
06/12/2012 – VIRAL BAJARIA!

CONTINUOUS AGGREGATIONS!



BACKGROUND!
•  Realtime!

•  Custom beacons!
•  Batch Write to DB!
•  100s of millions of rows in each table!
•  Custom reporting portal : ad hoc querying!

•  Batch Processing!
•  1 machine, multi threaded application!
•  Processed logs received from third-party or internal beacons!
•  Performed some aggregations (but still 10s of millions of rows)!
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BACKGROUND!
•  Problems!

•  Ugly stored procedures to pull data!
•  Runtime joins against metadata!
•  Small resultset also needed to process millions of rows!
•  Uniques was a nightmare!!

•  1-year into public launch took over 3 days of processing to do 
monthly!

•  Reporting portals could never scale for data requests!
•  Timezone shifting was a big problem (i.e. EST/PST)!

•  Data was always in UTC!
•  No single source of truth for data!
•  Overall scale was a big problem!
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1ST SOLUTION!
•  Hadoop (What else??)!

•  Will solve all problems J!
•  First job was written in January 2009!
•  Speed of processing was just mind-blowing!
•  Write Map/Reduce jobs for each different cuts of data!
•  In a year we had over 100s of jobs!

•  Each job ran over the log data!
•  Problems!

•  Raw logs had to be reprocessed!
•  Outputs didn't match at different cuts!

•  i.e. day/week/month!
•  Timezone shifting was still an issue!
•  Operational nightmare!

•  Just 2 people on the team!
•  Output was still written to DBs!
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2ND SOLUTION!
•  Internal Name : Project Harpy!
•  Goals!

•  Single source of truth (for a given fact)!
•  Reduce operational overhead!
•  Easy way to write map/reduce jobs!
•  Support different aggregation functions!

•  Sum!
•  Count!
•  Uniques!

•  Support complex analysis!
•  json data!
•  Cohort analysis!

•  Fast ad-hoc querying!
•  Solution!

•  Hive + Harpy!
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HARPY : CORE CONCEPTS!
•  Metadata!

•  Dimensions only!
•  Tables with no facts!!
•  Examples!

•  Video, Content Partners (Content)!
•  Campaign , Flight, Creative (Advertising)!

•  Data!
•  Tables that carry facts!

•  Video_Starts_Hourly (UTC)!
•  Advertising_Impressions_Hourly (UTC)!

•  Aggregations!
•  Projections of fact tables!

•  Video_Starts_Day_PST!
•  Advertising_Impressions_Day_EST!

•  Publishing!
•  Publishes Aggregations to target database tables!

•  Currently supports MySQL + MS-SQL!
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HARPY : COMPONENTS!
•  Engine (API)!

•  Data management!
•  Process management!

•  DataSync!
•  Controller : create/modify tables in hive!
•  Sync : move data from DBs + Files into hive!

•  Aggregation!
•  Controller : create/modify aggregated tables in hive!
•  Scheduler!
•  Query Generator!

•  Publishing!
•  Files / Sql DBs / MySQL DBs!

•  Queue Processor!
•  Serializes operation i.e. create table before running query!
•  Maintain dependency chain!
•  Guarantees atomic nature of data!

•  Once an aggregation runs, it will never re-run!
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DataSync!

MapReduce jobs convert 
unstructured data to 

structured data!
- Beacons with query strings!

-  run business logic!
-  final output is hive compatible!

-  data runs at hourly levels!

DataSync!
•  Pull data into HIVE at hourly 
level!
•  Mark data as available when 
sync is successful!

Aggregation Scheduler!
•  Queue aggregations based on data 
availability!
•  Can be hourly/daily/weekly/monthly!
•  Can be in different timezones!

HARPY! MR jobs : (unstructured 
à structured)!

Hive : Data Warehouse!

Queue!

Aggregation 
Scheduler!

Publishing!
•  Checks for aggregations that have run 
successfully!
•  Based on policy, push data to files/db!

Publishing!

Storage!

Queue Processor!
•  Picks items from the queue in order!
•  Generates hive queries over thrift!
•  Retries aggregation on failures!
•  Marks data as available on success!

Queue Processor!



HARPY : ENGINE!
•  define_data($definition)!
•  define_agg($definition)!
•  define_publishtask($definition)!
•  thread_action($name, $action)!
•  Request_aggregation($agg,$condition)!
•  submit_simple_query($query)!
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CREATE TABLE IF NOT EXISTS Video!
(!

!VideoId int,!
!SeriesId int,!
!Title string!

)!
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES 
TERMINATED BY '\n’ STORED AS TEXTFILE!

Create Workflow!
•   Check for name conflict!
•   Validate references to other metadata table!
•   Store table configuration!
•   Queue table creation!

Sync Workflow!
•   Check for changes since last sync!
•   INSERT into the table, directly!
•   We always overwrite the metadata to avoid duplicates (no updates in 
Hive)!
•   No runtime checking!

HARPY : DATA - METADATA!
<data name="Video" type="db" source="Hulu.Video" sync="true" 

syncquery="SELECT Id, SeriesId, Title FROM Video">!
!<dim name="VideoId" type="int32"/>     !
!<dim name="Series.SeriesId" type="int32"/>!
!<dim name="Title" type="string" />!

</data>!
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HARPY : DATA – FACT!
<data name="Video_Starts_Hourly" type="file" source="{directory-path}" 

sync="true" completeness="h">!
      <dim name="hour.hourid" type="int64" partition="true" />!
!<dim name="Video.VideoId" type="int32"/>     !
!<fact name="starts" type="int64" />!

</data>!
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Create Workflow!
•   Check for name conflict!
•   Validate references to metadata tables are valid!
•   Store table configuration!
•   Execute CREATE TABLE command!

Remove Workflow!
•   Check for table existence!
•   Check if referenced by other facts / aggregations (foreign key check)!
•   If all tests passed, then remove table info and drop table from Hive!



HARPY : DATA – FACT!
<data name="Video_Starts_Hourly" type="file" source="{directory-path}" 

sync="true" completeness="h">!
      <dim name="hour.hourid" type="int64" partition="true" />!
!<dim name="Video.VideoId" type="int32"/>     !
!<fact name="starts" type="int64" />!

</data>!
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CREATE TABLE IF NOT EXISTS Video_Starts_Hourly!
(!

!VideoId int,!
!Starts bigint!

)!
PARTITIONED BY ( hourid bigint )!
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES 
TERMINATED BY '\n’ STORED AS TEXTFILE!



HARPY : QUERY GENERATION!
•  Retrieve item from queue!

•  Eg.: video_starts_day_est|(hourid>=372077 and hourid <= 372100)!
•  Aggname : video_starts_day_est!
•  Condition : 24 hours of data!
•  Source table : retrieved from agg definition!

•  Build list of columns in SELECT and GROUP BY!
•  Build list of tables!

•  Fact tables!
•  JOIN tables!
•  Global map which maintains table-name à alias map!

•  If partitioned,!
•  Remove from select and group by!
•  Insert the partition information!

•  Build WHERE condition!
•  state machine to validate the where condition!
•  sanitizer to perform table alias!

•  Generate hive-compatible QUERY!
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HARPY : AGGREGATION (SIMPLE)!
<agg name="Video_Starts_Day_EST" completeness="d" timezone="est">!
!<dim name="hour.est.real_date" type="string" partition="true"/> !
!<dim name="VideoId" type="int32"/>!
!<sum name="starts" type="int64" data="video_starts.starts" />!

</agg>!
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INSERT OVERWRITE TABLE Video_Starts_Day_EST ( real_date = 
“2012-06-12” )!
SELECT /*+ STREAMTABLE(t1) */!

!t1.VideoId, SUM(t1.Starts)!
FROM!

!Video_Starts t1!
WHERE!

!HourId >= 372077 AND HourId <= 372100!
GROUP BY!

!t1.VideoId!



HARPY : AGGREGATION (JOINS)!
<agg name="Series_Starts_Day_EST" completeness="d" timezone="est">!
!<dim name="hour.est.real_date" type="string" partition="true"/> !
!<dim name="Series.Title" type="string"/>!
!<sum name="starts" type="int64" data="video_starts.starts" />!

</agg>!
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INSERT OVERWRITE TABLE Series_Starts_Day_EST ( real_date = 
“2012-06-12” )!
SELECT /*+ STREAMTABLE(t1) */!

!t2.Title, SUM(t1.Starts)!
FROM!

!Video_Starts t1!
!JOIN Series t2 ON t1.SeriesId = t2.SeriesId!

WHERE!
!HourId >= 372077 AND HourId <= 372100!

GROUP BY!
!t1.VideoId!



HARPY : PUBLISHINGS!
<publish name="Series_Starts_Day_EST" desttype="sql" destdb="{db-

name}" desttable="{table-name}" aggname="Series_Starts_Day_EST">!
!<map destColName="real_date" destColType="datetime"  aggColName="real_date"/>!
!<map destColName="SeriesTitle" destColType="string"  aggColName="Title"/> !
!<map destColName="total_count" destColType="bigint" aggColName="starts" />!

</publish>!

Footer Goes Here! 16!



HARPY : UNIQUES!
<data name="Video_Starts_Hourly" type="file" source="{directory-path}" 

sync="true" completeness="h">!
      <dim name="hour.hourid" type="int64" partition="true" />!
!<dim name="Video.VideoId" type="int32"/> !
!<fact name="{user-identifier}" type="string" />!
!<fact name="starts" type="int64" />!

</data>!
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<agg name="Video_Uniques_Week_PST" completeness=“w">!
      <dim name="hour.est.week_end_date" type=“string" partition="true" />!
!<dim name="Video.VideoId" type="int32"/> !
!<unique name=“uniques" type=“int64“ data=“Video_Starts_Hourly.{user-
identifier}” />!

</agg>!



HARPY : UNIQUES!
<data name="Video_Starts_Hourly" type="file" source="{directory-path}" 

sync="true" completeness="h">!
      <dim name="hour.hourid" type="int64" partition="true" />!
!<dim name="Video.VideoId" type="int32"/> !
!<fact name="{user-identifier}" type="string" />!
!<fact name="starts" type="int64" />!

</data>!
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<agg name=“Total_Uniques_Month_PST" completeness=“m">!
      <dim name="hour.pst.month_end_date" type=“string" partition="true" />!
!<unique name=“uniques" type=“int64“ data=“Video_Starts_Hourly.{user-
identifier}” />!

</agg>!



HIVE : AD-HOC QUERIES!
•  Harpy (submit-simple-query)!

•  submit-simple-query api!
•  Takes a pre-built hive query and runs by connecting to an existing 

hive thrift server port!
•  Blocking call, can't execute multiple queries!

•  web service!
•  Written in python, uses tornado!
•  Takes a pre-built hive query!
•  Returns results in json or xml format!

•  Easily integrates with reporting and analytical services!
•  Dynamically opens hive ports for query execution!

•  Ports are re-used across a thread pool!
•  Helps achieve parallelization!
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HIVE : COHORT ANALYSIS!
•  Cohort Generation!

•  Custom or templated hive queries !
•  Generates a list of userids !
•  Based on demographic, subscription and usage behavior!
•  Output stored into hive table!

•  Partitioned on cohort name!
•  Userid and Timeperiod!

•  Users can be "tagged" with cohort for online usage in HBase!

•  Cohort Usage!
•  Cohort table joined against usage information for historical analysis!
•  Online usage !

•  Ad targeting!
•  Marketing campaigns!
•  Recommendations!

•  Queries submitted via the submit-simple-query framework of Harpy!
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HARPY : FUTURE WORK!
•  Filtering!

•  Allow <filter> tags during table definition!
•  Custom JOIN conditions!
•  Progressive aggregations!

•  week-to-date!
•  month-to-date!
•  trailing-30-days!

•  Aggregations over JSON column!
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HARPY : REASONS!
•  Integrated nicely with our DB based approach!

•  Entire reporting stack ran off SQL tables!
•  Started off with 10s of tables!

•  Currently we run 1000s of aggregations!
•  We don't have to manage all that data!

•  Humans don't scale!
•  Query generator helps write map/reduce jobs!

•  Timezone shifting without any overheads!
•  We can do UTC/EST/PST/JST!

•  None of the existing tools were mature enough at that time!
•  Started in 2009, Sqoop was not even around!
•  Hive was in version 0.3 (we went into production with 0.5)!

•  Helped scale out our metrics platform with just 2 people on the team!
•  We are at 5 now J!
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QUESTIONS ?!
WE ARE HIRING IN SILICON BEACH!

THANK YOU!
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