
06/12/2012 – VIRAL BAJARIA!

CONTINUOUS AGGREGATIONS!

BACKGROUND!
•  Realtime!

•  Custom beacons!
•  Batch Write to DB!
•  100s of millions of rows in each table!
•  Custom reporting portal : ad hoc querying!

•  Batch Processing!
•  1 machine, multi threaded application!
•  Processed logs received from third-party or internal beacons!
•  Performed some aggregations (but still 10s of millions of rows)!

2!

BACKGROUND!
•  Problems!

•  Ugly stored procedures to pull data!
•  Runtime joins against metadata!
•  Small resultset also needed to process millions of rows!
•  Uniques was a nightmare!!

•  1-year into public launch took over 3 days of processing to do
monthly!

•  Reporting portals could never scale for data requests!
•  Timezone shifting was a big problem (i.e. EST/PST)!

•  Data was always in UTC!
•  No single source of truth for data!
•  Overall scale was a big problem!

Footer Goes Here! 3!

1ST SOLUTION!
•  Hadoop (What else??)!

•  Will solve all problems J!
•  First job was written in January 2009!
•  Speed of processing was just mind-blowing!
•  Write Map/Reduce jobs for each different cuts of data!
•  In a year we had over 100s of jobs!

•  Each job ran over the log data!
•  Problems!

•  Raw logs had to be reprocessed!
•  Outputs didn't match at different cuts!

•  i.e. day/week/month!
•  Timezone shifting was still an issue!
•  Operational nightmare!

•  Just 2 people on the team!
•  Output was still written to DBs!

Footer Goes Here! 4!

2ND SOLUTION!
•  Internal Name : Project Harpy!
•  Goals!

•  Single source of truth (for a given fact)!
•  Reduce operational overhead!
•  Easy way to write map/reduce jobs!
•  Support different aggregation functions!

•  Sum!
•  Count!
•  Uniques!

•  Support complex analysis!
•  json data!
•  Cohort analysis!

•  Fast ad-hoc querying!
•  Solution!

•  Hive + Harpy!

Footer Goes Here! 5!

HARPY : CORE CONCEPTS!
•  Metadata!

•  Dimensions only!
•  Tables with no facts!!
•  Examples!

•  Video, Content Partners (Content)!
•  Campaign , Flight, Creative (Advertising)!

•  Data!
•  Tables that carry facts!

•  Video_Starts_Hourly (UTC)!
•  Advertising_Impressions_Hourly (UTC)!

•  Aggregations!
•  Projections of fact tables!

•  Video_Starts_Day_PST!
•  Advertising_Impressions_Day_EST!

•  Publishing!
•  Publishes Aggregations to target database tables!

•  Currently supports MySQL + MS-SQL!
Footer Goes Here! 6!

HARPY : COMPONENTS!
•  Engine (API)!

•  Data management!
•  Process management!

•  DataSync!
•  Controller : create/modify tables in hive!
•  Sync : move data from DBs + Files into hive!

•  Aggregation!
•  Controller : create/modify aggregated tables in hive!
•  Scheduler!
•  Query Generator!

•  Publishing!
•  Files / Sql DBs / MySQL DBs!

•  Queue Processor!
•  Serializes operation i.e. create table before running query!
•  Maintain dependency chain!
•  Guarantees atomic nature of data!

•  Once an aggregation runs, it will never re-run!
Footer Goes Here! 7!

DataSync!

MapReduce jobs convert
unstructured data to

structured data!
- Beacons with query strings!

-  run business logic!
-  final output is hive compatible!

-  data runs at hourly levels!

DataSync!
•  Pull data into HIVE at hourly
level!
•  Mark data as available when
sync is successful!

Aggregation Scheduler!
•  Queue aggregations based on data
availability!
•  Can be hourly/daily/weekly/monthly!
•  Can be in different timezones!

HARPY! MR jobs : (unstructured
à structured)!

Hive : Data Warehouse!

Queue!

Aggregation
Scheduler!

Publishing!
•  Checks for aggregations that have run
successfully!
•  Based on policy, push data to files/db!

Publishing!

Storage!

Queue Processor!
•  Picks items from the queue in order!
•  Generates hive queries over thrift!
•  Retries aggregation on failures!
•  Marks data as available on success!

Queue Processor!

HARPY : ENGINE!
•  define_data($definition)!
•  define_agg($definition)!
•  define_publishtask($definition)!
•  thread_action($name, $action)!
•  Request_aggregation($agg,$condition)!
•  submit_simple_query($query)!

Footer Goes Here! 9!

CREATE TABLE IF NOT EXISTS Video!
(!

!VideoId int,!
!SeriesId int,!
!Title string!

)!
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES
TERMINATED BY '\n’ STORED AS TEXTFILE!

Create Workflow!
•  Check for name conflict!
•  Validate references to other metadata table!
•  Store table configuration!
•  Queue table creation!

Sync Workflow!
•  Check for changes since last sync!
•  INSERT into the table, directly!
•  We always overwrite the metadata to avoid duplicates (no updates in
Hive)!
•  No runtime checking!

HARPY : DATA - METADATA!
<data name="Video" type="db" source="Hulu.Video" sync="true"

syncquery="SELECT Id, SeriesId, Title FROM Video">!
!<dim name="VideoId" type="int32"/> !
!<dim name="Series.SeriesId" type="int32"/>!
!<dim name="Title" type="string" />!

</data>!

Footer Goes Here! 10!

HARPY : DATA – FACT!
<data name="Video_Starts_Hourly" type="file" source="{directory-path}"

sync="true" completeness="h">!
 <dim name="hour.hourid" type="int64" partition="true" />!
!<dim name="Video.VideoId" type="int32"/> !
!<fact name="starts" type="int64" />!

</data>!

Footer Goes Here! 11!

Create Workflow!
•  Check for name conflict!
•  Validate references to metadata tables are valid!
•  Store table configuration!
•  Execute CREATE TABLE command!

Remove Workflow!
•  Check for table existence!
•  Check if referenced by other facts / aggregations (foreign key check)!
•  If all tests passed, then remove table info and drop table from Hive!

HARPY : DATA – FACT!
<data name="Video_Starts_Hourly" type="file" source="{directory-path}"

sync="true" completeness="h">!
 <dim name="hour.hourid" type="int64" partition="true" />!
!<dim name="Video.VideoId" type="int32"/> !
!<fact name="starts" type="int64" />!

</data>!

Footer Goes Here! 12!

CREATE TABLE IF NOT EXISTS Video_Starts_Hourly!
(!

!VideoId int,!
!Starts bigint!

)!
PARTITIONED BY (hourid bigint)!
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES
TERMINATED BY '\n’ STORED AS TEXTFILE!

HARPY : QUERY GENERATION!
•  Retrieve item from queue!

•  Eg.: video_starts_day_est|(hourid>=372077 and hourid <= 372100)!
•  Aggname : video_starts_day_est!
•  Condition : 24 hours of data!
•  Source table : retrieved from agg definition!

•  Build list of columns in SELECT and GROUP BY!
•  Build list of tables!

•  Fact tables!
•  JOIN tables!
•  Global map which maintains table-name à alias map!

•  If partitioned,!
•  Remove from select and group by!
•  Insert the partition information!

•  Build WHERE condition!
•  state machine to validate the where condition!
•  sanitizer to perform table alias!

•  Generate hive-compatible QUERY!
Footer Goes Here! 13!

HARPY : AGGREGATION (SIMPLE)!
<agg name="Video_Starts_Day_EST" completeness="d" timezone="est">!
!<dim name="hour.est.real_date" type="string" partition="true"/> !
!<dim name="VideoId" type="int32"/>!
!<sum name="starts" type="int64" data="video_starts.starts" />!

</agg>!

Footer Goes Here! 14!

INSERT OVERWRITE TABLE Video_Starts_Day_EST (real_date =
“2012-06-12”)!
SELECT /*+ STREAMTABLE(t1) */!

!t1.VideoId, SUM(t1.Starts)!
FROM!

!Video_Starts t1!
WHERE!

!HourId >= 372077 AND HourId <= 372100!
GROUP BY!

!t1.VideoId!

HARPY : AGGREGATION (JOINS)!
<agg name="Series_Starts_Day_EST" completeness="d" timezone="est">!
!<dim name="hour.est.real_date" type="string" partition="true"/> !
!<dim name="Series.Title" type="string"/>!
!<sum name="starts" type="int64" data="video_starts.starts" />!

</agg>!

Footer Goes Here! 15!

INSERT OVERWRITE TABLE Series_Starts_Day_EST (real_date =
“2012-06-12”)!
SELECT /*+ STREAMTABLE(t1) */!

!t2.Title, SUM(t1.Starts)!
FROM!

!Video_Starts t1!
!JOIN Series t2 ON t1.SeriesId = t2.SeriesId!

WHERE!
!HourId >= 372077 AND HourId <= 372100!

GROUP BY!
!t1.VideoId!

HARPY : PUBLISHINGS!
<publish name="Series_Starts_Day_EST" desttype="sql" destdb="{db-

name}" desttable="{table-name}" aggname="Series_Starts_Day_EST">!
!<map destColName="real_date" destColType="datetime" aggColName="real_date"/>!
!<map destColName="SeriesTitle" destColType="string" aggColName="Title"/> !
!<map destColName="total_count" destColType="bigint" aggColName="starts" />!

</publish>!

Footer Goes Here! 16!

HARPY : UNIQUES!
<data name="Video_Starts_Hourly" type="file" source="{directory-path}"

sync="true" completeness="h">!
 <dim name="hour.hourid" type="int64" partition="true" />!
!<dim name="Video.VideoId" type="int32"/> !
!<fact name="{user-identifier}" type="string" />!
!<fact name="starts" type="int64" />!

</data>!

Footer Goes Here! 17!

<agg name="Video_Uniques_Week_PST" completeness=“w">!
 <dim name="hour.est.week_end_date" type=“string" partition="true" />!
!<dim name="Video.VideoId" type="int32"/> !
!<unique name=“uniques" type=“int64“ data=“Video_Starts_Hourly.{user-
identifier}” />!

</agg>!

HARPY : UNIQUES!
<data name="Video_Starts_Hourly" type="file" source="{directory-path}"

sync="true" completeness="h">!
 <dim name="hour.hourid" type="int64" partition="true" />!
!<dim name="Video.VideoId" type="int32"/> !
!<fact name="{user-identifier}" type="string" />!
!<fact name="starts" type="int64" />!

</data>!

Footer Goes Here! 18!

<agg name=“Total_Uniques_Month_PST" completeness=“m">!
 <dim name="hour.pst.month_end_date" type=“string" partition="true" />!
!<unique name=“uniques" type=“int64“ data=“Video_Starts_Hourly.{user-
identifier}” />!

</agg>!

HIVE : AD-HOC QUERIES!
•  Harpy (submit-simple-query)!

•  submit-simple-query api!
•  Takes a pre-built hive query and runs by connecting to an existing

hive thrift server port!
•  Blocking call, can't execute multiple queries!

•  web service!
•  Written in python, uses tornado!
•  Takes a pre-built hive query!
•  Returns results in json or xml format!

•  Easily integrates with reporting and analytical services!
•  Dynamically opens hive ports for query execution!

•  Ports are re-used across a thread pool!
•  Helps achieve parallelization!

Footer Goes Here! 19!

HIVE : COHORT ANALYSIS!
•  Cohort Generation!

•  Custom or templated hive queries !
•  Generates a list of userids !
•  Based on demographic, subscription and usage behavior!
•  Output stored into hive table!

•  Partitioned on cohort name!
•  Userid and Timeperiod!

•  Users can be "tagged" with cohort for online usage in HBase!

•  Cohort Usage!
•  Cohort table joined against usage information for historical analysis!
•  Online usage !

•  Ad targeting!
•  Marketing campaigns!
•  Recommendations!

•  Queries submitted via the submit-simple-query framework of Harpy!

Footer Goes Here! 20!

HARPY : FUTURE WORK!
•  Filtering!

•  Allow <filter> tags during table definition!
•  Custom JOIN conditions!
•  Progressive aggregations!

•  week-to-date!
•  month-to-date!
•  trailing-30-days!

•  Aggregations over JSON column!

Footer Goes Here! 21!

HARPY : REASONS!
•  Integrated nicely with our DB based approach!

•  Entire reporting stack ran off SQL tables!
•  Started off with 10s of tables!

•  Currently we run 1000s of aggregations!
•  We don't have to manage all that data!

•  Humans don't scale!
•  Query generator helps write map/reduce jobs!

•  Timezone shifting without any overheads!
•  We can do UTC/EST/PST/JST!

•  None of the existing tools were mature enough at that time!
•  Started in 2009, Sqoop was not even around!
•  Hive was in version 0.3 (we went into production with 0.5)!

•  Helped scale out our metrics platform with just 2 people on the team!
•  We are at 5 now J!

Footer Goes Here! 22!

QUESTIONS ?!
WE ARE HIRING IN SILICON BEACH!

THANK YOU!

Footer Goes Here! 23!

