by administrator and run by operator
 – JDBC drivers are needed in one place
 – Database connectivity is needed on the server
Client Interface

• Sqoop 1 client interface:
 – Command line interface (CLI) based
 – Can be automated via scripting

• Sqoop 2 client interface:
 – CLI based (in either interactive or script mode)
 – Web based (remotely accessible)
 – REST API is exposed for external tool integration
Sqoop 1: Service Level Integration

• Hive, HBase
 – Require local installation

• Oozie
 – von Neumann(esque) integration:
 • Package Sqoop as an action
 • Then run Sqoop from node machines, causing one MR job to be dependent on another MR job
 • Error-prone, difficult to debug
Sqoop 2: Service Level Integration

• Hive, HBase
 – Server-side integration
• Oozie
 – REST API integration
Ease of Use

<table>
<thead>
<tr>
<th>Sqoop 1</th>
<th>Sqoop 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client-only Architecture</td>
<td>Client/Server Architecture</td>
</tr>
<tr>
<td>CLI based</td>
<td>CLI + Web based</td>
</tr>
<tr>
<td>Client access to Hive, HBase</td>
<td>Server access to Hive, HBase</td>
</tr>
<tr>
<td>Oozie and Sqoop tightly coupled</td>
<td>Oozie finds REST API</td>
</tr>
</tbody>
</table>
Sqoop 2 Themes

• Ease of Use

• Ease of Extension

• Security
Ease of Extension

<table>
<thead>
<tr>
<th>Sqoop 1</th>
<th>Sqoop 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector forced to follow JDBC model</td>
<td>Connector given free rein</td>
</tr>
<tr>
<td>Connectors must implement functionality</td>
<td>Connectors benefit from common framework of functionality</td>
</tr>
<tr>
<td>Connector selection is implicit</td>
<td>Connector selection is explicit</td>
</tr>
</tbody>
</table>
Sqoop 1: Implementing Connectors

• Connectors are forced to follow JDBC model
 – Connectors are limited/required to use common JDBC vocabulary (URL, database, table, etc)

• Connectors must implement all Sqoop functionality they want to support
 – New functionality may not be available for previously implemented connectors
Sqoop 2: Implementing Connectors

• Connectors are not restricted to JDBC model
 – Connectors can define own domain
• Common functionality are abstracted out of connectors
 – Connectors are only responsible for data transfer
 – Common Reduce phase implements data transformation and system integration
 – Connectors can benefit from future development of common functionality
Different Options, Different Results

Which is running MySQL?

$ sqoop import --connect jdbc:mysql://localhost/db \
 --username foo --table TEST

$ sqoop import --connect jdbc:mysql://localhost/db \
 --driver com.mysql.jdbc.Driver --username foo --table TEST

• Different options may lead to unpredictable results
 – Sqoop 2 requires explicit selection of a connector, thus disambiguating the process
Sqoop 1: Using Connectors

• Choice of connector is implicit
 – In a simple case, based on the URL in --connect string to access the database
 – Specification of different options can lead to different connector selection
 – Error-prone but good for power users
Sqoop 1: Using Connectors

• Require knowledge of database idiosyncrasies
 – e.g. Couchbase does not need to specify a table name, which is required, causing --table to get overloaded as backfill or dump operation
 – e.g. --null-string representation is not supported by all connectors

• Functionality is limited to what the implicitly chosen connector supports
Sqoop 2: Using Connectors

• Users make explicit connector choice
 – Less error-prone, more predictable
• Users need not be aware of the functionality of all connectors
 – Couchbase users need not care that other connectors use tables
Sqoop 2: Using Connectors

• Common functionality is available to all connectors
 – Connectors need not worry about common downstream functionality, such as transformation into various formats and integration with other systems
Ease of Extension

<table>
<thead>
<tr>
<th>Sqoop 1</th>
<th>Sqoop 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector forced to follow JDBC model</td>
<td>Connector given free rein</td>
</tr>
<tr>
<td>Connectors must implement functionality</td>
<td>Connectors benefit from common framework of functionality</td>
</tr>
<tr>
<td>Connector selection is implicit</td>
<td>Connector selection is explicit</td>
</tr>
</tbody>
</table>
Sqoop 2 Themes

• Ease of Use

• Ease of Extension

• Security
Security

<table>
<thead>
<tr>
<th>Sqoop 1</th>
<th>Sqoop 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support only for Hadoop security</td>
<td>Support for Hadoop security and role-based access control to external systems</td>
</tr>
<tr>
<td>High risk of abusing access to external systems</td>
<td>Reduced risk of abusing access to external systems</td>
</tr>
<tr>
<td>No resource management policy</td>
<td>Resource management policy</td>
</tr>
</tbody>
</table>
Sqoop 1: Security

• Inherit/Propagate Kerberos principal for the jobs it launches
• Access to files on HDFS can be controlled via HDFS security
• Limited support (user/password) for secure access to external systems
Sqoop 2: Security

• Inherit/Propagate Kerberos principal for the jobs it launches
• Access to files on HDFS can be controlled via HDFS security
• Support for secure access to external systems via role-based access to connection objects
 – Administrators create/edit/delete connections
 – Operators use connections
Sqoop 1: External System Access

• Every invocation requires necessary credentials to access external systems (e.g. relational database)
 – Workaround: create a user with limited access in lieu of giving out password
 • Does not scale
 • Permission granularity is hard to obtain

• Hard to prevent misuse once credentials are given
Sqoop 2: External System Access

• Connections are enabled as first-class objects
 – Connections encompass credentials
 – Connections are created once and then used many times for various import/export jobs
 – Connections are created by administrator and used by operator
 • Safeguard credential access from end users
• Connections can be restricted in scope based on operation (import/export)
 – Operators cannot abuse credentials
Sqoop 1: Resource Management

• No explicit resource management policy
 – Users specify the number of map jobs to run
 – Cannot throttle load on external systems
Sqoop 2: Resource Management

• Connections allow specification of resource management policy
 – Administrators can limit the total number of physical connections open at one time
 – Connections can also be disabled
Security

<table>
<thead>
<tr>
<th>Sqoop 1</th>
<th>Sqoop 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support only for Hadoop security</td>
<td>Support for Hadoop security and role-based access control to external systems</td>
</tr>
<tr>
<td>High risk of abusing access to external systems</td>
<td>Reduced risk of abusing access to external systems</td>
</tr>
<tr>
<td>No resource management policy</td>
<td>Resource management policy</td>
</tr>
</tbody>
</table>
Demo Screenshots

```
A sqoop2/NOTICE.txt
A sqoop2/repository
A sqoop2/repository/repository-derby
A sqoop2/repository/repository-derby/src
A sqoop2/repository/repository-derby/src/test
A sqoop2/repository/repository-derby/src/test/java
A sqoop2/repository/repository-derby/src/main
A sqoop2/repository/repository-derby/src/main/java
A sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop
A sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop/repository
A sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop/repository/derby
A sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop/repository/derby/DerbyRepoConfigurationConstants.java
A sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop/repository/derby/DerbyRepositoryHandler.java
A sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop/repository/derby/DerbySchemaConstants.java
A sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop/repository/derby/DerbyTableSupport.java
```
Demo Screenshots

[localhost]$ cd sqoop2/
[localhost]$ mvn install
[INFO] Scanning for projects...
[INFO] --------------------------

[INFO] Reactor Build Order:
[INFO]
[INFO] Sqoop
[INFO] Sqoop Common
[INFO] Sqoop SPI
[INFO] Sqoop Core
[INFO] Sqoop Repository
[INFO] Sqoop Derby Repository
[INFO] Sqoop Connectors
[INFO] Generic JDBC Connector
[INFO] MySQL JDBC Connector
[INFO] Sqoop Server
[INFO] Sqoop Client
[INFO] Sqoop Documentation
[INFO] MySQL Fastpath Connector
[INFO] Sqoop Distribution
[INFO]
Demo Screenshots

```
[localhost]$ mvn package -Pdist
[INFO] Scanning for projects...
[INFO] -------------------------------------------------------------------------------------------------------------------------
[INFO] Reactor Build Order:
[INFO]
[INFO] Sqoop
[INFO] Sqoop Common
[INFO] Sqoop SPI
[INFO] Sqoop Core
[INFO] Sqoop Repository
[INFO] Sqoop Derby Repository
[INFO] Sqoop Connectors
[INFO] Generic JDBC Connector
[INFO] MySQL JDBC Connector
[INFO] Sqoop Server
[INFO] Sqoop Client
[INFO] Sqoop Documentation
[INFO] MySQL Fastpath Connector
[INFO] Sqoop Distribution
[INFO]
[INFO] -------------------------------------------------------------------------------------------------------------------------
```
Demo Screenshots

```
[localhost]$ cd dist/target/sqoop-2.0.0-SNAPSHOT
[localhost]$ bin/sqoop.sh server start
Sqoop home directory: /home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT...
Using CATALINA_BASE: /home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT/server
Using CATALINA_HOME: /home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT/server
Using JRE_HOME: /opt/java/jdk1.6.0_27
Using CLASSPATH: /home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT/server/bin/bootstrap.jar:/home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT/server/bin/tomcat-juli.jar
[localhost]$ 
```
Demo Screenshots

```
[localhost]$ bin/sqoop.sh client
Sqoop home directory: /home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT...
Jun 8, 2012 10:42:22 PM java.util.prefs.FileSystemPreferences$2 run
INFO: Created user preferences directory.
Sqoop Shell: Type 'help' or '\h' for help.

sqoop:000> show version
Usage: show version
  -a,--all    Display all versions
  -c,--client Display client version
  -p,--protocol Display protocol version
  -s,--server Display server version

sqoop:000> show version --all
Server version:
  Sqoop 2.0.0-SNAPSHOT revision 1346742
  Compiled by root on Fri Jun  8 22:38:45 PDT 2012
Client version:
  Sqoop 2.0.0-SNAPSHOT revision 1346742
  Compiled by root on Fri Jun  8 22:38:45 PDT 2012
Protocol version:
  [1]
```
Takeaway

Sqoop 2 Highlights:

– Ease of Use: Sqoop as a Service
– Ease of Extension: Connectors benefit from shared functionality
– Security: Connections as first-class objects and role-based security
Current Status: work-in-progress

- **Sqoop2 Development:**

- **Sqoop2 Blog Post:**

- **Sqoop2 Design:**
 http://cwiki.apache.org/confluence/display/SQOOP/Sqoop+2
Current Status: work-in-progress

- **Sqoop2 Quickstart:**

 http://cwiki.apache.org/confluence/display/SQOOP/Sqoop2+Quickstart

- **Sqoop2 Resource Layout:**

- **Sqoop2 Feature Requests:**

 http://cwiki.apache.org/confluence/display/SQOOP/Sqoop2+Feature+Requests
SQOOP WANT YOU