Building the Brickhouse

Enhancing Hive with our UDF
library

Data Pipeline in Hive

Advantages:
Able to prototype quickly
Extensible with UDFs

Disadvantages:
Still need to understand "under the hood".
Still "bleeding-edge"”
Enough rope to hang yourself

Solution: The Brickhouse

Generic UDF's to handle common situations
Design patterns and tools to deal

with "Big Data"
Approaches to improve performance/scalability
(Not just a bunch of functions)

Not necessarily only solution, but our solution.

Solution: The Brickhouse

Functionality centered along certain functional areas.
Cookbook of "recipes” to solve certain general problems.

collect
distributed cache
sketch_set

bloom

json

sanity

hbase

timeseries

Array/Map operations

collect

collect max
cast array

map key values
map filter keys
join_ array

map union
union max
truncate_ array

collect

select ks_uid, select ks_uid,

collect(dt), collect (actor id, score)

collect (score) from actor score table
from group by ks uid;

maxwell score
group by ks _uid;

collect

select a.id,
a.value as a val,
b.value as b val
from (select * from
mytable where type='A'
join
(select * from mytable
where type='B') b
on (a.id = b.id),

) a

select id,

col map['A'] as a val,

col map['B'] as b _val
from

(select id,

collect(type,value)
from mytable
group by id);

collect;max

select ks uid,
combined score,
from maxwell score
order by combined score
limit 20;

select collect max(
ks uid, combined score)
from
maxwell score
where dt=20121008;

union max

create table salty aggs as
select ks uid,random salt,
collect max(actor ks uid,
actor klout score)
as top score map
from (
select ks uid,
rand () *128 as random salt,
actor ks uid, actor klout score
from big table) bt
group by ks uid, random salt;

select ks uid,
union max (
top_ score map)
as top score_map
from salty aggs
group by ks _uid;

distributed map

select
ks uid
from big table bt
join
(select *
from celeb where
is _celeb = true)
celeb
on
bt.ks uid = celeb.
ks uid;

insert overwrite local
directory 'celeb map';

add file 'celeb map';

select * from celeb
where is celeb = true;
add file celeb map;

select * from big table

where
distributed map(ks uid,
'celeb map') is not
null;

multiday count

select count(¥*),
collect(actor ks uid)
from action table
where dt <= today
and dt > days add(
today, -7) union all
select count(¥*),
collect(actor ks uid)
from action table
where dt <= today
and dt > days add(
today, -14) union all...

select multiday count(
dt,cnt, actors, today,
array(1,3,7,30,60,90))
from action table
where dt <= today
and dt > today -90;

condi tional_emit

select ks uid,
'ALL' as feature_class

from user table select ks uid
union all conditional emit (
select ks uid, array (true,
'NY' as feature class city = 'NY',
from use:Ttable is _celeb(ks uid)),
where city = 'NY' array ('ALL','NY',6 'CELEB')
union all)
select ks _uid, 'CELEB' as feature class
from user table from user table;

where is celeb (ks uid)
union all

sketch_set

select
count (distinct ks _uid) as select estimated reach (
reach sketch set(ks _uid))
from from

actor action actor action
where where

some condition() = true; some condition() = true;

sketch_set

insert overwrite table
daily sketch partition
(dt=20130211)
select

sketch set(ks _uid) ss
from

mytable;

select estimated reach (
union sketch(ss))
from
daily sketch
where
dt >= days add(today(),
-30) ;

ske tch_set

Algorithm:
Take MD5 Hash of your string.
Collect 5000 lowest hashes.
If set size < 5000 that is your reach.
If set size = 5000 use highest hash value
to calculate reach
reach= 5000/(maxHash + MAX_LONG)
2"MAX_LONG;

sketch_set

-MAX_LONG 0 MAX_LONG

|
I I

sketch_set

-MAX_LONG 0 MAX_LONG

sketch_set

Why does it work ?7?7?
You need a very good hash.
MD5S will distribute hashes evenly.

5000th Hash

-MAX_LONG

|

MAX_LONG

As number of hashes grows

bigger, value of 5000th hash
grows smaller.

|

bloom

bloom

bloom contains
distributed bloom
bloom and

bloom or

bloom not

bloom

Currently uses HBase's bloomfilter implementation.
Uses a large BitSet to express set membership.
Can tell if set contains a key, but can't iterate over the keys

{x ¥ z}

[0]1JoJ1J1J1Jojofofofof1JoJ1JoJOo]1]O]

bloom

select

*
from

content items ci
left outer join
deleted content items
del
on

ci.content id = del.

content id
where del.content id is
null;

insert overwrite local

directory 'del items bloom'
select bloom(content id)
from deleted content item;

add file del items bloom;
select *
from content item
where ! bloom contains (
content id,

distributed bloom (
'del items bloom') ;

bloom

insert overwrite local
directory 'thirty day bloom'
select bloom and(bloom)
from agg bloom
where dt >= days add
(today(), -30);

select ks _uid
from actor_ action
where
bloom contains (
distributed bloom (
'thirty day bloom'));

add file thirty day bloom;

assert,write to graphite

select write to_graphite(grHost, grPort,
"prod.maxwell.count.tw" ,count(¥*)),
assert(count(*) > 1000, "Low moment count.")
from hb dash moment;

to json,from json

select
select to json(
concat ("{\"kscore\":", named struct ("kscore",
kscore, ",\"moving avg\":", kscore,
avg, "moving avg",avg,
",\"start _date\":",start, "start date",start,
",\"end date\":", end,"}") "end date", end))
from from mytable;

mytable;

to json,from json

create view parse json as
select
ks uid, from json(json,
named struct("kscore", 0.0,
"moving avg", array(0.0),
"start date", "",
"end_date " , mwwn
))

from moving avg view;

hbase batch put,hbase get

select ks uid salt,
hbase batch put(
'my hbase table’',
ks uid key , hb json , 500)
from hb salted view
distribute by ks uid salt;

Questions ???

Public Repo https://github.com/klout/brickhouse

Wiki/Documentation
https://github.com/klout/brickhouse/wiki

jerome@klout.com

