
WebAssembly Plugin
for Apache Traffic
Server
Shu Kit Chan
Yahoo
10/10/2023

Kit Chan
(kichan@apache.org / kichan@yahooinc.com)
● 18 years in Yahoo
● Software Architect in Media Infrastructure Team
● Volunteer in OSPO

● Apache Traffic Server PMC/Committer
● Wasm, Lua, ESI plugins

● WebAssembly + ATS == Framework to build
functionality on your edge!

Who? What?

mailto:kichan@apache.org
mailto:kichan@yahooinc.com

Apache Traffic
Server

ATS & Yahoo!

Finance
Sports

Homepage

ATS

User

Yahoo Data Center / Cloud

Mail
Routing

Redirect

Bucketing

Caching

DDOS protection

Privacy Control

Cookie Management

Extending ATS / Building Features

● C++ plugins
○ Allow extension of HTTP/TLS handling for connections with clients and origins
○ Steep Learning curve

● Domain Specific Languages plugin (header_rewrite / txn_box / etc)
○ Invented language, Not turing complete, no unit test framework
○ Hard to expand

● Lua plugin
○ Easier to learn a scripting language
○ LuaJIT FFI allows expansion with shared libraries
○ Popularity?

Proxy-Wasm &
Wasm Plugin

● WebAssembly for Proxies
● Specification

○ Like a “WASI for Proxy”
● Library

○ Implement the spec and provide integration with proxy
○ Integrate with different runtime - WAMR, Wasmtime, WasmEdge, V8
○ Existing Implementations - Envoy, MOSN, Nginx, ATS

● SDK
○ Help to compile programs to wasm modules following the spec
○ Official - C++, Rust
○ Third party - AssemblyScript, TinyGo, Zig

Proxy-Wasm

● Community with tie to “wasi-http”
● Partial WASI support is part of the Spec

○ Environ_get / environ_sizes_get
○ random_get
○ clock_time_get
○ fd_write (for stderr, stdout)

More for proxy-wasm

● With handler functions for proxy to call (1)
● Calling API functions that the proxy provides (2)

ATS Plugin Architecture

Plugin

Wasm
module

Wasm runtime

OriginClient

(1)(2)

ATS

proxy-wasm

impl HttpContext for HttpHeaders {

 fn on_http_request_headers(&mut self, _: usize, _: bool) -> Action {

 for (name, value) in &self.get_http_request_headers() {

 let s3 = format!("In WASM: #{} -> {}: {}",self.context_id, name,
value);

 trace!("{}", s3);

 }

 if let Some(ua) = self.get_http_request_header("User-Agent") {

 if ua != "" {

 trace!("UA is {}", ua);

 }

 }

Example in Rust (Snippet)
 match self.get_http_request_header("token") {

 Some(token) if token.parse::<u64>().is_ok() && is_prime(token.parse().unwrap()) => {

 trace!("It is prime!!!");

 Action::Continue

 }

 _ => {

 trace!("It is not prime!!! That's true.");

 self.send_http_response(

 403,

 vec![("Powered-By", "proxy-wasm")],

 Some(b"Access forbidden.\n"),

);

 Action::Pause

 }

 }

 }

}

● Coraza
○ Open Source WAF library in Go
○ Compatible with ModSecurity Ruleset

● Coraza Proxy-wasm module
○ WASM module to be used with Envoy
○ Compiled with TinyGo SDK

● It works with ATS with the Wasm Plugin!

Real World Example - WAF

● WASI-nn - proposed WASI API for machine learning
● Proxy can do AI Inference with deployed model
● Need to be supported by underlying WASM runtime
● Example coming soon!

Real World Example - AI Inference with WASI-nn

● Support many programming languages
● Standard/specification promote interoperability
● Safety with Sandboxed approach
● Promising future

Benefits

● No ATS support in proxy-wasm spec for
○ Getting and setting trailer request and response header
○ Getting and setting data in HTTP/2 meta data frame
○ Support on GRPC lifecycle handler functions

● No support for ATS Specific features
○ E.g. caching API
○ Can be implemented outside of spec
○ But it will break interoperability

● Production Readiness / Performance Improvement
○ Choice of Runtime

Limitations

● Experiments done between Lua script, DSL script and Wasm module
● Lua script / DSL script < Wasm module -> LuaJIT is AWESOME!!!
● Resource Contention inside Wasm plugin -

Performance Testing

Thread
Thread

Thread
Thread

Wasm Root
Context

TxnC
TxnC

TxnC
TxnC

Txn
Txn

C
C

C

Thread
Thread

Thread
Thread

Lua State TxnL
TxnL

TxnL
TxnC

Txn
Txn

L
L

L

Lua State
Lua State
Lua State

● Language Choice
● AOT - ahead of time compilation
● Compiler Flags
● wasm-opt
● Choice of Runtime?

Other Tips / Techniques for Wasm Optimization

Wasm Runtimes

● The field evolves rapidly
● Each with different characteristics
● Change of runtime only possible for simple program
● Major investment involved when tools are used (e.g. profiling / debugging)

○ WAMR/Wasmtime - live debug support through lldb
○ Wasmtime - profiling with perf

● Different WASM proposals supported by different runtime
● Performance
● Trust in Security

○ Choice of implementation language
○ Maturity of processes handling CVE

Big Decision to Choose

WAMR
● Bytecode Alliance project
● Written in C
● Interpreter or JIT / LLVM JIT
● Configurable options at compile time
● Low memory footprint

Wasmtime
● Bytecode Alliance project
● Written in Rust
● Based on Cranelift
● High memory footprint

Runtime

WasmEdge
● Written in C++
● LLVM JIT
● High memory footprint
● Lots of focus on AI Inference use cases

V8
● Not yet supported in ATS Wasm plugin
● Written in C++
● Many dependencies / Complicated to get it to work

Runtime

● Preliminary testing shows WAMR is the fastest
● Inconclusive

○ each runtime has many configuration options
○ Default may not be suitable for proxy-wasm
○ More tests needed

Notes on Performance

Summary

● Available now / Another option for extending ATS
● Language supported - C++, Rust, TinyGo, AssemblyScript, Zig
● Runtime supported - WAMR, wasmtime, WasmEdge

ATS Wasm Plugin

● Performance Testing/Improvement
○ Resource contention
○ Test runtimes with different configuration options

● Tooling support
○ Profiling with perf
○ Debugging with lldb

● Use Cases
○ AI Inference with WASI-nn

● Runtime Support
○ V8

● Future
○ Component Model

To Do

● ATS Plugin development - https://docs.trafficserver.apache.org/en/latest/developer-guide/plugins/index.en.html
● ATS header_rewrite plugin - https://docs.trafficserver.apache.org/en/latest/admin-guide/plugins/header_rewrite.en.html
● ATS Lua plugin - https://docs.trafficserver.apache.org/en/latest/admin-guide/plugins/lua.en.html
● ATS Wasm plugin - https://docs.trafficserver.apache.org/en/latest/admin-guide/plugins/wasm.en.html
● Proxy-wasm - https://github.com/proxy-wasm
● Proxy-wasm spec - https://github.com/proxy-wasm/spec
● Proxy-wasm Library - https://github.com/proxy-wasm/proxy-wasm-cpp-host
● Proxy-wasm C++ SDK - https://github.com/proxy-wasm/proxy-wasm-cpp-sdk
● Proxy-wasm Rust SDK - https://github.com/proxy-wasm/proxy-wasm-rust-sdk
● Rust example - https://github.com/apache/trafficserver/tree/master/plugins/experimental/wasm/examples/rust
● Coraza - https://github.com/corazawaf/coraza
● Coraza Proxy-wasm - https://github.com/corazawaf/coraza-proxy-wasm
● Coraza Proxy-wasm in ATS - https://github.com/apache/trafficserver/tree/master/plugins/experimental/wasm/examples/tinygo
● Wasi-nn - https://github.com/WebAssembly/wasi-nn
● WAMR - https://github.com/bytecodealliance/wasm-micro-runtime
● Wasmtime - https://github.com/bytecodealliance/wasmtime
● WasmEdge - https://github.com/WasmEdge/WasmEdge

Reference

https://docs.trafficserver.apache.org/en/latest/developer-guide/plugins/index.en.html
https://docs.trafficserver.apache.org/en/latest/admin-guide/plugins/header_rewrite.en.html
https://docs.trafficserver.apache.org/en/latest/admin-guide/plugins/lua.en.html
https://docs.trafficserver.apache.org/en/latest/admin-guide/plugins/wasm.en.html
https://github.com/proxy-wasm
https://github.com/proxy-wasm/spec
https://github.com/proxy-wasm/proxy-wasm-cpp-host
https://github.com/proxy-wasm/proxy-wasm-cpp-sdk
https://github.com/proxy-wasm/proxy-wasm-rust-sdk
https://github.com/apache/trafficserver/tree/master/plugins/experimental/wasm/examples/rust
https://github.com/corazawaf/coraza
https://github.com/corazawaf/coraza-proxy-wasm
https://github.com/apache/trafficserver/tree/master/plugins/experimental/wasm/examples/tinygo
https://github.com/WebAssembly/wasi-nn
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasmtime
https://github.com/WasmEdge/WasmEdge

Thank you!

QR Codes

Presentation linkLinkedin Profile

