
Building the Brickhouse

Enhancing Hive with our UDF
library

Data Pipeline in Hive
Advantages:
 Able to prototype quickly
 Extensible with UDFs

Disadvantages:
 Still need to understand "under the hood".
 Still "bleeding-edge"
 Enough rope to hang yourself

Solution: The Brickhouse
Generic UDF's to handle common situations
Design patterns and tools to deal
 with "Big Data"
Approaches to improve performance/scalability
(Not just a bunch of functions)

Not necessarily only solution, but our solution.

Solution: The Brickhouse
Functionality centered along certain functional areas.
Cookbook of "recipes" to solve certain general problems.

● collect
● distributed_cache
● sketch_set
● bloom
● json
● sanity
● hbase
● timeseries

Array/Map operations
collect
collect_max
cast_array
map_key_values
map_filter_keys
join_array
map_union
union_max
truncate_array

collect
Similar to Ruby/Scala collect (and Hive collect_set())
UDAF aggregates multiple lines,
 Returns map/array of values
Use with explode

select ks_uid,
 collect(actor_id, score)
from actor_score_table
group by ks_uid;

select ks_uid,
collect(dt),
collect(score)
 from
maxwell_score
group by ks_uid;

collect
Opposite of UDTF
Avoids "self-join" Anti-pattern

select id,
 col_map['A'] as a_val,
 col_map['B'] as b_val
from
 (select id,
 collect(type,value)
 from mytable
 group by id);

select a.id,
 a.value as a_val,
 b.value as b_val
 from (select * from
mytable where type='A') a
join
(select * from mytable
where type='B') b
on (a.id = b.id);

collect_max

Similar to collect, but returns map with top 20 values.
Utilize Hive map-side aggregation to reduce sort size.

select collect_max(
ks_uid, combined_score)
from
 maxwell_score
 where dt=20121008;

select ks_uid,
 combined_score,
from maxwell_score
 order by combined_score
limit 20;

union_max
Salt your queries, and do in two steps,
if your job is too big.

create table salty_aggs as
select ks_uid,random_salt,
 collect_max(actor_ks_uid,
actor_klout_score)
 as top_score_map
from (
 select ks_uid,
 rand()*128 as random_salt,
 actor_ks_uid, actor_klout_score
 from big_table) bt
group by ks_uid, random_salt;

select ks_uid,
 union_max(
 top_score_map)
 as top_score_map
from salty_aggs
group by ks_uid;

distributed_map
Uses distributed-cache to access values in-memory.
Avoids join/resort of large datasets

select
 ks_uid
from big_table bt
join
 (select *
 from celeb where
 is_celeb = true)
celeb
on
bt.ks_uid = celeb.
ks_uid;

insert overwrite local
directory 'celeb_map';

add file 'celeb_map';

select * from celeb
 where is_celeb = true;
add file celeb_map;

select * from big_table
 where
distributed_map(ks_uid,
'celeb_map') is not
null;

multiday_count
Generates counts for 1, 3, 7, 21 days with one pass of the data.

select count(*),
 collect(actor_ks_uid)
 from action_table
 where dt <= today
 and dt > days_add(
today, -7) union all
select count(*),
 collect(actor_ks_uid)
 from action_table
 where dt <= today
 and dt > days_add(
today, -14) union all...

select multiday_count(
 dt,cnt, actors, today,
 array(1,3,7,30,60,90))
 from action_table
 where dt <= today
 and dt > today -90;

conditional_emit
Emit several different rows depending upon different conditions, in one pass

select ks_uid,
 'ALL' as feature_class
from user_table
union all
select ks_uid,
 'NY' as feature_class
from user_table
 where city = 'NY'
union all
select ks_uid, 'CELEB'
from user_table
 where is_celeb(ks_uid)
union all ...

select ks_uid
 conditional_emit(
 array(true,
 city = 'NY',
 is_celeb(ks_uid)),
 array('ALL','NY','CELEB')
)
 as feature_class
from user_table;

sketch_set
Estimate number of uniques for large sets with a fixed amount of space.
KMV Sketch implementation.
Good for titans (@onedirection, @youtube)
Avoids "count distinct"

select estimated_reach(
 sketch_set(ks_uid))
from
 actor_action
where
 some_condition() = true;

select
count(distinct ks_uid) as
reach
from
 actor_action
where
some_condition() = true;

sketch_set
Easy to do set unions.
Can aggregate incremental results.

select estimated_reach(
 union_sketch(ss))
from
 daily_sketch
where
 dt >= days_add(today(),
-30);

insert overwrite table
daily_sketch partition
(dt=20130211)
select
 sketch_set(ks_uid) ss
from
 mytable;

sketch_set

Algorithm:
 Take MD5 Hash of your string.
 Collect 5000 lowest hashes.
 If set size < 5000 that is your reach.
 If set size = 5000 use highest hash value
 to calculate reach
 reach= 5000/(maxHash + MAX_LONG)
 *2*MAX_LONG;

sketch_set
Why does it work ???
 You need a very good hash

-MAX_LONG 0 MAX_LONG

sketch_set
Why does it work ???
 You need a very good hash.
MD5 will distribute hashes evenly.

-MAX_LONG 0 MAX_LONG

sketch_set
Why does it work ???
 You need a very good hash.
MD5 will distribute hashes evenly.

-MAX_LONG 0 MAX_LONG
5000th Hash

As number of hashes grows
bigger, value of 5000th hash
grows smaller.

bloom

bloom
bloom_contains
distributed_bloom
bloom_and
bloom_or
bloom_not

bloom
Currently uses HBase's bloomfilter implementation.
Uses a large BitSet to express set membership.
Can tell if set contains a key, but can't iterate over the keys

bloom

insert overwrite local
directory 'del_items_bloom'
select bloom(content_id)
from deleted_content_item;

add file del_items_bloom;
select *
from content_item
where ! bloom_contains(
content_id,
 distributed_bloom(
'del_items_bloom');

Use similar to distributed_map.
Avoids a join and a re-sort.

select
 *
from
 content_items ci
left outer join
 deleted_content_items
del
on
 ci.content_id = del.
content_id
where del.content_id is
null;

bloom

insert overwrite local
directory 'thirty_day_bloom'
select bloom_and(bloom)
 from agg_bloom
 where dt >= days_add
(today(), -30);

add file thirty_day_bloom;

Can be merged easily for large sets.

select ks_uid
 from actor_action
 where
 bloom_contains(
 distributed_bloom(
 'thirty_day_bloom'));

assert,write_to_graphite

select write_to_graphite(grHost, grPort,
 "prod.maxwell.count.tw",count(*)),
 assert(count(*) > 1000, "Low moment count.")
from hb_dash_moment;

"Productionize" the pipeline.
Sanity checks for data quality.
Upload statistics to Graphite for visibility.

to_json,from_json

select
concat("{\"kscore\":",
kscore, ",\"moving_avg\":",
avg,
 ",\"start_date\":",start,
 ",\"end_date\":", end,"}")
from
 mytable;

Serialize to JSON
Avoid ugly, error-prone string concat's

select
 to_json(
 named_struct("kscore",
 kscore,
 "moving_avg",avg,
 "start_date",start,
 "end_date", end))
from mytable;

to_json,from_json
Serialize from JSON
Pass in a struct of the type to be returned

create view parse_json as
select
 ks_uid, from_json(json,
 named_struct("kscore", 0.0,
 "moving_avg", array(0.0),
 "start_date", "",
 "end_date", ""
))
from moving_avg_view;

hbase_batch_put,hbase_get
Alternative to HBase Handler
Distribute keys across HBase regions to balance load.
Uses Batch Puts

select ks_uid_salt,
 hbase_batch_put(
 'my_hbase_table',
 ks_uid_key , hb_json , 500)
 from hb_salted_view
 distribute by ks_uid_salt;

Questions ???

Public Repo https://github.com/klout/brickhouse
Wiki/Documentation
https://github.com/klout/brickhouse/wiki

jerome@klout.com

