
Traffic Edge Software Developer’s Kit
Programmer’s Guide

Release 1.5

June 2002

 2002 Inktomi Corporation. All rights reserved.

Inktomi, Traffic Server, Traffic Edge, Traffic Edge Media Edition, Media-IXT, Traffic
Edge Security Edition, and the tri-colored cube design are trademarks or registered
trademarks of Inktomi Corporation in the United States and other countries.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States and in other countries.

Apple, Macintosh, and QuickTime are trademarks or registered trademarks of
Apple Computer, Inc. in the United States and in other countries.

Java, Solaris, Sun, Sun Microsystems, and Ultra are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and in other countries.
SPARC is a trademark or registered trademark of SPARC International, Inc. in the
United States and in other countries.

Linux is a trademark of Linus Torvalds in the United States and in other countries.

Microsoft, Windows, Windows NT, and Windows Media are trademarks or
registered trademarks of Microsoft Corporation in the United States and in other
countries.

Netscape and Netscape Navigator are registered trademarks of Netscape
Communications Corporation in the United States and in other countries.

Pentium is a registered trademark of Intel Corporation in the United States and in
other countries.

RealNetworks, RealPlayer, and RealServer are trademarks or registered trademarks
of RealNetworks, Inc. in the United States and in other countries.

Red Hat is a registered trademark of Red Hat, Inc. in the United States and in other
countries.

UNIX is a registered trademark in the United States and in other countries,
exclusively licensed through X/Open Company, Ltd.

Other product and brand names are trademarks of their respective owners.
Content Networking Solutions Group
4100 East Third Avenue
Foster City, CA 94404

Fax: (650) 653-2801
Web: http://www.inktomi.com

Phone: (650) 653-2800

Contents
Preface.. 9

Who should read this book ... 9

How to use this book ... 9

Conventions used in this manual .. 11

Chapter 1 Getting Started .. 13

Understanding Traffic Edge plugins ... 13
The role of plugins...13
Possible uses for plugins ..14
Plugin loading..16
Plugin configuration ...16
Configuration file rules...17
Plugin initialization ...17

A simple plugin .. 17
hello world source ...18
Compiling your plugin ...18
Updating the plugin.config file ...19
Specifying the plugin’s location ..19
Restarting Traffic Edge..20

Plugin Registration and Version Checking... 20

Naming conventions.. 21

Chapter 2 Creating Traffic Edge Plugins.. 23

The Asynchronous Event Model.. 23

Traffic Edge HTTP State Machine .. 25

Roadmap for creating plugins .. 28

Chapter 3 Header-Based Plugin Examples .. 31

Overview ... 31

The Blacklist plugin.. 31
Creating the parent continuation ..32
Setting a Global Hook ...33
Setting Up UI Update Callbacks..33
Accessing the Transaction Being Processed...33
Setting up a transaction hook ..34
Working with HTTP header functions ...35

The Basic Authorization Plugin ... 36
Creating the plugin’s parent continuation and global hook36

Implementing the handler and getting a handle to the transaction 36
Working with HTTP headers... 37
Setting a transaction hook.. 39

Chapter 4 HTTP Transformation Plugins ... 41

Writing content transform plugins.. 41
Transformations... 42
VIOs .. 42
IO buffers.. 43

The sample null transform plugin... 43

The append-transform plugin.. 47

The sample buffered null transform plugin... 49

Chapter 5 New Protocol Plugins ... 55

About the sample protocol ... 55
Protocol plugin structure ... 58
Continuations in the Protocol plugin... 58
Event flow .. 59
One way to implement a transaction state machine 60
Processing a typical transaction.. 61

Chapter 6 HTTP Hooks and Transactions .. 65

The set of hooks.. 65

Adding hooks ... 67

HTTP sessions .. 68

HTTP transactions ... 69

Intercepting HTTP Transactions .. 73

Initiate HTTP Connection... 73

HTTP alternate selection... 73

Chapter 7 Miscellaneous Interface Guide .. 79

Debugging functions ... 79

The INKfopen family .. 79

Memory allocation... 80

Thread functions .. 80

Chapter 8 HTTP Headers.. 83

About HTTP headers... 83

Guide to Traffic Edge HTTP header system .. 87
No null-terminated strings .. 87
Duplicate MIME fields are not coalesced .. 87
MIME fields always belong to an associated MIME header 88
Release marshal buffer handles .. 88
Deprecated functions.. 89
4 Contents

Marshal buffers .. 91

HTTP headers... 91

URLs .. 94

MIME headers .. 95

Chapter 9 Mutex Guide... 101

Mutexes ... 101
Locking global data... 101
Protecting a continuation’s data ... 102
How to associate a continuation to every HTTP transaction 102
How to add the new continuation.. 102
How to store data specific to each HTTP transaction.............................. 104
Using locks ... 106
Special case: continuations created for HTTP transactions 107

Chapter 10 Continuations .. 109

Mutexes and data... 109

How to activate continuations .. 110

Writing handler functions.. 111

Chapter 11 Plugin Configurations... 115

Plugin configurations... 115

Chapter 12 Actions Guide.. 117

Actions.. 117

Hosts Lookup API ... 120

Chapter 13 IO Guide ... 121

Vconnections .. 121
The vconnection user’s view... 121

Net VConnections.. 124

Transformations ... 124
The vconnection implementor’s view ... 124
Transformation VConnection .. 125

VIOs ... 127

IO buffers .. 128

Guide to the cache API.. 128
How to do a cache read.. 129
How to do a cache write .. 129
How to do a cache remove .. 129
Errors... 129
Example .. 129
5 Contents

Chapter 14 Plugin Management .. 131

Setting up a plugin management interface .. 131

Reading Traffic Edge settings and statistics... 132

Accessing installed plugin files ... 132

Licensing your plugin ... 133
Format of plugin.db.. 133
Setting up licensing... 134
Example .. 134

Generating a license key ... 134

Guide to the logging API.. 135

Chapter 15 Adding Statistics... 137

Uncoupled statistics .. 137

Coupled statistics... 137

Viewing statistics using Traffic Line.. 139

Chapter 16 Function Reference... 141

List of function groups.. 141

Initialization functions .. 142

Debugging functions ... 143

The INKfopen family .. 145

Memory allocation... 148

Thread functions .. 150

HTTP functions .. 151
Hook functions .. 151
Session functions ... 152
HTTP transaction functions... 154

Initiate Connection .. 162

Intercepting HTTP transaction functions ... 163
Alternate selection functions ... 165
Handle release functions.. 167
Marshal buffers.. 167
HTTP header functions .. 168
URL functions.. 178
MIME headers ... 187

Mutex functions ... 203

Continuation functions ... 205

Plugin configuration functions .. 207

Action functions... 209

Host Lookup Functions... 210
6 Contents

Vconnection functions ... 211

Netvconnection functions ... 214

Cache interface functions .. 215

Transformation functions .. 220

VIO functions .. 221

IO buffer interface .. 225

Management interface function ... 233

Traffic Edge Configuration Read Functions ... 233

Customer installation and licensing functions... 235

Statistics functions.. 236
Uncoupled statistics ..236
Coupled statistics...238

Logging functions... 240

Appendix A Sample Source Code .. 245

blacklist-1.c .. 245

Appendix B Deprecated Functions .. 253

Deprecated MIME header functions.. 253

Other Deprecated Functions ... 267
Statistic Functions..267
IO Buffer Interface ...267
Mutex function...268

Appendix C Troubleshooting Tips ... 271

Unable to Compile Plugins ... 271

Unable to Load Plugins ... 272

Using Debug Tags... 272
Other useful internal debug tags...273

Using a Debugger... 273
Debugging Tips:...273

Debugging Memory Leaks.. 273

Concept Index.. 275

Constant Index .. 277

Function Index... 281

Type Index ... 287
Contents 7

8 Contents

Preface
This manual is a reference for creating plugins, programs that add services such as
filtering or content transformation, or entire features such as new protocol support, to
Inktomi Traffic Edge. You create plugins using the Traffic Edge Software Development Kit
(SDK) which consists of:

■ This manual, the Traffic Edge SDK Programmer’s Guide

■ InkAPI.h, the header file containing the Traffic Edge API

■ Sample Traffic Edge plugin code

■ SDKtest, a tool for testing plugins; SDKtest includes synthetic clients and servers

■ Header files containing the SDKtest APIs (client and server APIs)

■ Sample Traffic Edge SDKtest_client and SDKtest_server plugins

■ The Traffic Edge SDKtest User’s Guide, the guide to using SDKtest and writing SDKtest
plugins

This preface contains the following information:

■ Who should read this book‚ on page 9 tells you what background you need in order to
understand the material in this manual

■ How to use this book‚ on page 9 outline the strucure of this manual and gives guidelines
on how to use it for various purposes (basic learning about plugins, how to write
specific kinds of plugins, how to find reference information)

■ Conventions used in this manual‚ on page 11 lists the typographic conventions used in
this manual

Who should read this book
This manual is intended for programmers who want to write plugin programs that add
services to Traffic Edge.

This manual assumes a cursory knowledge of the C programming language, the Hyper-
Text Transfer Protocol (HTTP), and Multipurpose Internet Mail Extensions (MIME).

How to use this book
This book has four parts:

■ Introduction and overview

■ Tutorials on writing specific kinds of plugins: HTTP header-based plugins, content
transformation plugins, and protocol plugins

■ Guides on specific interfaces

■ Reference chapter and appendixes

If you are new to writing Traffic Edge plugins, read the first two chapters, Getting Started
and Creating Traffic Edge Plugins, and use the remaining chapters as needed. The third
chapter, Header-Based Plugin Examples, for details about plugins that work on HTTP
headers. Read the fourth chapter, HTTP Transformation Plugins, if you want to write a
plugin that transforms or scans the body of an HTTP response. Read “New Protocol
Plugins” on page 55 if you want to support your own protocol on Traffic Edge.

Look up information in the following indexes:

■ “Concept Index” on page 275, listing information by subject

■ “Function Index” on page 281, listing all Traffic Edge API calls

■ “Constant Index” on page 277

■ “Type Index” on page 287

In the PDF and HTML formats of this book, cross references are active links. Click on links
to access the cross reference.

Following is a chapter-by-chapter breakdown of chapter contents:

■ “Getting Started” on page 13

How to compile and load plugins. Walks through a simple hello world example.
Explains how to initialize and register plugins.

■ “Creating Traffic Edge Plugins” on page 23

Basic structures that all plugins use. Events, continuations, and how to hook on to
Traffic Edge processes. Detailed explication of the sample blacklisting plugin.

■ “Header-Based Plugin Examples” on page 31

Detailed explication of writing plugins that work on HTTP headers. Discusses the
sample blacklisting and basic authorization plugins.

■ “HTTP Transformation Plugins” on page 41

Detailed explication of the null-transform example. Discusses vconnections, VIOs,
and IO buffers.

■ “New Protocol Plugins” on page 55

Detailed explanation of sample protocol plugin that supports a synthetic protocol.
Discusses vconnections, mutexes, and the new net connection, DNS lookup, logging,
and cache APIs.

The remaining chapters are the API function reference, organized according to function
type.

■ “Miscellaneous Interface Guide” on page 79

Functions include error writing and tracing functions, thread functions, and Traffic
Edge API versions of the malloc and fopen families. The Traffic Edge API versions
overcome various C library limitations (such as portability to all Traffic Edge-
supported platforms).
10

■ “HTTP Hooks and Transactions” on page 65

Use the functions in this chapter to hook your plugin to Traffic Edge HTTP processes.

■ “HTTP Headers” on page 83

These functions examine and modify HTTP headers, MIME headers, URLs, and the
marshal buffers that contain header information. This chapter contains instructions
for implementing performance enhancements for all plugins that manipulate HTTP
headers. Be sure to read this chapter if you are working with headers.

■ “Mutex Guide” on page 101

■ “Continuations” on page 109

Continuations provide the basic call back mechanism and data abstractions used in
Traffic Edge.

■ “Plugin Configurations” on page 115

■ “Actions Guide” on page 117

How to use INKActions and the INKDNSLookup API.

■ “IO Guide” on page 121

How to use the Traffic Edge IO interfaces: INKVConnection, INKVIO, INKIOBuffer,
INKNetVConnection, the Cache API.

■ “Plugin Management” on page 131

These functions allow you to set up a configuration interface for plugins, access
installed plugin files, and set up plugin licensing.

■ “Adding Statistics” on page 137

Use these functions to add statistics to your plugin.

■ “Function Reference” on page 141

A listing of all of the functions in the Traffic Edge API, grouped according to their
functionality.

The following two appendixes are provided for reference:

■ “Sample Source Code” on page 245

■ “Deprecated Functions” on page 253

Conventions used in this manual
This manual uses the following typographic conventions:

Convention Purpose

italics Italics introduce terms.

monospaced
face

Represents C language statements, commands, file content and computer
output.

monospaced
bold

Represents commands that you should enter literally, as in the example, type
simplequery.
Preface 11

monospaced
italic

Represents variables for which you should substitute a value, as in the
example,

“enter a filename.”

ellipsis ... Indicates the omission of inconsequential information.

Convention Purpose
12

CHAPTER 1 Getting Started
The Inktomi Traffic Edge API lets you create plugins, using the C programming language,
that customize the behavior of your Traffic Edge. This chapter contains the following
sections:

■ “Understanding Traffic Edge plugins” on page 13

This section is a brief introduction to plugins. For more details, see “Creating Traffic
Edge Plugins” on page 23.

■ “A simple plugin” on page 17

This section walks through compiling and loading a hello world plugin.

■ “Plugin Registration and Version Checking” on page 20

You need to make sure that the Traffic Edge version you are running supports the
SDK version for your plugin. This section shows you how to register your plugin’s
SDK version and have it check the Traffic Edge version.

■ “Naming conventions” on page 21

For guidelines on creating plugin source code, see “Creating Traffic Edge Plugins” on page
23.

Understanding Traffic Edge plugins
Traffic Edge provides sophisticated caching and processing of web-related traffic, such as
DNS and HTTP requests and responses.

Traffic Edge itself consists of an event-driven loop that might be simplified as follows:

for (;;) {
 event = get_next_event();
 handle_event (event);
 }

The role of plugins

You compile your plugin source code to create a shared library that Traffic Edge loads
when it is started. Your plugin contains callback functions that are registered for particular
Traffic Edge events.

When Traffic Edge needs to process an event, it invokes any and all call-back functions
you have registered for that event type.

CAUTION Since plugins add object code to Traffic Edge, programming errors in a plugin can have
serious implications. Bugs in your plugin, such as an out-of-range pointer, might cause
Traffic Edge processes to crash or result in undefined and unpredictable behavior.

Possible uses for plugins

Traffic Edge is a high-performance proxy cache. Plugins are applications built on top of
Traffic Edge that extend Traffic Edge’s capabilities in:

■ HTTP processing (plugins can filter, blacklist, authorize users, transform content)

■ Protocol support (plugins can enable Traffic Edge to proxy-cache new protocol
content)

Some examples of plugins include:

■ A blacklisting plugin, that denies attempts to access web sites that are off-limits.

■ An append transform plugin, that adds text to HTTP response content.

■ An image conversion plugin, that transforms JPEG images to GIF images.

■ A compression plugin, that sends response content to a compression server that
compresses the data (alternatively the compression could be done by a compression
library local to the Traffic Edge host machine).

■ An authorization plugin, that checks user’s permissions to access particular web sites.
The plugin could consult a local authorization program or send queries to an
authorization server.

■ A plugin that gathers client information from request headers and enters this
information in a database.

Compile
r and
Linker

Plugin
shared
library

Traffic

Server

plugin.conf

Plugin
source
code
14

■ A protocol plugin, that listens for specific protocol requests on a designated port, and
uses Traffic Edge’s proxy server and cache to serve client requests.

The following figure illustrates various types of plugins:

Figure 1 Possible Traffic Edge plugins

You can find basic examples of several of these plugins in the sample code provided with
the SDK:

■ append-transform.c adds text from a specified file to HTTP/text responses. This
plugin is explained in detail in “The append-transform plugin” on page 47.

request
processing

response
generating

Traffic Server

client

compression
server

authorization
server

client
information
database
server

append
transform
plugin

blacklist
plugin

authorization
plugin

gather
client
info
plugin

compression
plugin

content
based
filtering
plugin

Internet

Traffic Server host machine
Getting Started 15

■ The compression plugin in the figure communicates with a server that actually does
the compression. The server-transform.c plugin shows how to open a connection
to a transformation server, have the server do the transformation, and send
transformed data back to the client. In server-transform.c, the transformation is
null, but a compression or image translation plugin could be implemented in a similar
way.

■ basic-auth.c performs basic HTTP proxy authorization.

■ blacklist-1.c reads blacklisted servers from a configuration file and denies client
access to these servers. The plugin has a configuration interface where the Traffic
Edge administrator can modify the list of blacklisted servers through the Traffic
Manager GUI. This plugin is explained in detail in “The Blacklist plugin” on page 31.

Plugin loading

When Traffic Edge is first started, it consults the plugin.config file to determine the
names of all the plugin shared libraries that need to be loaded. The plugin.config file
also defines any arguments that are to be passed to each plugin’s initialization function,
INKPluginInit. The records.config file is used to define the path to each plugin shared
library, described in “Specifying the plugin’s location” on page 19.

 Note The path for each of these files is <root_dir>/config/, where <root_dir> is the location
where you installed Traffic Edge.

Plugin configuration

This sample plugin.config file contains a comment line, a blank line, and two plugin
configurations:

This is a comment line.

my-plugin.so www.junk.com www.trash.com www.garbage.com
some-plugin.so arg1 arg2 $proxy.config.http.cache.on

Each plugin configuration in the plugin.config file resembles a UNIX or DOS shell
command.

 limit on
plugin.config
entry lengths

Each line in plugin.config cannot exceed 1023 characters.

The first plugin configuration is for a plugin named my-plugin.so and contains three
arguments that are to be passed to that plugin’s initialization routine.

The second configuration is for a plugin named some-plugin.so and contains three
arguments. The last argument, $proxy.config.http.cache.on, is actually a
configuration variable. Traffic Edge will look up the specified configuration variable and
substitute its value.

On the Windows NT version of Traffic Edge, the plugin shared library file is a .dll file.
An example line in plugin.config would be the following:

nt_plugin.dll
16

 multiple
entries for
the same

plugin

Plugins with global variables should not appear more than once in plugin.config. For
example, if you enter:
add-header.so header1
add-header.so header2

The second global variable, header2, would be used for both instances. A simple
workaround is to give different instances of the same plugin different names, for example:
cp add-header.so add-header1.so

cp add-header.so add-header2.so

The following entries would have the desired result:
add-header1.so header1
add-header2.so header2

Configuration file rules

■ Comment lines begin with a # and continue to the end of the line.

■ Blank lines are ignored.

■ Plugins are loaded and initialized by Traffic Edge in the order in which they appear in
the plugin.config file.

Plugin initialization

Each plugin must define an initialization function named INKPluginInit that Traffic
Edge invokes at the time the plugin is loaded. The INKPluginInit function is commonly
used to read configuration information and register hooks for event notification.

The INKPluginInit function has two arguments:

■ the argc argument represents the number of arguments defined in the
plugin.config file for that particular plugin

■ The argv argument is an array of pointers to the actual arguments defined in the
plugin.config file for that plugin

See “INKPluginInit” on page 142 for details about INKPluginInit.

A simple plugin
This section describes how you can write, compile, configure, and run a simple Traffic
Edge plugin. Here are the steps you’ll follow:
Getting Started 17

1 Make sure that your plugin source code contains an INKPluginInit initialization
function.

1 Compile your plugin source code, creating a shared library.

2 Add an entry to the plugin.config file for your plugin.

3 Add the path to your plugin shared library to the records.config file.

4 Restart Traffic Edge.

hello world source

Shown below is the classic hello-world program implemented as a plugin using the Traffic
Edge API.

#include <stdio.h>
#include "InkAPI.h"

void
INKPluginInit (int argc, const char *argv[])
{

INKDebug ("debug-hello", "Hello World!\n");
}

In our simple hello-world example, INKPluginInit is the only function defined. This
plugin does not use the argc or argv arguments. You can see more complex examples of
INKPluginInit in the sample code provided with the SDK.

You need to make sure that the functions in your plugin are supported in your version of
Traffic Edge. See “Modified hello-world that checks Traffic Edge version” on page 20.

Compiling your plugin

The process you use to compile a shared library will vary from platform to platform, so
the Traffic Edge API includes makefile templates you can use to create shared libraries on
all the supported Traffic Edge platforms.

 Unix
example

Assuming the sample program is stored in the file hello-world.c, you could use the
following commands to building a shared library on Solaris using the GNU C compiler.

gcc -g -Wall -fPIC -o hello-world.o -c hello-world.c
gcc -g -Wall -shared -o hello-world.so hello-world.o

The first command compiles hello-world.c as Position Independent Code (PIC) and the
second command links the single hello-world.o object file into the hello-world.so
shared library.

 Caution Make sure that your plugin is not statically linked with system libraries.

 HPUX
example

Assuming the sample program is stored in the file hello_world.c, you could use the
following commands to build a shared library on HPUX:

cc +z -o hello_world.o -c hello_world.c
ld -b -o hello_world.so hello_world.o
18

 Compiling
for Windows

NT

Your PC must have the following software installed:

■ Windows NT 4.0 SP4

■ Microsoft Developer Studio 6.0

▼ To compile a plugin for the Windows NT version of Traffic Edge

1 Open PlugIn.dsw with Microsoft Visual C++ (MSVC++). The dsw file should be
included in the SDK CD. Inside VC++, the sample plugins are listed as separate
projects.

2 For each of the projects that need to be built, you need to tell VC++ where it can find
the Traffic Edge library: traffic_server.lib. This library is in your NT Traffic Edge
distribution.

You might need to update the library lookup path. Use the following procedure:

▼ To update the library lookup path

1 Right-mouse-click on a project.

2 Select the Settings... option.

3 Click the Link tab on the dialog box.

4 Select Input in the combo-box.

5 Enter the library path in the Additional library path: text field

Now you can build your plugin.

Updating the plugin.config file

Your next step is to tell Traffic Edge about the plugin by adding the following line to the
plugin.config file. Since our simple plugin does not require any arguments, the
following plugin.config will do nicely.

a simple plugin.config for hello-world
hello-world.so

 multiple
plugins

Traffic Edge can accommodate multiple plugins. If several plugin functions are triggered
by the same event, Traffic Edge will invoke each plugin’s function in the order in which
they were defined in the plugin.config file.

Specifying the plugin’s location

All plugins must be located in the directory specified by the configuration variable
proxy.config.plugin.plugin_dir, which is located in the records.config file. The
directory can be specified as either an absolute or relative path.

If a relative path is used, the starting directory will be the Traffic Edge installation directory
as specified in /etc/traffic_server. The default value is config/plugins, which tells
Traffic Edge to use the directory plugins located in the same configuration directory as
records.config. It is common to use the default directory.

Be sure to place your shared library hello-world.so inside the directory you have
configured.
Getting Started 19

Restarting Traffic Edge

The last step is to start, or restart, Traffic Edge. Shown below is the output you would see
after creating and loading your hello-world plugin.

grep proxy.config.plugin.plugin_dir config/records.config
CONFIG proxy.config.plugin.plugin_dir STRING config/plugins
ls config/plugins
hello-world.so*
bin/traffic_server
[Mar 27 19:06:31.669] NOTE: updated diags config
[Mar 27 19:06:31.680] NOTE: loading plugin 'config/plugins/hello-world.so'
hello world
[Mar 27 19:06:32.046] NOTE: cache disabled (initializing)
[Mar 27 19:06:32.053] NOTE: cache enabled
[Mar 27 19:06:32.526] NOTE: Traffic Edge running

Note that in this example, the Traffic Edge notes are directed to the console by specifying E
for proxy.config.diags.output.note in records.config. The second note shows the
Traffic Edge attempting to load our hello-world plugin. The third line of Traffic Edge
output is from your plugin.

Plugin Registration and Version Checking
You need to make sure that the functions in your plugin are supported in your version of
Traffic Edge.

IMPORTANT Previous versions of Traffic Edge are named Traffic Server. Throughout this manual,
Traffic Server, Traffic Server 3.0, Traffic Server 3.5, and Traffic Server 5.2 refer to previous
versions of Traffic Edge. For version checking, Traffic Edge 1.5 is equivalent to Traffic
Server 5.5.

Use the following interfaces:

■ INKPluginRegister‚ on page 142

■ INKTrafficServerVersionGet‚ on page 143

 Modified
hello-world
that checks
Traffic Edge

version

The following version of hello-world registers the plugin and makes sure it is running
with a compatible version of Traffic Edge.

#include <stdio.h>
#include "InkAPI.h"

int
check_ts_version() {

 const char* ts_version = INKTrafficServerVersionGet();
 int result = 0;

 if (ts_version) {
 int major_ts_version = 0;
 int minor_ts_version = 0;
 int patch_ts_version = 0;

 if (sscanf(ts_version, "%d.%d.%d", &major_ts_version,
 &minor_ts_version, &patch_ts_version) != 3) {
20

 return 0;
 }

 /* Since this is an TS-SDK 2.0 plugin, we need at
 least Traffic Server 3.5.2 to run */

 if (major_ts_version > 3) {
 result = 1;

 } else if (major_ts_version == 3) {
 if (minor_ts_version > 5) {
 result = 1;
 } else if (minor_ts_version == 5) {
 if (patch_ts_version >= 2) {

 result = 1;
 }
 }

 }
 }

 return result;
}

void
INKPluginInit (int argc, const char *argv[])
{
 INKPluginRegistrationInfo info;

 info.plugin_name = "hello-world";
 info.vendor_name = "MyCompany";
 info.support_email = "ts-api-support@MyCompany.com";

 if (!INKPluginRegister (INK_SDK_VERSION_2_0 , &info)) {
 INKError ("Plugin registration failed. \n");
 }

 if (!check_ts_version()) {
INKError ("Plugin requires Traffic Server 3.5.2 or later\n");
return;

 }

 INKDebug ("debug-hello", "Hello World!\n");
}

Naming conventions
The Traffic Edge API adheres to the following naming conventions:

■ The INK prefix is used for all function and variable names defined in the Traffic Edge
API. For example: INK_EVENT_NONE,INKMutex and INKContCreate.

■ Enumerated values always appear in all uppercase letters. Examples:
INK_EVENT_NONE and INK_VC_CLOSE_ABORT.

■ Constant values are all upper case. Enumerated values can be seen as a subset of
constants. Examples: INK_URL_SCHEME_FILE and INK_MIME_FIELD_ACCEPT.

■ The names of defined types appear in mixed case. Examples: INKHttpSsn and
INKHttpTxn.

■ Function names are mixed case. Examples: INKUrlCreate and INKContDestroy.
Getting Started 21

■ Function names use this subject-verb naming style: INK-<subject>-<verb>. The
<subject> goes from the general to the specific. For example, the function to retrieve
the password field (the specific subject) from a URL (the general subject) is
INKUrlPasswordGet.This makes it easier to determine what a function does by
reading its name.

■ Common verbs like Create, Destroy, Get, Set, Copy, Find, Retrieve, Insert,
Remove and Delete are used when appropriate.
22

CHAPTER 2 Creating Traffic Edge Plugins
This chapter provides a foundation for designing and writing plugins. Reading this
chapter will help you understand:

■ Inktomi’s asynchronous event model, which is the design paradigm used throughout
Traffic Edge. Plugins must also follow this design. It includes the callback mechanism
for Traffic Edge to “wake up” your plugin and put it to work.

■ Traffic Edge’s HTTP processing—an overview of the HTTP state machine.

■ How plugins can hook onto and modify or extend Traffic Edge’s HTTP processing.

■ A roadmap for writing plugins. An overview of the functionality provided by the
Traffic Edge API.

The Asynchronous Event Model
Traffic Edge is a multi-threaded process. There are two main reasons why a server might
use multiple threads:

■ To take advantage of the concurrency available with multiple CPUs and multiple I/O
devices.

■ To manage concurrency from having many simultaneous client connections. For
example a server could create one thread for each connection, allowing the operating
system (OS) to control switching between threads.

Traffic Edge uses multiple threads for the first reason. But Traffic Edge does not use a
separate OS thread per transaction because it would not be efficient when handling
thousands of simultaneous connections.

Instead, Traffic Edge provides special event-driven mechanisms for efficiently scheduling
work: the event system, and continuations. The event system is used to schedule work to
be done on threads. A continuation is a passive, event-driven state machine that can do
some work until it reaches a waiting point, and then sleep until it receives notification that
conditions are right for doing more work. For instance, HTTP state machines (which
handle HTTP transactions) are implemented as continuations.

Continuation objects are used throughout Traffic Edge. Some might live for the duration
of the Traffic Edge process; others are created (perhaps by other continuations) for specific
needs and then destroyed. Figure 2 shows how the major components of Traffic Edge
interact. Traffic Edge has several processors, such as cache processor and net processor,
which consolidate cache or network I/O tasks. Processors talk to the event system to
schedule work on threads. An executing thread calls back a continuation by sending it an
event. When a continuation receives an event, it wakes up, does some work, and either
destroys itself or goes back to sleep waiting for the next event.

Figure 2 Traffic Edge internals

Plugins are typically implemented as continuations. All of the sample code plugins
(except hello-world) are continuations that are created when Traffic Edge starts up; they
wait for events that trigger them into activity.

Figure 3 Traffic Edge with plugins

e

e

sleeping continuations

event

e

event system

threads

net processor

cache
processor

cluster
processor

e

e

sleeping continuations

event

e

event system

threads

net processor

cache
processor

cluster
processor

A
P

I l
ay

er

plugin

plugin

e

24 The Asynchronous Event Model

A plugin may consist of just one static continuation that is called whenever certain events
happen. blacklist-1.c, basic-auth.c, and redirect-1.c are examples of such plugins. Or a
plugin could dynamically create other continuations as needed. Transform plugins are
built this way: a static parent continuation checks all transactions to see if any are
transformable; when a transaction is transformable, the static continuation creates a type
of continuation called a vconnection. The vconnection lives as long as it takes to complete
the transform, and then destroys itself. You can see this design in all of the sample
transform plugins. Plugins that support new protocols also have this architecture: a static
continuation listens for incoming client connections, and creates transaction state
machines to handle each protocol transaction.

When you write plugins, there are several ways to send events to continuations. For HTTP
plugins, there is a “hook” mechanism that enables the Traffic Edge HTTP state machine to
send your plugin wakeup calls when needed. Additionally, several Traffic Edge API
functions trigger Traffic Edge sub-processes to send events to plugins: INKContCall,
INKVConnRead, INKCacheWrite, and INKMgmtUpdateRegister, to name a few.

Traffic Edge HTTP State Machine
Traffic Edge does sophisticated HTTP caching and proxying. Its features include checking
for alternates and document freshness, filtering, supporting cache hierarchies, and
hosting. Traffic Edge handles thousands of client requests at a time, and each request is
handled by an HTTP state machine. Traffic Edge’s HTTP state machines follow a complex
state diagram that includes all of the states required to support Traffic Edge’s features. The
Traffic Edge API provides hooks to a subset of these states, chosen for their relevance to
plugins. You can view the API hooks and corresponding HTTP states in “HTTP transaction
state diagram” on page 66.

This section goes through an example of how a plugin typically intervenes and extends
Traffic Edge’s processing of an HTTP transaction. Complete details about hooking on to
Traffic Edge processes are provided in “HTTP Hooks and Transactions” on page 65.

 HTTP
transaction

An HTTP transaction consists of a client request for a web document and Traffic Edge’s
response. The response could be the requested web server content or it could be an error
message. The content could come from the Traffic Edge cache or Traffic Edge might fetch
it from the origin server. The following diagram shows some of the states of a typical
transaction, highlighting the case where the content is served from the cache:
Creating Traffic Edge Plugins 25

Figure 4 Simplified HTTP transaction

Traffic Edge accepts the client connection, reads the request headers, looks up the origin
server’s IP address, and looks for the requested content in the cache. If it’s not in the
cache, Traffic Edge opens a connection to the origin server and issues a request for the
content. If the content is in the cache, Traffic Edge checks it for freshness. If it’s fresh,
Traffic Edge sends a reply header to the client. What Figure 4 does not show is that if there
is an error at a any stage, the HTTP state machine jumps to the “send reply header” state
and sends an error message. If the reply is an error, the transaction closes. If the reply is
not an error, Traffic Edge sends the response content and then closes the transaction.

The Traffic Edge API supplies hooks that correspond to key stages in the HTTP state
diagram. Figure 5 shows the API hooks that correspond to some of the states shown in
Figure 4.

Figure 5 API hooks corresponding to states listed in Figure 4

send resp
body

read
request hdr

accept

OS DNS
lookup cache

lookup

freshness
check

hit

stale

fresh

miss

send reply
hdr

open conn
to OS

transaction
close

errorvalid
response

OS = origin server

send resp
body

read
request hdr

accept

OS DNS
lookup cache

lookup

freshness
check

hit

stale

fresh

miss

send reply
hdr

open conn
to OS

transaction
close

errorvalid
response

OS DNS
lookup hook

send resp
hdr hook

OS = origin server

TXN start
hook

read request
header hook alternate

select hook
26 Traffic Edge HTTP State Machine

You use hooks as triggers to start your plugin. The name of a hook reflects the Traffic Edge
state that was just completed. So for example, the “OS DNS lookup” hook would wake up
a plugin right after the origin server DNS lookup. For a plugin that requires the IP address
of the requested origin server, this hook is the right one to use. The Blacklist plugin works
this way, as shown in Figure 6.

Figure 6 Blacklist plugin

Traffic Edge calls the Blacklist plugin right after the origin server DNS lookup. The plugin
checks the requested host against a list of blacklisted servers, and if the request is allowed,
the transaction proceeds. If the host is forbidden, the Blacklist plugin sends the transaction
into an error state, and when the HTTP state machine gets to the “send reply header”
state, it calls the Blacklist plugin to provide an error message to send to the client.

 types of
hooks

The Blacklist plugin’s hook to the “origin server DNS lookup” state is a global hook,
meaning that the plugin is called for every HTTP transaction for which there is a DNS
lookup event. The plugin’s hook to the “send reply header” state is a transaction hook,
meaning that this hook is only invoked for specified transactions (in the Blacklist example,
only for requests to blacklisted servers).

Several examples of setting up hooks are provided in the code example chapters, “Header-
Based Plugin Examples” on page 31, and “HTTP Transformation Plugins” on page 41.

Header manipulation plugins, such as filtering, basic authorization, or redirects, usually
have a global hook to the DNS lookup or the read request header states. Then if specific
things need to be done to the transaction further on, the plugin adds itself to a transaction
hook.

Transformation plugins require a global hook to check all transactions for
transformability. Then they require a transform hook, which is a type of transaction hook
specifically used for transforms.

send resp
body

read
request hdr

accept

OS DNS
lookup cache

lookup

freshness
check

hit

stale

fresh

miss

send reply
hdr

open conn
to OS

transaction
close

errorvalid
response

OS DNS
lookup hook

send resp
hdr hook

OS = origin server

blacklist
plugin

wake up
plugin

if access
allowed,
proceed

if access
forbidden,
send error

wake up
plugin
Creating Traffic Edge Plugins 27

Roadmap for creating plugins
So far this chapter has provided an overview of Traffic Edge’s HTTP processing, API
hooks, and the asynchronous event model. The next step is to understand the capabilities
of the Traffic Edge API functions. These are very broad:

■ HTTP header manipulation functions

Obtain information about and manipulate HTTP headers, URLs, MIME headers.

■ HTTP transaction functions

Get information about and modify HTTP transactions (for example, get the client IP
associated to the transaction; get the server IP; get parent proxy information)

■ IO functions

Manipulate vconnections (virtual connections, used for network and disk I/O).

■ Network connection functions

Open connections to remote servers.

■ Statistics functions

Define and compute statistics for your plugin’s activity.

■ Plugin management functions

Create a web interface for your plugin (accessible through the Traffic Edge web
interface). Control file installation. License your plugin.

■ Traffic Edge management functions

Obtain values of Traffic Edge configuration and statistics variables.

Here are some guidelines for creating a plugin:

1 Decide what you want your plugin to do, based on the capabilities of the API and
Traffic Edge. The two main kinds of example plugins provided with SDK 5.2 are
HTTP-based which include header-based plugins and response transform plugins,
28 Roadmap for creating plugins

and non-HTTP-based which includes a protocol plugin. These examples are discussed
in the next three chapters.

2 Figure out where your plugin needs to hook on to Traffic Edge’s HTTP processing. View the
“HTTP transaction state diagram” on page 66.

3 Read “Header-Based Plugin Examples” on page 31 to learn the basics of writing plugins: creating
continuations, and setting up hooks. If you want to write a plugin that transforms data, read
“HTTP Transformation Plugins” on page 41.

4 Figure out what parts of the Traffic Edge API you need to use, and read about the details of
those APIs in the reference chapters in this manual.

5 Compile and load your plugin (see “Getting Started” on page 13).

6 Depending on your plugin’s functionality, you might start testing it by issuing requests by hand,
and checking for the desired behavior in Traffic Edge log files. See the Traffic Edge
Administrator’s Guide for information about Traffic Edge logs.

7 You can test the performance of Traffic Edge running with your plugin using SDKTest. You can
also customize SDKTest to perform functional testing on your plugin. See the Traffic Edge
SDKTest User’s Guide.
Creating Traffic Edge Plugins 29

30 Roadmap for creating plugins

CHAPTER 3 Header-Based Plugin Examples
Header-based plugins read or modify the headers of HTTP messages that Traffic Edge
sends and receives. Reading this chapter will help you understand:

■ Creating continuations for your plugins

■ Adding global hooks

■ Adding transaction hooks

■ Working with HTTP header functions

The two sample plugins discussed in this chapter are blacklist-1.c and basic-auth.c.

Overview
Header-based plugins take actions based on the contents of HTTP request or response
headers. Examples include filtering (on the basis of requested URL, or source IP address,
or other request header), user authentication, or user redirection. These plugins have the
following common elements:

■ The plugin has a static parent continuation that scans all Traffic Edge headers (either
request headers, response headers, or both).

■ The plugin has a global hook. This allows the plugin to check all transactions to
determine whether the plugin has to do something.

■ Through the global hook, the plugin gets a handle to the transaction being processed.

■ If the plugin needs to do something to transactions in specific cases, it sets up a
transaction hook for a particular event.

■ The plugin obtains client header information and does something based on it.

In the remainder of this chapter, you’ll see how these components are implemented in
SDK sample code.

The Blacklist plugin
The sample blacklisting plugin included in the Traffic Edge SDK is blacklist_1.c. This
plugin checks every incoming HTTP client request against a list of blacklisted web sites. If
the client requests a blacklisted site, the plugin returns an “access forbidden” message to
the client. The flow of HTTP processing with the Blacklist plugin is illustrated in Figure 6,
on page 27. This sample also contains a simple configuration management interface. It can
read a list of blacklisted sites from a file, blacklist.txt, that can be updated by a Traffic
Edge administrator. When the configuration file is updated, Traffic Edge sends an event to
the plugin, waking it up to do some work.

Creating the parent continuation

You create the static parent continuation in the mandatory INKPluginInit function. This
parent continuation effectively is the plugin: the plugin does work when this continuation
receives an event from Traffic Edge. Traffic Edge passes the event as an argument to the
continuation’s handler function. When you create continuations, you must create and
specify their handler functions.

You can specify an optional mutex lock when you create continuations. The mutex lock
protects data shared by asynchronous processes. Traffic Edge has a multi-threaded design;
if several threads try to access the same continuation’s data, race conditions can occur.

Here is how the static parent continuation is created in blacklist-1.c:
void
INKPluginInit (int argc, const char *argv[])

{ ...

INKCont contp;

contp = INKContCreate (blacklist_plugin, NULL);

...

}

The handler function for the plugin is blacklist_plugin, and the mutex is null. The
continuation handler function’s job is to handle the events that are sent to it; accordingly,
the blacklist_plugin routine consists of a switch statement that covers each of the
events that might be sent to it:

static int

blacklist_plugin (INKCont contp, INKEvent event, void *edata)

{

 INKHttpTxn txnp = (INKHttpTxn) edata;

 switch (event) {

 case INK_EVENT_HTTP_OS_DNS:

 handle_dns (txnp, contp);

 return 0;

 case INK_EVENT_HTTP_SEND_RESPONSE_HDR:

 handle_response (txnp);

 return 0;

 case INK_EVENT_MGMT_UPDATE:

read_blacklist ();

return 0;

 default:

 break;

 }

 return 0;

}

When you write handler functions, you have to anticipate any events that might be sent to
the handler by hooks or by other functions. In the Blacklist plugin, INK_EVENT_OS_DNS is
32 The Blacklist plugin

sent because of the global hook established in INKPluginInit;
INK_EVENT_HTTP_SEND_RESPONSE_HDR is sent because the plugin contains a transaction
hook (see “Setting up a transaction hook” on page 34), and INK_EVENT_MGMT_UPDATE is sent
by Traffic Manager whenever there is a configuration change. See “Setting Up UI Update
Callbacks” on page 33. It is good practice to have a default case in your switch statements.

Setting a Global Hook

Global hooks are always added in INKPluginInit using INKHttpHookAdd. The two
arguments of INKHttpHookAdd are the hook ID and the continuation to call when
processing the event corresponding to the hook. In blacklist-1.c, the global hook is added
as follows:

INKHttpHookAdd (INK_HTTP_OS_DNS_HOOK, contp);

Where INK_HTTP_OS_DNS_HOOK is the ID for the origin server DNS lookup hook, and
contp is the parent continuation created earlier.

This means that the Blacklist plugin is called at every origin server DNS lookup. When it
is called, the handler function blacklist_plugin receives INK_EVENT_HTTP_OS_DNS and
calls handle_dns to see if the request is forbidden.

Setting Up UI Update Callbacks

The Blacklist plugin must be called back whenever its configuration is changed by an
administrator through the Traffic Manager UI. To get the interface working, you need an
interface program (such as a CGI form) to display an interface and obtain configuration
information, and a text file that the CGI program edits and the Blacklist plugin reads. The
callback to the plugin is established in INKPluginInit by:

INKMgmtUpdateRegister (contp, "Inktomi Blacklist Plugin", "blacklist.cgi");

Where contp is the plugin’s static parent continuation, “Inktomi Blacklist Plugin” is
the name of the plugin as specified by the CGI form’s INK_PLUGIN_NAME variable, and
"blacklist.cgi" is the path to the plugin’s interface program, relative to the Traffic Edge
plugins directory. For more details see “Setting up a plugin management interface” on page
131.

Accessing the Transaction Being Processed

A continuation’s handler function is of type INKEventFunc, and the prototype is as
follows:
static int function_name (INKCont contp, INKEvent event, void *edata)

In general, the return value of the handler function is not used. The continuation
argument is the continuation being called back, the event is the event being sent to the
continuation, and the data pointed to by void *edata depends on the type of event. The
data types for each event type are listed in “Events and void * data” on page 111.

The key here is that if the event is an HTTP transaction event, then the data passed to the
continuation’s handler is of type INKHttpTxn (a data type that represents HTTP
transactions). Your plugin can then do things with the transaction. Here’s how it looks in
the Blacklist plugin’s handler’s code:

static int

blacklist_plugin (INKCont contp, INKEvent event, void *edata)
Header-Based Plugin Examples 33

{

INKHttpTxn txnp = (INKHttpTxn) edata;

switch (event) {

case INK_EVENT_HTTP_OS_DNS:

handle_dns (txnp, contp);

return 0;

case INK_EVENT_HTTP_SEND_RESPONSE_HDR:

handle_response (txnp);

return 0;

case INK_EVENT_MGMT_UPDATE:

read_blacklist ();

return 0;

default:

break;

}

return 0;

}

When, for example, the origin server DNS lookup event is sent, blacklist_plugin can
call handle_dns and pass txnp as an argument.

Setting up a transaction hook

The Blacklist plugin sends “access forbidden” messages to clients if their requests are
directed to blacklisted hosts. Therefore the plugin needs a transaction hook, so that it is
called back when Traffic Edge’s HTTP state machine reaches the “send response header”
event. In the Blacklist plugin’s handle_dns routine, the transaction hook is added as
follows:

INKMutexLock (sites_mutex);

for (i = 0; i < nsites; i++) {

if (strncmp (host, sites[i], host_length) == 0) {

printf ("blacklisting site: %s\n", sites[i]);

INKHttpTxnHookAdd (txnp,

INK_HTTP_SEND_RESPONSE_HDR_HOOK,

contp);

INKHandleStringRelease (bufp, url_loc, host);

INKHandleMLocRelease (bufp, hdr_loc, url_loc);

INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

INKHttpTxnReenable (txnp, INK_EVENT_HTTP_ERROR);

INKMutexUnlock (sites_mutex);

return;

}

}

INKMutexUnlock (sites_mutex);
34 The Blacklist plugin

done:

INKHttpTxnReenable (txnp, INK_EVENT_HTTP_CONTINUE);

}

This code fragment shows some interesting features. What’s happening is that the plugin
is comparing the requested site to the list of blacklisted sites. While the plugin is using the
blacklist, it must acquire the mutex lock for the blacklist. This prevents configuration
changes in the middle of a blacklisting operation. If the requested site is blacklisted, two
things happen:

1 A transaction hook is added with INKHttpTxnHookAdd, so that the plugin is called
back at the “send response header” event (the plugin sends an “access forbidden”
message to the client). You can see that in order to add a transaction hook, you need a
handle to the transaction being processed.

2 The transaction is reenabled using INKHttpTxnReenable with
INK_EVENT_HTTP_ERROR as its event argument. Reenabling with an error event tells
the HTTP state machine to stop the transaction and jump to the “send response
header” state. Notice that if the requested site is not blacklisted, the transaction is
reenabled with the INK_EVENT_HTTP_CONTINUE event.

3 The string and INKMLoc data stored in the marshal buffer bufp is released by
INKHandleStringRelease and INKHandleMLocRelease. See “Release marshal buffer
handles” on page 88. Release these handles before reenabling the transaction.

 Reenable! In general, whenever the plugin is doing something to a transaction, it must reenable the
transaction when it is finished. Put another way, every time your handler function
handles a transaction event, it must call INKHttpTxnReenable when it is finished.

Similarly, after your plugin handles session events (INK_EVENT_HTTP_SSN_START and
INK_EVENT_HTTP_SSN_CLOSE) it must reenable the session with INKHttpSsnReenable.

 but not
twice!

Reenabling the transaction twice in the same plugin routine is a bad error.

Working with HTTP header functions

The Blacklist plugin examines the host header in every client transaction. This is done in
the handle_dns routine, using INKHttpTxnClientIPGet, INKHttpHdrUrlGet, and
INKUrlHostGet.
static void

handle_dns (INKHttpTxn txnp, INKCont contp)

{

 INKMBuffer bufp;

 INKMLoc hdr_loc;

 INKMLoc url_loc;

 const char *host;

 int i;

 if (!INKHttpTxnClientIPGet (txnp, &bufp, &hdr_loc)) {

 INKError ("couldn't retrieve client request header\n");

 goto done;

 }

 url_loc = INKHttpHdrUrlGet (bufp, hdr_loc);
Header-Based Plugin Examples 35

 if (!url_loc) {

 INKError ("couldn't retrieve request url\n");

INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 goto done;

 }

 host = INKUrlHostGet (bufp, url_loc, NULL);

 if (!host) {

 INKError ("couldn't retrieve request hostname\n");

INKHandleMLocRelease (bufp, hdr_loc, url_loc);

INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 goto done;

 }

To access the host header, the plugin first has to get the client request, then retrieve the
URL portion, and then obtain the host header. See “HTTP Headers” on page 83 for more
information about these calls.

See “Release marshal buffer handles” on page 88 for guidelines on using
INKHandleMLocRelease and INKHandleStringRelease.

The Basic Authorization Plugin
The sample basic authorization plugin, basic-auth.c, checks for basic HTTP proxy
authorization. In HTTP basic proxy authorization, client user names and passwords are
contained in the Proxy-Authorization header. The password is encoded using base64
encoding. The plugin checks all incoming requests for the authorization header, user
name and password. If the plugin does not find all of the these, it reenables with an error
(effectively stopping the transaction) and adds a transaction hook to the send response
header event.

Creating the plugin’s parent continuation and global hook

The parent continuation and global hook are created as follows:

INKHttpHookAdd (INK_HTTP_OS_DNS_HOOK, INKContCreate (auth_plugin, NULL));

Implementing the handler and getting a handle to the
transaction

The handler function for the plugin’s parent continuation is implemented as follows:
static int

auth_plugin (INKCont contp, INKEvent event, void *edata)

{

 INKHttpTxn txnp = (INKHttpTxn) edata;

36 The Basic Authorization Plugin

 switch (event) {

 case INK_EVENT_HTTP_OS_DNS:

 handle_dns (txnp, contp);

 return 0;

 case INK_EVENT_HTTP_SEND_RESPONSE_HDR:

 handle_response (txnp);

 return 0;

 default:

 break;

 }

 return 0;

}

Working with HTTP headers

The plugin checks all client request headers for the Proxy-Authorization MIME field,
which should contain the user name and password.

The plugin’s continuation handler, auth-plugin, calls handle_dns to check the Proxy-
Authorization field.

The handle_dns routine uses INKHttpTxnClientReqGet and INKMimeHdrFieldFind to
obtain the Proxy-Authorization field:
static void

handle_dns (INKHttpTxn txnp, INKCont contp)

{

 INKMBuffer bufp;

 INKMLoc hdr_loc;

 INKMLoc field_loc;

 const char *val;

 char *user, *password;

 if (!INKHttpTxnClientReqGet (txnp, &bufp, &hdr_loc)) {

 INKError ("couldn't retrieve client request header\n");

 goto done;

 }

 field_loc = INKMimeHdrFieldFind (bufp, hdr_loc,
INK_MIME_FIELD_PROXY_AUTHORIZATION);

If the Proxy-Authorization field is present, the plugin checks that the authentication type
is “Basic”, and the user name and password are present and valid:
val = INKMimeHdrFieldValueStringGet (bufp, hdr_loc, field_loc, 0, &authval_length);

if (!val) {

INKError ("no value in Proxy-Authorization field\n");

INKHandleMLocRelease (bufp, hdr_loc, field_loc);

INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

goto done;
Header-Based Plugin Examples 37

}

if (strncmp (val, "Basic", 5) != 0) {

INKError ("no Basic auth type in Proxy-Authorization\n");

INKHandleStringRelease (bufp, field_loc, val);

INKHandleMLocRelease (bufp, hdr_loc, field_loc);

INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

goto done;

}

val += 5;

while ((*val == ' ') || (*val == '\t')) {

val += 1;

}

user = base64_decode (val);

password = strchr (user, ':');

if (!password) {

INKError ("no password in authorization information\n");

INKfree (user);

INKHandleStringRelease (bufp, field_loc, val);

INKHandleMLocRelease (bufp, hdr_loc, field_loc);

INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

goto done;

}

*password = '\0';

password += 1;

if (!authorized (user, password)) {

INKError ("%s:%s not authorized\n", user, password);

INKfree (user);

INKHandleStringRelease (bufp, field_loc, val);

INKHandleMLocRelease (bufp, hdr_loc, field_loc);

INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

goto done;

}

INKfree (user);

INKHandleStringRelease (bufp, field_loc, val);

INKHandleMLocRelease (bufp, hdr_loc, field_loc);

INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

INKHttpTxnReenable (txnp, INK_EVENT_HTTP_CONTINUE);

return;
38 The Basic Authorization Plugin

Setting a transaction hook

If the request does not have the Proxy-Authorization field set to Basic authorization, or
a valid user name and password, the plugin sends the 407 Proxy authorization
required status code back to the client.The client should then prompt the user for a user
name and password, and resend the request.

In the handle_dns routine, the following lines handle the authorization error case:
done:

 INKHttpTxnHookAdd (txnp, INK_HTTP_SEND_RESPONSE_HDR_HOOK, contp);

 INKHttpTxnReenable (txnp, INK_EVENT_HTTP_ERROR);

If handle_dns does not find the Proxy-Authorization field set to Basic authorization, or
a valid user name and password, it adds a SEND_RESPONSE_HDR_HOOK to the transaction
being processed; this means that Traffic Edge will call the plugin back when sending the
client response.

handle_dns reenables the transaction with INK_EVENT_HTTP_ERROR, which means that
the plugin wants Traffic Edge to terminate the transaction.

When Traffic Edge terminates the transaction, it sends the client an error message. Because
of the SEND_RESPONSE_HDR_HOOK, Traffic Edge calls the plugin back. The auth-plugin
routine calls handle_response to send the client a 407 status code.

When the client resends the request with the Proxy- Authorization field, a new
transaction begins.

handle_dns calls base64_decode to decode the user name and password.

handle_dns calls authorized to validate the user name and password. In this plugin,
sample NT code is provided for password validation. Unix programmers can supply their
own validation mechanism.
Header-Based Plugin Examples 39

40 The Basic Authorization Plugin

CHAPTER 4 HTTP Transformation Plugins
Transform plugins examine or transform HTTP message body content. For example,
transform plugins can:

■ Append text to HTML documents

■ Compress images

■ Do virus checking (on client POST data or server response data)

■ Do content-based filtering (filter out HTML documents that contain certain terms or
expressions)

In this chapter you can learn how to write transform plugins. The following examples are
discussed in detail:

■ “The sample null transform plugin” on page 43

■ “The append-transform plugin” on page 47

■ “The sample buffered null transform plugin” on page 49

Writing content transform plugins
Content transformation plugins transform HTTP response content (such as images or
HTML documents), and HTTP request content such as client POST data. Because the data
stream to be transformed is of variable length, these plugins must use a mechanism that
passes data from buffer to buffer and checks to see if the end of the data stream is reached.

This mechanism is provided by virtual connections (vconnections) and virtual IO
descriptors (VIOs).

A vconnection is an abstraction for a data pipe that allows its users to perform
asynchronous reads and writes without knowing the underlying implementation. A
transformation is a specific type of vconnection. A transformation connects an input data
source and an output data sink; this feature enables it to view and modify all the data
passing through it.

Transformations can be chained together, one after the other, so that multiple
transformations can be performed on the same content. The vconnection type, INKVConn,
is actually a subclass of INKCont, which means that vconnections (and transformations)
are continuations. Vconnections and transformations can thus exchange events, informing
one another (for example) that data is available for reading or writing, or that the end of a
data stream is reached.

A VIO is a description of an in-progress IO operation. Every vconnection has an
associated input VIO and an associated output VIO. When vconnections are transferring
data to one another, one vconnection’s input VIO is another vconnection’s output VIO. A
vconnection’s input VIO is also called its write VIO because the input VIO refers to a write
operation performed on the vconnection itself. Similarly, the outpt VIO is also called the

read VIO. For transformations, which are designed to pass data in one direction, you can
picture the relationship between the transformation vconnection and its VIOs as follows:

Figure 7 A transformation and its VIOs

Because the Traffic Edge API places transformations directly in the response or request
data stream, the transformation vconnection is responsible only for reading the data from
the input buffer, transforming it, and writing it to the output buffer. The upstream
vconnection writes the incoming data to the transformation’s input buffer. In Figure 7, the
input VIO describes the progress of the upstream vconnection’s write operation on the
transformation, and the output VIO describes the progress of the transformation’s write
operation on the output (downstream) vconnection. The nbytes value in the VIO is the
total number of bytes to be written. The ndone value is the current progress, the number of
bytes written.

When writing a transformation plugin, you need to understand both implementing and
using vconnections. The implementor’s side refers to how to implement a vconnection
that others can use. At minimum, a transform plugin creates a transformation that sits in
the data stream and must be able to handle the events that the upstream and downstream
vconnections send it. The user’s side refers to how to use a vconnection to read or write
data. Transformations output (write) data, at the very least.

Transformations

VIOs

A VIO or virtual IO is a description of an in progress IO operation. The VIO data structure
is used by vconnection users to determine how much progress has been made on a
particular IO operation and to re-enable an IO operation when it stalls due to buffer space.
VIOs are used by vconnection implementors to determine the buffer for an IO operation,
to determine how much work to do on the IO operation and to determine which
continuation to call back when progress on the IO operation is made.

The INKVIO data structure itself is opaque, but it might have been defined as follows:

typedef struct {

 INKCont continuation;

 INKVConn vconnection;

 INKIOBufferReader reader;

 INKMutex mutex;

transformation vconnectionupstream vconnection downstream vconnection

write
writeread read

input VIO output VIO

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ndone
nbytes

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ndone
nbytes

input buffer output buffer

(write VIO) (read VIO)
42 Writing content transform plugins

 int nbytes;

 int ndone;

} *INKVIO;

IO buffers

The IO buffer data structure is the building block of the vconnection abstraction. An IO
buffer is composed of a list of buffer blocks which in turn point to buffer data. Both the
buffer block (INKIOBufferBlock) and buffer data (INKIOBufferData) data structures are
reference counted so that they can reside in multiple buffers at the same time. This makes
it extremely efficient to copy data from one IO buffer to another using INKIOBufferCopy
since Traffic Edge only needs to copy pointers and adjust reference counts appropriately
and not actually copy any data.

The IO buffer abstraction provides for a single writer and multiple readers. In order for
the readers to have no knowledge of each other, they manipulate IO buffers through the
INKIOBufferReader data structure. Since only a single writer is allowed, there is no
corresponding INKIOBufferWriter data structure. The writer simply modifies the IO
buffer directly.

The sample null transform plugin
This section provides a step-by-step description of what the null transform plugin does,
along with sections of the code that apply. For context, you can find each code snippet in
the complete source code. Some of the error checking details are left out; to give the
description a step-by-step flow, only the highlights of the transform are included.

Here is an overview of the null transform plugin:

1 Gets a handle to HTTP transactions.

void

INKPluginInit (int argc, const char *argv[]) {

INKHttpHookAdd (INK_HTTP_READ_RESPONSE_HDR_HOOK,

INKContCreate (transform_plugin, NULL)); }

With this INKPluginInit routine, the plugin is called back every time Traffic Edge
reads a response header.

2 Checks to see if the transaction response is transformable.

static int transform_plugin (INKCont contp, INKEvent event, void *edata) {

INKHttpTxn txnp = (INKHttpTxn) edata;

switch (event) {

case INK_EVENT_HTTP_READ_RESPONSE_HDR:

if (transformable (txnp)) {

transform_add (txnp);}
HTTP Transformation Plugins 43

The default behavior for transformations is to cache the transformed content. (You can
tell Traffic Edge to cache untransformed content, if you want). Therefore, only
responses received directly from an origin server need be transformed. Objects served
from the cache are already transformed. To determine whether the response is from
the origin server, the routine transformable checks the response header for the “200
OK” server response.

static int transformable (INKHttpTxn txnp)

{

INKMBuffer bufp;

INKMLoc hdr_loc;

INKHttpStatus resp_status;

INKHttpTxnServerRespGet (txnp, &bufp, &hdr_loc);

if (INK_HTTP_STATUS_OK == (resp_status =

INKHttpHdrStatusGet (bufp, hdr_loc))) {

return 1;

} else {

return 0;

}

}

3 If the response is transformable, the plugin creates a transformation vconnection that
gets called back when the response data is ready to be transformed (as it is streaming
from the origin server).

static void transform_add (INKHttpTxn txnp)

{

INKVConn connp;

connp = INKTransformCreate (null_transform, txnp);

INKHttpTxnHookAdd (txnp, INK_HTTP_RESPONSE_TRANSFORM_HOOK, connp);

}

The previous code fragment shows that the handler function for the transformation
vconnection is null_transform.

4 Get a handle to the output vconnection (that receives data from the tranformation).

output_conn = INKTransformOutputVConnGet (contp);

5 Get a handle to the input VIO. (See the handle_transform function.)

input_vio = INKVConnWriteVIOGet (contp);
44 The sample null transform plugin

This is so that the transformation can get information about the upstream
vconnection’s write operation to the input buffer.

6 Initiate a write to the output vconnection of the specified number of bytes. When the
write is initiated, the transformation expects to receive WRITE_READY,
WRITE_COMPLETE, or ERROR events from the output vconnection.

See the handle_transform function for the following code fragment:

data->output_vio = INKVConnWrite (output_conn, contp,

data->output_reader, INKVIONBytesGet (input_vio));

7 Copy data from the input buffer to the output buffer. See the handle_transform
function for the following code fragment:

INKIOBufferCopy (INKVIOBufferGet (data->output_vio),

INKVIOReaderGet (input_vio), towrite, 0);

8 Tell the input buffer that the transformation has read the data. See the
handle_transform function for the following code fragment:

INKIOBufferReaderConsume (INKVIOReaderGet (input_vio), towrite);

9 Modify the input VIO to tell it how much data has been read (increase the value of
ndone). See the handle_transform function for the following code fragment:

INKVIONDoneSet (input_vio, INKVIONDoneGet (input_vio) + towrite);

10 If there is more data left to read (if ndone < nbytes), the handle_transform function
wakes up the downstream vconnection with a reenable and wakes up the upstream
vconnection by sending it WRITE_READY:

if (INKVIONTodoGet (input_vio) > 0) {

if (towrite > 0) {

INKVIOReenable (data->output_vio);

INKContCall (INKVIOContGet (input_vio),

INK_EVENT_VCONN_WRITE_READY, input_vio);

}

} else {
HTTP Transformation Plugins 45

The process of passing data through the transformation is illustrated in the following
diagram. The downstream vconnections send WRITE_READY events when they need
more data, and when data is available the upstream vconnections reenable the
downstream vconnections. The INKVIOReenable function, in this instance, sends
INK_EVENT_IMMEDIATE.

Figure 8 Passing data through a transformation

11 If the handle_transform function finds that there is no more data to read, it sets
nbytes to ndone on the output (downstream) VIO, and wakes up the output
vconnection with a reenable. It then triggers the end of the write operation from the
upstream vconnection by sending the upstream vconnection a WRITE_COMPLETE
event.

} else {

INKVIONBytesSet (data->output_vio, INKVIONDoneGet (input_vio));

INKVIOReenable (data->output_vio);

INKContCall (INKVIOContGet (input_vio),

INK_EVENT_VCONN_WRITE_COMPLETE, input_vio);

}

When the upstream vconnection receives the WRITE_COMPLETE event, it will probably
shut down the write operation.

12 Similarly, when the downstream vconnection has consumed all of the data, it sends
the transformation a WRITE_COMPLETE event. The transformation handles this event
with a shut down (the transformation shuts down the write operation to the
downstream vconnection). See the null_plugin function for the following code
fragment:

case INK_EVENT_VCONN_WRITE_COMPLETE:

transformation
vconnection

upstream
vconnection

downstream
vconnection

write
writeread read

write_ready write_ready

transform

event_immediate

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ndone
nbytes

input buffer

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ndone
nbytes

output buffer

data

event_immediateINKVIOReenable
INKVIOReenable

INKContCall e.g. INKContCall

input VIO output VIO
46 The sample null transform plugin

INKVConnShutdown (INKTransformOutputVConnGet (contp), 0, 1);

break;

The following diagram illustrates the flow of events:

Figure 9 Ending the transformation

The append-transform plugin
The append-transform plugin appends text to the body of an HTTP response. It obtains
this text from a file. The name of the file containing the append text is a parameter you
specify in plugin.config, as follows:

append-transform.so path/to/file

The append-transform plugin is based on null-transform.c. The only difference is that
after the plugin feeds the document through the transformation, it adds text to the
response.

Here is a list of the functions in append-transform.c, in the order they appear in the
source code, with a description of what the function does:
■ my_data_alloc

Allocates and initializes a MyData structure. The plugin defines a struct, MyData, as
follows:

typedef struct {

INKVIO output_vio;

INKIOBuffer output_buffer;

INKIOBufferReader output_reader;

int append_needed;

transformation
vconnection

upstream
vconnection

downstream
vconnection

write_complete write_complete

ndone
nbytes

input buffer output buffer

INKContCall

INKVConnShutdown

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ndone
nbytes

0.0 0.5 1.0 1.5 2.0 2.5 3.0
HTTP Transformation Plugins 47

} MyData;

The MyData structure is used to represent data that the transformation (vconnection)
needs. The transformation’s data pointer is set to a MyData pointer using
INKContDataSet in the handle_transform routine.

■ my_data_destroy

Destroys objects of type MyData. The append_transform routine (see below) calls
my_data_destroy when th e transformation is complete, to deallocate the
transformation’s data.

■ handle_transform

This function does the actual data transformation. The transformation is created in
transform_add (see below). handle_transform is called by append_transform.

■ append_transform

This is the handler function for the transformation vconnection created in
transform_add. It is the implementation of the vconnection.

◆ If the transformation vconnection has been closed, append_transform calls
my_data_destroy to destroy the vonnection

◆ If append_transform receives an error event, it calls back the continuation to let it
know it has completed the write operation

◆ If it receives a WRITE_COMPLETE event, it shuts down the write portion of its
vconnection

◆ If it receives a WRITE_READY or any other event (such as
INK_HTTP_RESPONSE_TRANSFORM_HOOK), it calls handle_transform to attempt to
transform more data

■ transformable

The plugin transforms only documents that have a content type of text/html. This
function examines the Content-Type MIME header field in the response header; if the
value of the MIME field is text/html, the function returns 1. Otherwise, it returns
zero.

■ transform_add

Creates the transformation for the current transaction, and sets up a transformation
hook. The handler function for the transformation is append_transform.

■ transform_plugin

This is the handler function for the main continuation for the plugin. Traffic Edge calls
this function whenever it reads an HTTP response header. transform_plugin does
the following:

◆ Gets a handle to the HTTP transaction being processed

◆ Calls transformable to determine whether the response document content is of
type text/html

◆ If the content is transformable, calls transform_add to create the transformation

◆ Calls INKHttpTxnReenable to continue the transaction
48 The append-transform plugin

■ load

Opens the file containing the text to be appended, and loads the contents of the file
into an INKIOBuffer called append_buffer.

■ INKPluginInit

Does the following:

◆ Checks to make sure that the required configuration information (the append text
filename) is entered in plugin.config correctly.

◆ If there is a filename, INKPluginInit calls load to load the text.

◆ Creates a continuation for the plugin. The handler for this continuation is
transform_plugin.

◆ Adds the plugin’s continuation to INK_HTTP_READ_RESPONSE_HDR_HOOK. In other
words, sets up a callback of the plugin’s continuation when Traffic Edge reads
HTTP response headers.

The sample buffered null transform plugin
The buffered null transform, bnull-transform.c, reads the response content into a
buffer and then writes the full buffer out to the client. Many examples of transformations,
such as compression, require you to gather the full response content in order to perform
the transformation.

The buffered null transform uses a state variable to keep track of when it is (a) reading
data into the buffer and (b) writing the data from the buffer to the downstream
vconnection.

The following is a step-by-step walk through the buffered null transform:

1 Gets a handle to HTTP transactions.

void

INKPluginInit (int argc, const char *argv[]) {

INKHttpHookAdd (INK_HTTP_READ_RESPONSE_HDR_HOOK,

INKContCreate (transform_plugin, NULL)); }

With this INKPluginInit routine, the plugin is called back every time Traffic Edge
reads a response header.

2 Checks to see if the transaction response is transformable.

static int transform_plugin (INKCont contp, INKEvent event, void *edata) {

INKHttpTxn txnp = (INKHttpTxn) edata;

switch (event) {

case INK_EVENT_HTTP_READ_RESPONSE_HDR:

if (transformable (txnp)) {
HTTP Transformation Plugins 49

transform_add (txnp);}

The default behavior for transformations is to cache the transformed content. (You can
tell Traffic Edge to cache untransformed content, if you want). Therefore, only
responses received directly from an origin server need be transformed. Objects served
from the cache are already transformed. To determine whether the response is from
the origin server, the routine transformable checks the response header for the “200
OK” server response.

static int transformable (INKHttpTxn txnp)

{

INKMBuffer bufp;

INKMLoc hdr_loc;

INKHttpStatus resp_status;

INKHttpTxnServerRespGet (txnp, &bufp, &hdr_loc);

if(INK_HTTP_STATUS_OK==

(resp_status=INKHttpHdrStatusGet(bufp,hdr_loc)))

{

return 1;

}

else {

return 0;

}

}

3 If the response is transformable, the plugin creates a transformation vconnection that
gets called back when the response data is ready to be transformed (as it is streaming
from the origin server).

static void transform_add (INKHttpTxn txnp)

{

INKVConn connp;

connp = INKTransformCreate (bnull_transform, txnp);

INKHttpTxnHookAdd (txnp, INK_HTTP_RESPONSE_TRANSFORM_HOOK, connp);

}

The previous code fragment shows that the handler function for the transformation
vconnection is bnull_transform.

4 The bnull_transform function has to handle ERROR, WRITE_COMPLETE, WRITE_READY,
and IMMEDIATE events. If the transform is just beginning, the event received is
probably IMMEDIATE. The bnull_transform function calls handle_transform to
handle WRITE_READY and IMMEDIATE.

5 The handle_transform function examines the data parameter for the continuation
passed to it (the continuation passed to handle_transform is the transformation
vconnection). The data structure keeps track of two states: copying the data into the
50 The sample buffered null transform plugin

buffer (STATE_BUFFER_DATA) and writing the contents of the buffer to the output
vconnection (STATE_OUTPUT_DATA).

If the state is STATE_BUFFER_DATA, handle_transform calls handle_buffering to
copy data into the buffer.

6 Get a handle to the input VIO. (See the handle_buffering function.)

input_vio = INKVConnWriteVIOGet (contp);

This is so that the transformation can get information about the upstream
vconnection’s write operation to the input buffer.

7 Copy data from the input buffer to the output buffer. See the handle_buffering
function for the following code fragment:

INKIOBufferCopy (data->output_buffer,

INKVIOReaderGet (write_vio), towrite, 0);

8 Tell the input buffer that the transformation has read the data. See the
handle_buffering function for the following code fragment:

INKIOBufferReaderConsume (INKVIOReaderGet (write_vio), towrite);

9 Modify the input VIO to tell it how much data has been read (increase the value of
ndone). See the handle_buffering function for the following code fragment:

INKVIONDoneSet (write_vio, INKVIONDoneGet (write_vio) + towrite); }

10 If there is more data left to read (if ndone < nbytes), the handle_buffering function
wakes up the upstream vconnection by sending it WRITE_READY:

if (INKVIONTodoGet (write_vio) > 0) {

if (towrite > 0) {

INKContCall (INKVIOContGet (write_vio),

INK_EVENT_VCONN_WRITE_READY, write_vio);

}

} else {

The process of passing data through the transformation is illustrated in the following
diagram. The transformation sends WRITE_READY events when it needs more data,
and when data is available the upstream vconnection reenables the transformation
with an IMMEDIATE event.

Figure 10 Reading data into the buffer (the STATE_BUFFER_DATA state)
HTTP Transformation Plugins 51

11 When the data is read into the output buffer, the handle_buffering function sets the
state of the transformation’s data structure to STATE_OUTPUT_DATA. and calls the
upstream vconnection back with the WRITE_COMPLETE event.

data->state = STATE_OUTPUT_DATA;

INKContCall (INKVIOContGet (write_vio),

INK_EVENT_VCONN_WRITE_COMPLETE, write_vio);

12 The upstream vconnection will probably shut down the write operation when it
receives the WRITE_COMPLETE event. The handler function of the transformation,
bnull_transform, will receive an IMMEDIATE event, and call the handle_transform
function. This time, the state is STATE_OUTPUT_DATA, so handle_transform calls
handle_output.

13 The handle_output function gets a handle to the output vconnection:

output_conn = INKTransformOutputVConnGet (contp);

14 The handle_output function writes the buffer to the output vconnection:

data->output_vio =
INKVConnWrite (output_conn, contp, data->output_reader,
INKIOBufferReaderAvail (data->output_reader));

transformation
vconnection

upstream
vconnection

downstream
vconnection

write
writeread

write_ready

event_immediate

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ndone
nbytes

input buffer

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ndone
nbytes

output buffer

data

INKVIOReenable

INKContCall

input VIO output VIO
52 The sample buffered null transform plugin

The following diagram illustrates the write to the output vconnection:

Figure 11 Writing the buffered data to the output vconnection

transformation
vconnection

upstream
vconnection

downstream
vconnection

write

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ndone
nbytes

output buffer

data

INKVConnWrite

output VIO
HTTP Transformation Plugins 53

54 The sample buffered null transform plugin

CHAPTER 5 New Protocol Plugins
The new protocol APIs allow you to extend Traffic Edge to be a web proxy for any
protocol. This chapter describes the new protocol APIs and plugins that support new
protocols. It goes through sample Protocol plugin code in detail. The sample Protocol
plugin supports a very simple artificial HTTP-like protocol.

This chapter contains the following sections:

■ “About the sample protocol” on page 55

Gives the state diagram and header structure of the artificial protocol. Describes what
the supporting plugin has to do.

■ “Protocol plugin structure” on page 58

In depth explanation of the Protocol plugin. Starts with overall architecture, and
describes how to write continuations as state machines. Ends with a walk-through of
the Protocol plugin code as it processes a transaction.

About the sample protocol
The sample protocol allows a client to ask a server for a file. Clients send requests to a
specific Traffic Edge port (specified in plugin.config). The requests look like the
following:

server_name file_name\n\n

With the Protocol plugin, Traffic Edge can accept these requests, parse them, and act as a
proxy cache (requesting the file from the origin server on the client’s behalf, and storing
copies of the response messages in the cache).

The Protocol plugin is a state machine that flows through the states illustrated in Figure
12. The figure shows the steps that Traffic Edge and the Protocol plugin go through to
support the sample protocol. In words, Traffic Edge and the Protocol plugin must:

■ listen for and accept client connections (on the accept port specified in
plugin.config)

■ read incoming client requests

■ look up the requested content in the Traffic Edge cache

■ if the request is a cache hit, serve the content from the cache (this simple example does
not do freshness checking)

■ if the request is a cache miss, open a connection to the origin server (on the server port
specified in plugin.config)

■ forward the request to the origin server

■ receive the origin server response

■ cache the response and send it on to the client
56 About the sample protocol

Figure 12 Sample protocol state diagram

accept client
request

create txn
state machine

parse
request

handle parse
error

cache
lookup

cache
hit

cache
miss

DNS
lookup

DNS lookup
error

connect to
origin server

connection
error

read from
cache

send
request

receive origin
server response

parse
error

send response
to client

write to
cache
New Protocol Plugins 57

Protocol plugin structure

To see how the Protocol plugin works, you need to understand a couple of big pictures.

This section assumes you are familiar with the concepts of continuation, Traffic Edge’s
asynchronous event model, and basic Traffic Edge plugin structure. If not, see “Getting
Started” on page 13 and “Creating Traffic Edge Plugins” on page 23.

Continuations in the Protocol plugin

The Protocol plugin creates a static continuation that is an “accept” state machine, a state
machine whose job is to accept client connections on the appropriate port. When Traffic
Edge accepts a net connection from a client on that port, the accept state machine is
activated and it creates a new continuation, a transaction state machine. The accept state
machine creates one transaction state machine for each transaction (a transaction consists
of a client request and Traffic Edge’s response). Each transaction state machine lives until
the transaction completes, and then it is destroyed. If the client’s request for content is a
cache miss, a transaction state machine might have to open a connection to the origin
server. This is illustrated in Figure 13.

Figure 13 Protocol plugin overview

Now you can see the first steps in writing this Protocol plugin: in INKPluginInit, you
must create a continuation that listens for net connections on the client port specified in
plugin.config (this continuation is the accept state machine).

Here is a summary of the continuations implemented for the Protocol plugin:

■ An accept state machine that listens for client connections, and creates transaction
state machines whenever Traffic Edge accepts a new client connection. The accept
state machine lives as long as Traffic Edge is running.

■ Transaction state machines that read client requests, process them, and are destroyed
when the transaction is done.

accept

state machine

state machine

state machine

state machine

transaction

transaction

transaction

incoming

client requests

for each request
accept state machine
creates transaction
state machine

origin
server

if cache miss, transaction state machines

open connections to origin server
58 About the sample protocol

Event flow

To understand how to implement the rest of the Protocol plugin you need to understand
the flow of events that takes place in the course of a transaction. Unlike HTTP transaction
plugins, this plugin must read data from network connections and read and write data to
the Traffic Edge cache. This means that its continuations do not receive HTTP state
machine events; they receive events from Traffic Edge’s processor subsystems.

For example, the accept state machine is activated by an INK_EVENT_NET_ACCEPT event
from Traffic Edge’s Net Processor. The handler function for the accept state machine must
be able to handle that event.

The transaction state machines are activated when the client connection receives incoming
request data. The Net Processor notifies the transaction state machine of incoming data.
The transaction state machine reads the data, and then when it is done, initiates a cache
lookup of the requested file. When the cache lookup completes, the transaction state
machine is activated by the Traffic Edge Cache Processor.

If the transaction state machine has to open a connection to the origin server to fetch
content (in the case of a cache miss), the transaction state machine initiates a DNS lookup
of the server name. The transaction state machine is activated by a DNS lookup event
from the Traffic Edge Host Database Processor.

If the transaction has to connect to the origin server, the transaction state machine initiates
a net connection and waits for an event from Net Processor.

Figure 14 Protocol plugin flow of events

The flow of events is illustrated in Figure 14. The thin straight lines show Net Processor
event flow, the thin dashed lines are Host DB event flow, and the thick dashed lines are
Cache event flow.

Notice that this flow of events is independent of the design of the Protocol plugin
(whether you build “accept” and “transaction” state machines or not). Any plugin that
supports network connections uses the net vconnection interfaces (INKNetAccept,
INKNetConnect) and thus receives events from Net Processor. Any plugin that performs
cache lookups or cache writes uses INKCacheRead, INKCacheWrite, INKVConnRead, and
INKVConnWrite and thus receives events from Cache Processor and the Traffic Edge event
system; similarly, any plugin that does DNS lookups receives events from the Host DB
Processor.

state machine

transaction

state machine

transaction

state machine

transactionaccept

state machine

Net Processor Cache Processor

Host DB Processor

Traffic Server API Layer

Traffic Server

Event Processor
New Protocol Plugins 59

One way to implement a transaction state machine

The transaction state machines (TSMs) in the Protocol plugin have to do several things:

■ Keep track of the state of the transaction

■ Handle the events they receive (based on the state of the transaction and the event
received)

■ Update the state of the transaction as it changes

Here is one way you can implement TSMs (details on how the Protocol plugin does this
follow in the next section):

■ Create a data structure for transactions that contains all of the state data you need to
keep track of. In the Protocol plugin this is a struct, Txn_SM.

■ When you create the TSM’s continuation, initialize data of type Txn_SM. Initialize the
data to the initial state of a transaction (in this case, a net connection has just been
accepted). Associate this data to the TSM continuation using INKContDataSet.

■ Write state handler functions that handle the expected events for each state.

■ Write the handler for the TSM. Its job is to receive events, examine the current state,
and execute the appropriate state handler function. In the Protocol plugin, the handler
is main_handler. main_handler calls the state handler functions to handle each state.

The flow of execution is illustrated in Figure 15.

1 The handler for the TSM, (called main_handler in the Protocol plugin) receives the
TSM’s events.

2 main_handler examines the state of the transaction—in particular, it examines the
current handler.

3 main_handler calls the current_handler, which is one of the state handler functions,
and passes current_handler the current event. In Figure 15, the current handler is
state2_handler.

4 The current_handler handles the event, and updates the data. In Figure 15, the state
is changed from state2 to state3 (and the current handler is changed from
state2_handler to state3_handler). The next time main_handler receives an event,
it will be processed by state3_handler.

5 state2_handler arranges the next callback of the TSM. Typically, it gives Traffic Edge
additional work to do (such as writing a file to cache), in order to progress to the next
state. The TSM (main_handler) then waits for the next event to arrive from Traffic
Edge.

This implementation is diagrammed in Figure 15. The details are provided in the next
section, a walk through the processing of a typical transaction.
60 About the sample protocol

Figure 15 How transaction state machines are implemented in the Protocol plugin

Processing a typical transaction

The code is contained in the following files:

■ Protocol.c and Protocol.h

■ Accept.c and Accept.h

■ TxnSM.c and TxnSM.h

Here is a step-by-step run-through of the code.

1 The INKPluginInit function is in Protocol.c. It checks the validity of the
plugin.config entries (there must be two, a client accept port and a server port), and
runs an initialization routine, init.

2 The init function (in Protocol.c) creates the plugin’s log file using
INKTextLogObjectCreate.

3 The init function creates the accept state machine using AcceptCreate. The code for
AcceptCreate is in Accept.c.

4 The accept state machine, like the transaction state machine, keeps track of its state via
a data structure. This data structure, Accept, is defined in Accept.h. In

state1_handler

change to state2

txn_sm

main_handler (contp, event, edata)

examine state (current handler)

execute based on event
change to state3
arrange TS callback when state3

state2_handler
execute state handler

Traffic Server event system

txn_sm data

1

2

3

4

(send event to current handler)

5

execute based on event

arrange TS callback when state2

state3_handler
execute based on event
change to state4

arrange TS callback when state4

e.g. state2_handler
New Protocol Plugins 61

AcceptCreate, state data is associated to the new accept state machine using
INKContDataSet.

5 The init function arranges the callback of the accept state machine when there is a
network connection using INKNetAccept.

6 The handler for the accept state machine is accept_event in Accept.c. When Traffic
Edge’s Net Processor sends INK_EVENT_NET_ACCEPT to the accept state machine,
accept_event creates a transaction state machine, txn_sm, by calling TxnSMCreate.
Notice that accept_event creates a mutex for the transaction state machine; each
transaction state machine has its own mutex.

7 The TxnSMCreate function is in TxnSM.c. The first thing it does is to initialize the
transaction’s data. This data is of type TxnSM (defined in TxnSM.h). Notice that the
current handler (q_current_handler) is set to state_start.

8 Then TxnSMCreate creates a transaction state machine using INKContCreate. The
handler for the transaction state machine is main_handler.

9 main_handler is in TxnSM.c. When accept_event receives INK_EVENT_NET_ACCEPT,
it calls the transaction state machine (INKContCall (txn_sm, 0, NULL);). The event
passed to main_handler is 0 (INK_EVENT_NONE).

10 The first thing main_handler does is examine the current txn_sm state by calling
INKContDataGet. The state is state_start.

11 main_handler invokes the handler for state_start by using the function pointer
TxnSMHandler (defined in TxnSM.h).

12 The state_start handler function (in TxnSM.c) is handed an event (at this stage, the
event is INK_EVENT_NET_ACCEPT) and a client vconnection. state_start checks to see if
this client vconnection is closed; if not, state_start attempts to read data from the
62 About the sample protocol

client vconnection into an INKIOBuffer. (state_start is handling the event it
receives).

13 state_start changes the current handler to state_interface_with_client.
(Updates the state of the transaction to the next state).

14 state_start initiates a read of the client vconnection (arranges for Traffic Edge to
send INK_EVENT_VCONN_READ_READY events to the TSM), by calling INKVConnRead.

15 state_interface_with_client is activated by the next event from Traffic Edge. It
checks for errors, and examines the read VIO for the read operation initiated by
INKVConnRead.

16 If the read VIO is the client_read_VIO (which we are expecting at this stage in the
transaction), state_interface_with_client updates the state to
state_read_request_from_client.

17 state_read_request_from_client handles actual INK_EVENT_READ_READY events
and reads the client request.

18 state_read_request_from_client parses the client request.

19 state_read_request_from_client updates the state to the next state,
state_handle_cache_lookup.

20 state_read_request_from_client arranges for Traffic Edge to call back the TSM
with the next set of events , initiating the cache lookup, by calling INKCacheRead.

21 When the INKCacheRead sends the TSM INK_EVENT_OPEN_READ (a cache hit) or
INK_EVENT_OPEN_READ_FAILED (a cache miss), main_handler calls
state_handle_cache_lookup.
New Protocol Plugins 63

64 About the sample protocol

CHAPTER 6 HTTP Hooks and Transactions
Hooks are points in Traffic Edge transaction processing where plugins can step in and do
some work. Registering a plugin function for callback amounts to “adding” the function
to a hook. You can register your plugin to be called back for every single transaction, or for
specific transactions only.

This chapter contains the following sections:

■ “Adding hooks” on page 67

■ “HTTP sessions” on page 68

■ “HTTP transactions” on page 69

■ “Intercepting HTTP Transactions” on page 73

■ “Initiate HTTP Connection” on page 73

■ “HTTP alternate selection” on page 73

Transformation hooks are discussed in “Transformations” on page 42.

The set of hooks
First you need the following terminology

 HTTP
transaction

A transaction consists of a single HTTP request from a client and the response that Traffic
Edge sends to that client. A transaction begins when Traffic Edge receives a request, and
ends when Traffic Edge sends the response.

Traffic Edge uses HTTP state machines to process transactions. The state machines follow
a complex set of states involved in sophisticated caching and document retrieval (taking
into account, for example, alternate selection, freshness criteria, and hierarchical caching).
The Traffic Edge API provides hooks to a subset of these states, illustrated in Figure 16, on
page 66.

 transform
hooks

The two transform hooks, INK_HTTP_REQUEST_TRANSFORM_HOOK and
INK_HTTP_RESPONSE_TRANSFORM_HOOK are called in the course of an HTTP transform. To
see where in the HTTP transaction they are called, look for the “set up transform” ovals in
Figure 16, on page 66.

 HTTP
session

A session consists of a single client connection to Traffic Edge. A session can consist of
several transactions, in succession. The session starts when the client connection opens,
and ends when the connection closes.

Figure 16 HTTP transaction state diagram

accept

INK_HTTP_TXN_START_HOOK

read req hdrs

INK_HTTP_READ_REQUEST_HDR_HOOK

DNS

INK_HTTP_OS_DNS_HOOK

cache lookup

INK_HTTP_SELECT_ALT_HOOK

cache match

INK_HTTP_READ_CACHE_HDR_HOOK

cache fresh

freshstale

miss

matchno match

hit

lock URL in cache

send cached hdrs

pick address

try connect

INK_HTTP_SEND_REQUEST_HDR_HOOK

set up cache read

send req hdrs

set up POST/PUT read

set up req transform

tunnel req body

read reply hdrs

INK_HTTP_READ_RESPONSE_HDR_HOOK

check valid

set up server read

set up cache write

set up transform

INK_HTTP_SEND_RESPONSE_HDR_HOOK

send reply hdrs

tunnel response

INK_HTTP_TXN_CLOSE_HOOK

POST/PUT

GET

fail

no

yes

cachable
uncachable

success

INK_HTTP_CACHE_LOOKUP_COMPLETE_HOOK

req transform takes place here

response transform takes place here

miss no match
66 The set of hooks

Adding hooks
There are several ways of adding hooks to your plugin.

 global
HTTP hooks

HTTP transaction hooks are set on a global basis using the function INKHttpHookAdd. This
means that the continuation specified as the parameter to INKHttpHookAdd is called for
every transaction. INKHttpHookAdd must be used in INKPluginInit.

 transaction
hooks

Transaction hooks can be used to call plugins back for a specific HTTP transaction. You
cannot add transaction hooks in INKPluginInit; you first need a handle to a transaction.
See “Accessing the Transaction Being Processed” on page 33.

 transforma
tion hooks

Transformation hooks are a special case of transaction hooks. See
“INKVConnCacheObjectSizeGet” on page 220 for more information on the transformation
hooks. You add a transformation hook using INKHttpTxnHookAdd, described in “HTTP
transactions” on page 69.

 session
hooks

An HTTP session starts when a client opens a connection to Traffic Edge and ends when
the connection closes. A session can consist of several transactions. Session hooks allow
you to hook your plugin to a particular point in every transaction within a specified
session. See “HTTP sessions” on page 68. Session hooks are added in a manner similar to
transaction hooks (you first need a handle to an HTTP session).

 HTTP
select

alternate
hook

Alternate selection hooks allow you to hook on to the alternate selection state. These
hooks must be added globally, since Traffic Edge does not have a handle to a transaction
or session when alternate selection is taking place. See “HTTP alternate selection” on page 73
for information on the alternate selection mechanism.

All of the hook addition functions (INKHttpHookAdd, IINKHttpSsnHookAdd,
INKHttpSsnReenable)take an INKHttpHookID identifying the hook to add on to and an
INKCont which is the basic callback mechanism in Traffic Edge. A single INKCont can be
added to any number of hooks at a given time.

An HTTP hook is identified by the enumerated type INKHttpHookID. The values for
INKHttpHookID are:

Values for INKHttpHookID Description

INK_HTTP_READ_REQUEST_HDR_H
OOK

Called immediately after the request header is read
from the client.

Corresponds to the event
INK_EVENT_HTTP_READ_REQUEST_HDR.

INK_HTTP_OS_DNS_HOOK Called immediately after the HTTP state machine
has completed a DNS lookup of the origin server.
The HTTP state machine will know the origin
server's IP address at this point which is useful for
performing both authentication and blacklisting.

Corresponds to the event
INK_EVENT_HTTP_OS_DNS.

INK_HTTP_SEND_REQUEST_HDR_H
OOK

Called immediately before the proxy's request
header is sent to the origin server or the parent
proxy. Notice that this hook will not be called if the
document is being served from cache. This hook is
usually used for modifying the proxy's request
header before it is sent to the origin server or parent
proxy.
HTTP Hooks and Transactions 67

The function you use to add a global HTTP hook is “INKHttpHookAdd” on page 151.

HTTP sessions
An HTTP session is an object that is defined for the lifetime of a client’s TCP session. The
Traffic Edge API allows you to add a global hook to the start or end of an HTTP session,

INK_HTTP_READ_CACHE_HDR_HOO
K

Called immediately after the request and response
header of a previously cached object is read from
cache. Notice that this hook will only be called if the
document is being served from cache.

Corresponds to the event
INK_EVENT_HTTP_READ_CACHE_HDR.

INK_HTTP_READ_RESPONSE_HDR_
HOOK

Called immediately after the response header is
read from the origin server or parent proxy.

Corresponds to the event
INK_EVENT_HTTP_READ_RESPONSE_HDR.

INK_HTTP_SEND_RESPONSE_HDR_
HOOK

Called immediately before the proxy's response
header is written to the client. This hook is usually
used for modifying the response header.

Corresponds to the event
INK_EVENT_HTTP_SEND_RESPONSE_HDR.

INK_HTTP_REQUEST_TRANSFORM_
HOOK

See “Transformations” on page 42 for information on
the transformation hooks.

INK_HTTP_RESPONSE_TRANSFOR
M_HOOK

See “Transformations” on page 42 for information on
the transformation hooks.

INK_HTTP_TXN_START_HOOK Called when an HTTP transaction is started. A
transaction starts when either a client connects to
Traffic Edge and data is available on the connection
or a previous client connection left open for keep
alive has new data available.

INK_HTTP_TXN_CLOSE_HOOK Called when an HTTP transaction ends.

INK_HTTP_SELECT_ALT_HOOK See “HTTP alternate selection” on page 73 for
information on the alternate selection mechanism.

INK_HTTP_SSN_START_HOOK Called when an HTTP session is started. A session
starts when a client connects to Traffic Edge. You
can only add this hook as a global hook.

INK_HTTP_SSN_CLOSE_HOOK Called when an HTTP session ends. A session ends
when the client connection is closed. You can only
add this hook as a global hook.

INK_HTTP_CACHE_LOOKUP_COMPL
ETE_HOOK

Called once the HTTP state machine has
commpleted the cache lookup for the document
requested in the ongoing transaction. Register this
hook either using either INKHttpTxnHookAdd or
INKHttpHookAdd. Corresponds to the event
INK_EVENT_HTTP_CACHE_LOOKUP_COMPLETE.

Values for INKHttpHookID Description
68 HTTP sessions

and you can add session hooks that call back your plugin for every transaction within a
given session.

When a client connects to Traffic Edge it opens up a TCP connection and sends one or
more HTTP requests. An individual request and its response make up an HTTP
transaction. The HTTP session begins when the client opens the connection, and ends
when the connection closes.

The HTTP session hooks are:

You use the session hooks to get a handle to a session (an INKHttpSsn object) and then if
you want your plugin to be called back for each transaction within the session, you use
INKHttpSsnHookAdd.

Note that you must reenable the session with INKHttpSsnReenable after processing a
session hook.

The session hook functions are:

■ “IINKHttpSsnHookAdd” on page 152

■ “INKHttpSsnReenable” on page 153

HTTP transactions
The HTTP transaction functions allow you to set up plugin callbacks to HTTP
transactions, and obtain and modify information about particular HTTP transactions.

As described in the section on HTTP sessions, an HTTP transaction is an object defined for
the lifetime of a single request from a client and the response from Traffic Edge. The
INKHttpTxn structure is the main handle given to a plugin for manipulating internal state
about a transaction. Additionally, an HTTP transaction has a reference back to the HTTP
session that created it.

Below is a sample of code that illustrates how to register locally to a transaction and
associate data to the transaction.

/*

 * Simple plugin that illustrates:

 * - how to register locally to a txn

 * - how to deal with data associated to a txn

 *

 * Note: for code lisibility, error checking is omitted

 */

INK_HTTP_SSN_START_HOOK Called when an HTTP session is started. A session
starts when a client connects to Traffic Edge. This hook
must be added as a global hook.

INK_HTTP_SSN_CLOSE_HOOK Called when an HTTP session ends. A session ends
when the client connection is closed. This hook must be
added as a global hook.
HTTP Hooks and Transactions 69

#include "InkAPI.h"

#define DBG_TAG "txn"

/* Structure to be associated to txns */

typedef struct {

 int i;

 float f;

 char *s;

} TxnData;

/* Allocate memory and init a TxnData structure */

TxnData *

txn_data_alloc()

{

 TxnData *data;

 data = INKmalloc(sizeof(TxnData));

 data->i = 1;

 data->f = 0.5;

 data->s = "Constant String";

 return data;

}

/* Free up a TxnData structure */

void

txn_data_free(TxnData *data)

{

 INKfree(data);

}

/* handler for event READ_REQUEST and TXN_CLOSE */

static int

local_hook_handler (INKCont contp, INKEvent event, void *edata)

{

 INKHttpTxn txnp = (INKHttpTxn) edata;

 TxnData *txn_data = INKContDataGet(contp);
70 HTTP transactions

 switch (event) {

 case INK_EVENT_HTTP_READ_REQUEST_HDR:

 /* Modify values of txn data */

 txn_data->i = 2;

 txn_data->f = 3.5;

 txn_data->s = "Constant String 2";

 break;

 case INK_EVENT_HTTP_TXN_CLOSE:

 /* Print txn data values */

 INKDebug(DBG_TAG, "Txn data i=%d f=%f s=%s", txn_data->i, txn_data->f,
txn_data->s);

 /* Then destroy the txn cont and it's data */

 txn_data_free(txn_data);

 INKContDestroy(contp);

 break;

 default:

 INKAssert(!"Unexpected event");

 break;

 }

 INKHttpTxnReenable(txnp, INK_EVENT_HTTP_CONTINUE);

 return 1;

}

/* Handler for event TXN_START */

static int

global_hook_handler (INKCont contp, INKEvent event, void *edata)

{

 INKHttpTxn txnp = (INKHttpTxn) edata;

 INKCont txn_contp;

 TxnData *txn_data;

 switch (event) {

 case INK_EVENT_HTTP_TXN_START:

 /* Create a new continuation for this txn and associate data to it */

 txn_contp = INKContCreate(local_hook_handler, INKMutexCreate());

 txn_data = txn_data_alloc();

 INKContDataSet(txn_contp, txn_data);

 /* Registers locally to hook READ_REQUEST and TXN_CLOSE */
HTTP Hooks and Transactions 71

 INKHttpTxnHookAdd(txnp, INK_HTTP_READ_REQUEST_HDR_HOOK, txn_contp);

 INKHttpTxnHookAdd(txnp, INK_HTTP_TXN_CLOSE_HOOK, txn_contp);

 break;

 default:

 INKAssert(!"Unexpected event");

 break;

 }

 INKHttpTxnReenable(txnp, INK_EVENT_HTTP_CONTINUE);

 return 1;

}

void

INKPluginInit (int argc, const char *argv[])

{

 INKCont contp;

 /* Note that we do not need a mutex for this txn as it registers globally

 and doesn't have any data associated with it */

 contp = INKContCreate(global_hook_handler, NULL);

 /* Register gloabally */

 INKHttpHookAdd(INK_HTTP_TXN_START_HOOK, contp);

}

See “Adding hooks” on page 67 for background about HTTP transactions, and HTTP hooks.
See Figure 16, on page 66, for an illustration of the steps involved in a typical HTTP
transaction.

The HTTP transaction functions are:

■ “INKHttpTxnCacheLookupStatusGet” on page 154

■ “INKHttpTxnCachedReqGet” on page 154

Note that it is an error to modify cached headers.

■ “INKHttpTxnCachedRespGet” on page 155

Note that it is an error to modify cached headers.

■ “INKHttpTxnClientIncomingPortGet” on page 155

■ “INKHttpTxnClientIPGet” on page 155

■ “INKHttpTxnClientRemotePortGet” on page 156
72 HTTP transactions

■ “NKHttpTxnClientReqGet” on page 156

Plugins that must read client request headers use this call to retrieve the HTTP header.

■ “INKHttpTxnClientRespGet” on page 156

■ “INKHttpTxnErrorBodySet” on page 157

■ “INKHttpTxnHookAdd” on page 157

■ “INKHttpTxnNextHopIPGet” on page 158

■ “INKHttpTxnNextHopIPGet” on page 158

■ “INKHttpTxnParentProxySet” on page 158

■ “INKHttpTxnReenable” on page 159

■ “INKHttpTxnServerIPGet” on page 159

■ “INKHttpTxnServerReqGet” on page 160

■ “INKHttpTxnServerRespGet” on page 160

■ “INKHttpTxnSsnGet” on page 160

■ “INKHttpTxnTransformedRespCache” on page 161

■ “INKHttpTxnTransformRespGet” on page 161

■ “INKHttpTxnUntransformedRespCache” on page 162

Intercepting HTTP Transactions
The intercepting HTTP transaction functions provide plugins the ability to intercept
transactions either after the request is received or on contact with the origin server. The
plugin acts as the origin server using the INKVConn interface. Allows both for reading
POST bodies in plugins as well as using alternative transports to the origin server.

The intercepting HTTP transaction functions are:

■ “INKHttpTxnIntercept” on page 163

■ “INKHttpTxnServerIntercept” on page 164

Initiate HTTP Connection
The initiate HTTP connection function allows plugins to initiate HTTP transactions. The
initiate HTTP connection function is:

■ “INKHttpConnect” on page 162

HTTP alternate selection
The HTTP alternate selection functions provide a mechanism for hooking into Traffic
Edge’s alternate selection mechanism and augmenting it with additional information.
HTTP Hooks and Transactions 73

HTTP alternate selection refers to the process of choosing between several alternate
versions of a document for a given URL. Alternates arise because the HTTP 1.1
specification allows different documents to be sent back for the same URL depending on
the clients request. For example, a server might send back a GIF image to a client who
only accepts GIF images and might send back a JPEG image to a client who only accepts
JPEG images.

The alternate selection mechanism is invoked when Traffic Edge looks up a URL in its
cache. For each URL Traffic Edge stores a vector of alternates. For each alternate in this
vector, Traffic Edge computes a quality value between 0 and 1 for how “good” the
alternate is. A quality value of 0 means that the alternate is unacceptable. A quality value
of 1 means that the alternate is a perfect match.

If a plugin hooks onto theINK_HTTP_SELECT_ALT_HOOK it will be called back when Traffic
Edge performs alternate selection. You cannot register locally to the hook
INK_HTTP_SELECT_ALT_HOOK by using INKHttpTxnHookAdd, but by using only
INKHttpHookAdd. It is only valid to hook onto the global list of
INK_HTTP_SELECT_ALT_HOOK’s since Traffic Edge does not actually have an HTTP
transaction or an HTTP session on hand when alternate selection is performed. Traffic
Edge calls each of the select alternate hooks with the event
INK_EVENT_HTTP_SELECT_ALT. The void *edata argument that is passed to the
continuation is a pointer to an INKHttpAltInfo structure. It can be used later to call the
HTTP alternate selection functions listed at the end of this section. Unlike other hooks,
this alternate selection callout is non-blocking and the expectation is that the quality value
for the alternate will be changed by a call to INKHttpAltInfoQualitySet.

 Note HTTP SM does not have to be reenabled using INKHttpTxnReenable or any other APIs.
Just return from the function.

Below is a sample of code that illustrates how to call the Alternate APIs.

static void handle_select_alt(INKHttpAltInfo infop)

{

 INKMBuffer client_req_buf, cache_resp_buf;

 INKMLoc client_req_hdr, cache_resp_hdr;

 INKMLoc accept_transform_field;

 INKMLoc content_transform_field;

 int accept_transform_len = -1, content_transform_len = -1;

 const char* accept_transform_value = NULL;

 const char* content_transform_value = NULL;

 int content_plugin, accept_plugin;

 float quality;

 /* get client request, cached request and cached response */

 INKHttpAltInfoClientReqGet (infop, &client_req_buf, &client_req_hdr);

 INKHttpAltInfoCachedRespGet(infop, &cache_resp_buf, &cache_resp_hdr);
74 HTTP alternate selection

 /* get the Accept-Transform field value from the client request */

 accept_transform_field = INKMimeHdrFieldFind(client_req_buf,
client_req_hdr, "Accept-Transform", -1);

 if (accept_transform_field) {

 INKMimeHdrFieldValueStringGet(client_req_buf, client_req_hdr,
accept_transform_field,

 0, &accept_transform_value,
&accept_transform_len);

 INKDebug(DBG_TAG, "Accept-Transform = |%s|",
accept_transform_value);

 }

 /* get the Content-Transform field value from cached server response
*/

 content_transform_field = INKMimeHdrFieldFind(cache_resp_buf,
cache_resp_hdr, "Content-Transform", -1);

 if (content_transform_field) {

 INKMimeHdrFieldValueStringGet(cache_resp_buf, cache_resp_hdr,
content_transform_field,

 0, &content_transform_value,
&content_transform_len);

 INKDebug(DBG_TAG, "Content-Transform = |%s|",
content_transform_value);

 }

 /* compute quality */

 accept_plugin = (accept_transform_value && (accept_transform_len > 0)
&&

 (strncmp(accept_transform_value, "plugin",
accept_transform_len) == 0));

 content_plugin = (content_transform_value && (content_transform_len >
0) &&

 (strncmp(content_transform_value, "plugin",
content_transform_len) == 0));

 if (accept_plugin) {

 quality = content_plugin ? 1.0 : 0.0;

 } else {

 quality = content_plugin ? 0.0 : 0.5;

 }

 INKDebug(DBG_TAG, "Setting quality to %3.1f", quality);

 /* set quality for this alternate */

 INKHttpAltInfoQualitySet(infop, quality);
HTTP Hooks and Transactions 75

 /* cleanup */

 if (accept_transform_value)

 INKHandleStringRelease(client_req_buf, accept_transform_field,
accept_transform_value);

 if (accept_transform_field)

 INKHandleMLocRelease(client_req_buf, client_req_hdr,
accept_transform_field);

 INKHandleMLocRelease(client_req_buf, INK_NULL_MLOC, client_req_hdr);

 if (content_transform_value)

 INKHandleStringRelease(cache_resp_buf, content_transform_field,
content_transform_value);

 if (content_transform_field)

 INKHandleMLocRelease(cache_resp_buf, cache_resp_hdr,
content_transform_field);

 INKHandleMLocRelease(cache_resp_buf, INK_NULL_MLOC, cache_resp_hdr);

}

static int alt_plugin(INKCont contp, INKEvent event, void *edata)

{

 INKHttpAltInfo infop;

 switch (event) {

 case INK_EVENT_HTTP_SELECT_ALT:

 infop = (INKHttpAltInfo)edata;

 handle_select_alt(infop);

 break;

 default:

 break;

 }

 return 0;

}

void INKPluginInit (int argc, const char *argv[])

{

 INKHttpHookAdd(INK_HTTP_SELECT_ALT_HOOK, INKContCreate (alt_plugin,
NULL));
76 HTTP alternate selection

}

Traffic Edge augments the alternate selection through these callouts using the following
algorithm.

1 Traffic Edge computes its own quality value for the alternate. Traffic Edge takes into
account the quality of the accept match, the encoding match and the language match.

2 Traffic Edge then calls out each of the continuations on the global
INK_HTTP_SELECT_ALT_HOOK’s list.

3 It multiplies its quality value with the value returned by each callout. Since all of the
values are clamped to be between 0 and 1, the final value will be between 0 and 1.

4 This algorithm also ensures that a single callout can block the usage of a given
alternate by specifying a quality value of 0.

A common usage for the alternate selection mechanism is when a plugin transforms a
document for some clients and not for others and wants to store both the transformed and
un-transformed document. The client’s request would specify whether it accepted the
transformed document and the plugin could then determine if the alternate matched this
specification and set the quality level for the alternate appropriately.

The HTTP alternate selection functions are:

■ “INKHttpAltInfoCachedReqGet” on page 165

■ “INKHttpAltInfoCachedRespGet” on page 166

■ “INKHttpAltInfoClientReqGet” on page 166

■ “INKHttpAltInfoQualitySet” on page 166
HTTP Hooks and Transactions 77

78 HTTP alternate selection

CHAPTER 7 Miscellaneous Interface Guide
Most of the functions in the Traffic Edge API provide an interface to specific code modules
within Traffic Edge. The miscellaneous functions described in this chapter provide some
useful general capabilities:

■ “Debugging functions” on page 79

■ “The INKfopen family” on page 79

■ “Memory allocation” on page 80

■ “Thread functions” on page 80

While the C library already provides functions such as printf, malloc, and fopen that
perform these tasks, the Traffic Edge API versions overcome various C library limitations
(such as portability to all Traffic Edge-supported platforms).

Debugging functions
The debugging functions give you the following debugging capabilities:

■ “INKDebug” on page 143 prints out a formatted statement if you are running Traffic
Edge in debug mode.

■ “INKIsDebugTagSet” on page 144 finds out if a debug tag is set. If the debug tag is set,
Traffic Edge prints out any debug statements associated to the debug tag.

■ “INKError” on page 144 prints error messages to Traffic Edge’s error log.

■ “INKAssert” on page 144 allows the use of assertion in a plugin.

■ “INKReleaseAssert” on page 145 allows the use of assertion in a plugin.

The INKfopen family
The fopen family of functions in C is normally used for reading configuration files, since
fgets is an easy way to parse files on a line by line basis. The INKfopen family of
functions is aimed at solving the same problem of buffered IO and line at a time IO in a
platform independent manner. The INKfopen family of functions works exactly the same
under Microsoft Windows NT as it does under any of the Unix platforms Traffic Edge
runs on. Further, the fopen family of C library functions can only open a file if a file
descriptor less than 256 is available. Traffic Edge often has more than 2000 file descriptors
open at once, making the likelihood of an available file descriptor less than 256 very small.
The INKfopen family can open files with descriptors greater than 256.

 INKfopen
not optimized

for speed

The INKfopen family of routines is not intended for high speed IO or for flexibility, but
are blocking APIs, not asynchronous. Thus, for performance reasons, it is recommended
not to directly use these APIs on a TS thread (when being called back on an HTTP hook).
It is better to use a separate thread for doing the blocking IO. The INKfopen family is
intended for reading and writing configuration information when corresponding usage of
the fopen family of functions is inappropriate because of file descriptor and portability
limitations. The INKfopen family of functions consists of:

■ “INKfclose” on page 146

■ “INKfflush” on page 146

■ “INKfgets” on page 146

■ “INKfopen” on page 146

■ “INKfread” on page 147

■ “INKfwrite” on page 148

Memory allocation
Traffic Edge provides five routines for allocating and freeing memory. These routines
correspond to similar routines in the C library. For example, INKrealloc behaves like the
C library routine realloc. There are two reasons to use the routines provided by Traffic
Edge. The first is portability. The Traffic Edge API routines behave the same on all of
Traffic Edge’s supported platforms. For example, realloc does not accept an argument of
NULL on some platforms. The second reason is that the Traffic Edge routines actually track
the memory allocations by file and line number. This tracking is very efficient, is always
turned on, and is useful for tracking down memory leaks.

The memory allocation functions are:

■ “INKfree” on page 148

■ “INKmalloc” on page 148

■ “INKrealloc” on page 149

■ “INKstrdup” on page 149

■ “INKstrndup” on page 149

Thread functions
The Traffic Edge API thread functions enable you to create, destroy, and identify threads
within Traffic Edge. Multithreading enables a single program to have more than one
stream of execution and to process more than one transaction at a time.

Threads serialize their access to shared resources and data using the INKMutex type,
described in “Mutexes” on page 101.

The thread functions are:
80 Memory allocation

■ “INKThreadCreate” on page 150

■ “INKThreadDestroy” on page 150

■ “INKThreadInit” on page 151

■ “INKThreadSelf” on page 151
Miscellaneous Interface Guide 81

82 Thread functions

CHAPTER 8 HTTP Headers
This chapter is about the functions used to manipulate HTTP headers.

■ “About HTTP headers” on page 83

■ “Guide to Traffic Edge HTTP header system” on page 87

■ “Marshal buffers” on page 91

■ “HTTP headers” on page 91

■ “URLs” on page 94

■ “MIME headers” on page 95

About HTTP headers
An HTTP message consists of:

■ An HTTP header

■ body

■ trailer

The HTTP header consists of:

■ Request or response line

◆ An HTTP request line is composed of a method, a URL and version

◆ A response line is composed of a version, a status code and a reason phrase

■ MIME header

A MIME header is made up of zero or more MIME fields. A MIME field is composed of a
field name, a colon and zero or more field values. The values in a field are separated by
commas.

An HTTP header containing a request line is usually referred to as a request. The
following example shows a typical request header.

 Example
request

GET http://www.inktomi.com/ HTTP/1.0

Proxy-Connection: Keep-Alive

User-Agent: Mozilla/4.08 [en] (X11; I; Linux 2.2.3 i686)

Host: www.inktomi.com

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */
*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1, *, utf-8

The response header for the above request might look like the following:

 Example
response

HTTP/1.0 200 OK

Date: Mon, 29 Mar 1999 06:57:43 GMT

Content-Location: http://locutus.inktomi.com/index.html

Etag: "07db14afa76be1:1074"

Last-Modified: Thu, 25 Mar 1999 20:01:38 GMT

Content-Length: 7931

Content-Type: text/html

Server: Microsoft-IIS/4.0

Age: 922

Proxy-Connection: close

The following figure illustrates an HTTP message, with the HTTP header blown up:

Figure 17 HTTP request/response and header structure

The following figure gives examples of HTTP request and response headers.

HTTP request

HTTP header

body

trailer

request or

MIME header

MIME field

. . .

HTTP header

or response

name:value

MIME field
name:value

response line
84 About HTTP headers

Figure 18 Examples of HTTP request and response headers

 accessing
HTTP header

data

The marshal buffer or INKMBuffer is a heap data structure that stores parsed URLs,
MIME headers and HTTP headers. You can allocate new objects out of marshal buffers,
and change the values within the marshal buffer. Whenever you manipulate an object,
you require the handle to the object (INKMLoc) and the marshal buffer containing the
object (INKMBuffer).

request line

GET http://www.inktomi.com/ HTTP/1.0

MIME header

Proxy-Connection: Keep-Alive

User-Agent: Mozilla/4.08 [en]

Accept: image/gif, */*

Accept-Charset: iso-8859-1, *

M
IM

E
 fi

el
ds

HTTP header: request example

response line

HTTP/1.0 200 OK

MIME header

Date: Mon, 03 Jul 2000 06:57:43 GMT

Content-Location: http://a.b.com/index.html

Content-Type: text/html

M
IM

E
 fi

el
ds

HTTP header: response example

Content-Length: 7931

Proxy-Connection: close
HTTP Headers 85

Figure 19 Marshal buffers and header locations

Figure 19 shows:

■ The marshal buffer containing the HTTP request, reqest_bufp

■ INKMLoc location pointer for the HTTP header (http_hdr_loc)

■ INKMLoc location pointer for the request URL (url_loc)

■ INKMLoc location pointers for the MIME header (mime_hdr_loc)

■ INKMLoc location pointers for MIME fields (fieldi_loc)

■ INKMLoc location pointer for the next duplicate MIME field (next_dup_loc)

The diagram also shows that an HTTP header contains pointers to the URL location and
the MIME header location. You can obtain the URL location from an HTTP header using
the function INKHttpHdrUrlGet. To work with MIME headers, you can pass either a
MIME header location or an HTTP header location to MIME header functions . If you pass

User-Agent: Mozilla/4.08 [en]

Accept: image/gif, */*

Accept: image/jpg

field3_locfield4_loc

request_bufp

http://www.inktomi.com/ HTTP/1.0

method: GET

http_hdr_loc

Proxy-Connection: Keep-Alive
field1_loc

field2_loc

mim
e_hdr_loc

M
IM

E
 h

ea
de

r

URL:
version: HTTP/1.1

MIME header:

url_loc

HTTP header

next_dup_loc
86 About HTTP headers

an HTTP header to a MIME header function, the system locates the associated MIME
header and executes the MIME header function on the MIME header location.

Guide to Traffic Edge HTTP header system
Please read this section.

IMPORTANT Previous versions of Traffic Edge are named Traffic Server. Throughout this manual,
Traffic Server, Traffic Server 3.0, Traffic Server 3.5, and Traffic Server 5.2 refer to previous
versions of Traffic Edge. For version checking, Traffic Edge 1.5 is equivalent to Traffic
Server 5.5.

Older (pre-4.0) versions of Traffic Server’s header processing system analysed and
disassembled HTTP headers for convenience, at considerable performance cost. New
performance enhancements do not assume this breakdown and reassembly. The
consequences are the following.

No null-terminated strings

In Traffic Server 5.2 and newer, you cannot assume that the string data contained in
marshal buffers (data such as URLs and MIME fields) is stored in null-terminated string
copies. This means that your plugins should always use the length parameter when
retrieving or manipulating these strings. You cannot pass in NULL for string-length return
values. String values returned from marshall buffers are not null-terminated. If you need a
null-terminated value, use INKstrndup to automatically null-terminate a string. The
strings that come back, which are not null-terminated, cannot be passed into the common
str*() routines.

 Note Values returned from a marshall buffer can be NULL, which means the field or object
requested does not exist.

For example (from the blacklist-1 sample):

char *host_string;

int host_length;

host_string = INKUrlHostGet (bufp, url_loc, &host_length);

for (i = 0; i < nsites; i++) {

if (strncmp (host_string, sites[i], host_length) == 0) {

...

}

See the sample plugins for more examples.

Duplicate MIME fields are not coalesced

MIME headers may contain more than one MIME field with the same name. Pre-4.0
versions of Traffic Server joined multiple fields with the same name into one field with
composite values. This behavior comes at a performance cost, and causes interoperability
problems with some older clients and servers. Traffic Server 4.0 and newer ceases
coalescing duplicate fields.
HTTP Headers 87

Correctly behaving plugins should check for the presence of duplicate fields, and iterate
over the duplicate fields, by using INKMimeHdrFieldNextDup (see
“INKMimeHdrFieldNextDup” on page 191).

MIME fields always belong to an associated MIME header

In Traffic Server versions 4.0 and newer, you cannot create a new MIME field without an
associated MIME header or HTTP header; MIME fields are always seen as part of a MIME
header or HTTP header.

To use a MIME field, you must specify the MIME header or HTTP header to which it
belongs. This header is called the field’s parent header. The INKMimeField* functions in
pre-2.0 versions of the SDK, which do not require the parent header as inputs, have been
deprecated. SDK 2.0 has new functions, the INKMimeHdrField* series, that require you to
specify the location of the parent header along with the location of the MIME field. For
every deprecated INKMimeField* function, there is a new preferred INKMimeHdrField*
function. Use the INKMimeHdrField* functions instead of the deprecated INKMimeField*
series. Here are some examples:

Instead of:

INKMLoc INKMimeFieldCreate (INKMBuffer bufp)

Use:

INKMLoc INKMimeHdrFieldCreate (INKMBuffer bufp, INKMLoc hdr)

Instead of:
void INKMimeFieldCopyValues (INKMBuffer dest_bufp, INKMLoc dest_offset,

INKMBuffer src_bufp, INKMLoc src_offset)

Use:
void INKMimeHdrFieldCopyValues (INKMBuffer dest_bufp, INKMLoc dest_hdr,

INKMLoc dest_field, INKMBuffer src_bufp, INKMLoc src_hdr, INKMLoc
src_field)

In the INKMimeHdrField* function prototypes, the INKMLoc field corresponds to the
INKMLoc offset used the INKMimeField* functions. See the discussion of parent INKMLoc
in the following section.

Release marshal buffer handles

When you fetch a component object or create a new object, you get back a handle to the
object location. The handle is either an INKMLoc for an object location, or a char * for a
string location. You can manipulate the object through these handles, but when you are
finished, you need to release the handle to free up system resources.

The general guideline is to release all INKMLoc and string handles you retrieve. The one
exception is the string returned by INKUrlStringGet, which must be freed by a call to
INKfree.

 the parent
location

The handle release functions expect three arguments: the marshal buffer containing the
data, the location of the parent object, and the location of the object to be released. The
parent location is usually clear from the creation of the INKMLoc or string; for example, if
your plugin had the following calls:

url_loc = INKHttpHdrUrlGet (bufp, hdr_loc);
88 Guide to Traffic Edge HTTP header system

host_string = INKUrlHostGet (bufp, url_loc, &host_length);

Your plugin would have to call:

INKHandleStringRelease (bufp, url_loc, host_string);

INKHandleMLocRelease (bufp, hdr_loc, url_loc);

 null parent If an INKMLoc is obtained from a transaction, it does not have a parent INKMLoc. Use the
null INKMLoc constant INK_NULL_MLOC as its parent. For example, if your plugin calls:

INKHttpTxnClientReqGet (txnp, &bufp, &hdr_loc);

You must release hdr_loc with:

INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 when to
use null

parent

You need to use INK_NULL_MLOC to release any INKMLoc handles retrieved by the
INKHttpTxn*Get functions.

Here’s an example using a new INKMimeHdrField function:

INKHttpTxnServerRespGet(txnp, &resp_bufp, &resp_hdr_loc);

new_field_loc = INKMimeHdrFieldCreate (resp_bufp, resp_hdr_loc);

INKHandleMLocRelease (resp_bufp, resp_hdr_loc, new_field_loc);

INKHandleMLocRelease (resp_bufp, INK_NULL_MLOC, resp_hdr_loc);

See the sample plugins for many more examples.

 Tip Release handles before reenabling the HTTP transaction. In other words, call
INKHandleMLocRelease or INKHandleStringRelease before INKHttpTxnReenable. See
the sample code.

Deprecated functions

Several marshal buffer functions and MIME field functions are deprecated in this release.
The following marshal buffer functions are deprecated. Do not use them:

■ INKMBufferCompress

■ INKMBufferDataGet

■ INKMBufferDataSet

■ INKMBufferLengthGet

■ INKMBufferRef

■ INKMBufferUnref

The following MIME field functions are deprecated. If you need to support these
functions in existing code, documentation is provided in “Deprecated Functions” on page
253.

■ INKMimeFieldCreate

■ INKMimeFieldDestroy

■ INKMimeFieldCopy

■ INKMimeFieldCopyValues
HTTP Headers 89

■ INKMimeFieldNext

■ INKMimeFieldLengthGet

■ INKMimeFieldNameGet

■ INKMimeFieldNameSet

■ INKMimeFieldValuesClear

■ INKMimeFieldValuesCount

■ INKMimeFieldValueGet

■ INKMimeFieldValueGetInt

■ INKMimeFieldValueGetUint

■ INKMimeFieldValueGetDate

■ INKMimeFieldValueSet

■ INKMimeFieldValueSetInt

■ INKMimeFieldValueSetUint

■ INKMimeFieldValueSetDate

■ INKMimeFieldValueAppend

■ INKMimeFieldValueInsert

■ INKMimeFieldValueInsertInt

■ INKMimeFieldValueInsertUint

■ INKMimeFieldValueInsertDate

■ INKMimeFieldValueDelete

■ INKMimeHdrFieldValueGet

■ INKMimeHdrFieldValueGetDate

■ INKMimeHdrFieldValueGetInt

■ INKMimeHdrFieldValueGetUint

■ INKMimeHdrFieldValueInsert

■ INKMimeHdrFieldValueInsertDate

■ INKMimeHdrFieldValueInsertInt

■ INKMimeHdrFieldValueInsertUint

■ INKMimeHdrFieldValueSet

■ INKMimeHdrFieldValueSetDate

■ INKMimeHdrFieldValueSetInt

■ INKMimeHdrFieldValueSetUint

■ INKMimeHdrFieldDelete

■ INKMimeHdrFieldInsert

■ INKMimeHdrFieldRetrieve
90 Guide to Traffic Edge HTTP header system

Marshal buffers
The marshal buffer or INKMBuffer is a heap data structure that stores parsed URLs,
MIME headers and HTTP headers. You can allocate new objects out of marshal buffers,
and change the values within the marshal buffer. Whenever you manipulate an object,
you require the handle to the object (INKMLoc) and the marshal buffer containing the
object (INKMBuffer).

Routines exist for manipulating the object based on these two pieces of information. See,
for example:

■ “HTTP headers” on page 91

■ “URLs” on page 94

■ “MIME headers” on page 95

The marshal buffer functions allow you to create and destroy Traffic Edge’s marshal
buffers, which are the data structures that hold parsed URLs, MIME headers, and HTTP
headers.

 Caution Any marshal buffer fetched by INKHttpTxn*Get will be used by other parts of the system.
Be careful not to destroy these shared, transaction marshal buffers. In functions such as:

INKHttpTxnClientReqGet

INKHttpTxnClientRespGet

INKHttpTxnServerReqGet

INKHttpTxnServerRespGet

INKHttpTxnCachedReqGet

INKHttpTxnCachedRespGet

INKHttpTxnTransformRespGet

the parameters INKMBuffer, bufp, INKMLoc and loc are output parameters and the buffer
bufp should not be a created MBuffer. Also, the handle to the header (loc) should be
released using the INKHandleMLocRelease function. Lastly, the MBuffer returned by the
above functions should not be destroyed by the user.

The marshal buffer-specific functions are:

■ INKMBufferCreate

■ INKMBufferDestroy

HTTP headers
The Traffic Edge API HTTP header functions enable you to work with HTTP header data
stored in marshal buffers.

 HTTP
header data

structure

The HTTP header data structure is a parsed version of the HTTP header defined in the
HTTP protocol specification. An HTTP header is composed of a request or response line
followed by zero or more MIME fields. In fact, an HTTP header is a subclass of a MIME
header and all of the MIME header routines operate on HTTP headers.
HTTP Headers 91

An HTTP request line is composed of a method, a URL and version. A response line is
composed of a version, a status code and a reason phrase. See “About HTTP headers” on
page 83 for details and examples of HTTP headers.

In order to facilitate fast comparisons and to reduce storage size, Traffic Edge defines
several pre-allocated method names. These names correspond to the methods defined in
the HTTP 1.1 specification.

Traffic Edge also defines several common values that appear in HTTP headers.

Pre-allocated method names HTTP 1.1 method

INK_HTTP_METHOD_CONNECT "CONNECT"

 INK_HTTP_METHOD_DELETE "DELETE"

INK_HTTP_METHOD_GET "GET"

INK_HTTP_METHOD_HEAD "HEAD"

INK_HTTP_METHOD_ICP_QUERY "ICP_QUERY"

INK_HTTP_METHOD_OPTIONS "OPTIONS"

INK_HTTP_METHOD_POST "POST"

INK_HTTP_METHOD_PURGE "PURGE"

INK_HTTP_METHOD_PUT "PUT"

INK_HTTP_METHOD_TRACE "TRACE"

Traffic Edge definition HTTP header value

INK_HTTP_VALUE_BYTES "bytes"

INK_HTTP_VALUE_CHUNKED "chunked"

INK_HTTP_VALUE_CLOSE "close"

INK_HTTP_VALUE_COMPRESS "compress"

INK_HTTP_VALUE_DEFLATE "deflate"

INK_HTTP_VALUE_GZIP "gzip"

INK_HTTP_VALUE_IDENTITY "identity"

INK_HTTP_VALUE_KEEP_ALIVE "keep-alive"

INK_HTTP_VALUE_MAX_AGE "max-age"

INK_HTTP_VALUE_MAX_STALE "max-stale"

INK_HTTP_VALUE_MIN_FRESH "min-fresh"

INK_HTTP_VALUE_MUST_REVALID
ATE

"must-revalidate"

INK_HTTP_VALUE_NONE "none"

INK_HTTP_VALUE_NO_CACHE "no-cache"

INK_HTTP_VALUE_NO_STORE "no-store"

INK_HTTP_VALUE_NO_TRANSFOR
M

"no-transform"

INK_HTTP_VALUE_ONLY_IF_CACH
ED

"only-if-cached"

INK_HTTP_VALUE_PRIVATE "private"

INK_HTTP_VALUE_PROXY_REVALI
DATE

"proxy-revalidate"
92 HTTP headers

The method names and header values above are defined in InkAPI.h as const char*
strings. When Traffic Edge sets a method or a header value it makes a quick check to see if
the new value is one of the known values. If it is, instead of storing the known value in the
marshal buffer it stores a pointer into a global table. The method names and header values
listed above are also pointers into this table. This allows simple pointer comparison of the
value returned from INKHttpMethodGet with one of the values listed above. It is also
recommended that you use the above values when referring to one of the known schemes
as doing so removes the possibility of a spelling error.

The HTTP header functions are:

■ INKHttpHdrClone

■ INKHttpHdrCopy

■ INKHttpHdrCreate

■ INKHttpHdrDestroy

■ INKHttpHdrLengthGet

■ INKHttpHdrMethodGet

■ INKHttpHdrMethodSet

■ INKHttpHdrPrint

■ INKHttpHdrReasonGet

■ INKHttpHdrReasonLookup

■ INKHttpHdrReasonSet

■ INKHttpHdrStatusGet

■ INKHttpHdrStatusSet

■ INKHttpHdrTypeGet

■ INKHttpHdrTypeSet

■ INKHttpHdrUrlGet

■ INKHttpHdrUrlSet

■ INKHttpHdrVersionGet

■ INKHttpHdrVersionSet

■ INKHttpParserClear

■ INKHttpParserCreate

■ INKHttpParserDestroy

■ INKHttpHdrParseReq

■ INKHttpHdrParseResp

INK_HTTP_VALUE_PUBLIC "public"

INK_HTTP_VALUE_S_MAX_AGE "s-maxage"

Traffic Edge definition HTTP header value
HTTP Headers 93

URLs
The URL data structure is a parsed version of a standard internet URL. The Traffic Edge
API URL functions provide access to URL data stored in marshal buffers. The URL
functions can create, copy, retrieve or delete entire URLs, and retrieve or modify parts of
URLs, such as their port or scheme information.

 URL
structure

The general form of an Internet URL is:

scheme://user:password@host:port/stuff

The URL data structure includes support for two specific types of internet URLs. HTTP
URLs have the form:

http://user:password@host:port/path;params?query#fragment

FTP URLs have the form:

ftp://user:password@host:port/path;type=val

 URL data
storage

The URL port and FTP type are stored as integers. All remaining parts of the URL (the
scheme, user, etc.) are stored as strings.

 URL
function
naming

URL functions are named according to the portion of the URL on which they operate. For
instance, the function that retrieves the host portion of a URL is named INKUrlHostGet.

To facilitate fast comparisons and to reduce storage size, Traffic Edge defines several pre-
allocated scheme names.

The scheme names above are defined in InkAPI.h as const char* strings. When Traffic
Edge sets the scheme portion of the URL (or any portion for that matter), it makes a quick
check to see if the new value is one of the known values. If it is, instead of storing the
known value in the marshal buffer, it stores a pointer into a global table. The scheme
values listed above are also pointers into this table. This allows simple pointer comparison
of the value returned from INKUrlSchemeGet with one of the values listed above. Inktomi
recommends that you use the Traffic Edge-defined values when referring to one of the
known schemes, as doing so removes the possibility of a spelling error.

Traffic Edge definition Pre-allocated scheme
name

URL scheme string lengths

INK_URL_SCHEME_FILE “file” INK_URL_LEN_FILE

INK_URL_SCHEME_FTP “ftp” INK_URL_LEN_FTP

INK_URL_SCHEME_GOPHER “gopher” INK_URL_LEN_GOPHER

INK_URL_SCHEME_HTTP “http” INK_URL_LEN_HTTP

INK_URL_SCHEME_HTTPS “https” INK_URL_LEN_HTTPS

INK_URL_SCHEME_MAILTO “mailto” INK_URL_LEN_MAILTO

INK_URL_SCHEME_NEWS “news” INK_URL_LEN_NEWS

INK_URL_SCHEME_NNTP “nntp” INK_URL_LEN_NNTP

INK_URL_SCHEME_PROSPERO “prospero” INK_URL_LEN_PROSPERO

INK_URL_SCHEME_TELNET “telnet” INK_URL_LEN_TELNET

INK_URL_SCHEME_WAIS “wais” INK_URL_LEN_WAIS
94 URLs

The URL functions are:

■ INKUrlClone

■ INKUrlCopy

■ INKUrlCreate

■ INKUrlDestroy

■ INKUrlPrint

■ INKUrlFtpTypeGet

■ INKUrlFtpTypeSet

■ INKUrlHostGet

■ INKUrlHostSet

■ INKUrlHttpFragmentGet

■ INKUrlHttpFragmentSet

■ INKUrlHttpParamsGet

■ INKUrlHttpParamsSet

■ INKUrlHttpQueryGet

■ INKUrlHttpQuerySet

■ INKUrlLengthGet

■ INKUrlParse

■ INKUrlPasswordGet

■ INKUrlPasswordSet

■ INKUrlPathGet

■ INKUrlPathSet

■ INKUrlPortGet

■ INKUrlPortSet

■ INKUrlSchemeGet

■ INKUrlSchemeSet

■ INKUrlStringGet

■ INKUrlUserGet

■ INKUrlUserSet

MIME headers
The Traffic Edge API MIME header functions enable you to retrieve and modify
information about HTTP MIME fields.

An HTTP request or response consists of a header, body, and trailer. The HTTP header
consists of a request or response line, and a MIME header. A MIME header is composed of
HTTP Headers 95

zero or more MIME fields. A MIME field is composed of a field name, a colon and zero or
more field values. The values in a field are separated by commas. In the following
example, Foo is the MIME field name and bar is the first MIME field value and car is the
second MIME field value:

 Example Foo: bar, car

The following is an augmented Backus-Naur Form (BNF) for the form of a MIME header.
It specifies exactly what was described above. A header consists of zero or more fields
which consist of a name, a separating colon and zero or more values. A name or value is
simply a string of tokens which is potentially zero length. And a token is any character
except certain control characters and separators such as colons.

 Example MIME-header = *MIME-field

MIME-field = field-name ":" #field-value

field-name = *token

field-value = *token

For the purposes of retrieving a field, field names are not case sensitive: the field names
Foo, foo and fOO are all equivalent.

The MIME header data structure is a parsed version of a standard Internet MIME header.
The MIME header data structure is similar to the URL data structure (see “URLs” on page
94). The actual data is stored in a marshal buffer and the MIME header functions operate
on a marshal buffer and a location (INKMLoc) within the buffer.

After a call to INKMimeHdrFieldDestroy, INKMimeHdrFieldRemove or INKUrlDestroy is
made, you must deallocate the INKMLoc handle by a call to INKHandleMLocRelease. You
do not need to deallocate a NULL handles. For instance, if you called
INKMimeHdrFieldValueStringGet to get the value of the content type field and the field
does not exist, it returns INK_NULL_MLOC. In this case, you would not have to deallocate
the handle by a call to INKHandleMLocRelease.

 MIME
header

locations

The location (INKMLoc) in the following MIME header functions can be either a HTTP
header location or a MIME header location. If an HTTP header location is passed to these
function, the system locates the MIME header associated with this HTTP header, and
executes the corresponding MIME header operations specified by the functions. See the
example in the description of “INKMimeHdrCopy” on page 198.

MIME headers may contain more than one MIME field with the same name. Previous
versions of Traffic Edge (Traffic Server versions before 4.0) joined multiple fields with the
same name into one field with composite values. This behavior comes at a performance
cost, and causes interoperability problems with some older clients and servers. Future
versions of Traffic Edge will cease coalescing duplicate fields.

Correctly behaving plugins should check for the presence of duplicate fields, and iterate
over the duplicate fields, by using INKMimeHdrFieldNextDup.

To facilitate fast comparisons and to reduce storage size, Traffic Edge defines several pre-
allocated field names. These field names correspond to field names found in HTTP and
NNTP headers.
96 MIME headers

Traffic Edge pre-allocated field names HTTP and NNTP
header field names

Associated string lengths

INK_MIME_FIELD_ACCEPT "Accept" INK_MIME_LEN_ACCEPT

INK_MIME_FIELD_ACCEPT_CHARS
ET

“Accept-Charset" INK_MIME_LEN_ACCEPT_CHARS
ET

INK_MIME_FIELD_ACCEPT_ENCOD
ING

"Accept-Encoding" INK_MIME_LEN_ACCEPT_ENCOD
ING

INK_MIME_FIELD_ACCEPT_LANGU
AGE

"Accept-Language" INK_MIME_LEN_ACCEPT_LANGU
AGE

INK_MIME_FIELD_ACCEPT_RANGE
S

"Accept-Ranges" INK_MIME_LEN_ACCEPT_RANGE
S

INK_MIME_FIELD_AGE "Age" INK_MIME_LEN_AGE

INK_MIME_FIELD_ALLOW "Allow" INK_MIME_LEN_ALLOW

INK_MIME_FIELD_APPROVED “Approved" INK_MIME_LEN_APPROVED

INK_MIME_FIELD_AUTHORIZATION "Authorization" INK_MIME_LEN_AUTHORIZATION

INK_MIME_FIELD_BYTES "Bytes" INK_MIME_LEN_BYTES

INK_MIME_FIELD_CACHE_CONTR
OL

"Cache-Control" INK_MIME_LEN_CACHE_CONTR
OL

INK_MIME_FIELD_CLIENT_IP "Client-ip" INK_MIME_LEN_CLIENT_IP

INK_MIME_FIELD_CONNECTION "Connection" INK_MIME_LEN_CONNECTION

INK_MIME_FIELD_CONTENT_BASE "Content-Base" INK_MIME_LEN_CONTENT_BASE

INK_MIME_FIELD_CONTENT_ENC
ODING

"Content-Encoding" INK_MIME_LEN_CONTENT_ENCO
DING

INK_MIME_FIELD_CONTENT_LANG
UAGE

"Content-Language" INK_MIME_LEN_CONTENT_LANG
UAGE

INK_MIME_FIELD_CONTENT_LENG
TH

"Content-Length" INK_MIME_LEN_CONTENT_LENG
TH

INK_MIME_FIELD_CONTENT_LOCA
TION

"Content-Location" INK_MIME_LEN_CONTENT_LOCA
TION

INK_MIME_FIELD_CONTENT_MD5 "Content-MD5" INK_MIME_LEN_CONTENT_MD5

INK_MIME_FIELD_CONTENT_RAN
GE

"Content-Range" INK_MIME_LEN_CONTENT_RANG
E

INK_MIME_FIELD_CONTENT_TYPE "Content-Type" INK_MIME_LEN_CONTENT_TYPE

INK_MIME_FIELD_CONTROL "Control" INK_MIME_LEN_CONTROL

INK_MIME_FIELD_COOKIE "Cookie" INK_MIME_LEN_COOKIE

INK_MIME_FIELD_DATE "Date" INK_MIME_LEN_DATE

INK_MIME_FIELD_DISTRIBUTION "Distribution" INK_MIME_LEN_DISTRIBUTION

INK_MIME_FIELD_ETAG "Etag" INK_MIME_LEN_ETAG

INK_MIME_FIELD_EXPECT "Expect" INK_MIME_LEN_EXPECT

INK_MIME_FIELD_EXPIRES "Expires" INK_MIME_LEN_EXPIRES

INK_MIME_FIELD_FOLLOWUP_TO "Followup-To" INK_MIME_LEN_FOLLOWUP_TO

INK_MIME_FIELD_FROM "From" INK_MIME_LEN_FROM

INK_MIME_FIELD_HOST "Host" INK_MIME_LEN_HOST

INK_MIME_FIELD_IF_MATCH "If-Match" INK_MIME_LEN_IF_MATCH
HTTP Headers 97

INK_MIME_FIELD_IF_MODIFIED_SI
NCE

"If-Modified-Since'' INK_MIME_LEN_IF_MODIFIED_SI
NCE

INK_MIME_FIELD_IF_NONE_MATC
H

"If-None-Match'' INK_MIME_LEN_IF_NONE_MATC
H

INK_MIME_FIELD_IF_RANGE "If-Range'' INK_MIME_LEN_IF_RANGE

INK_MIME_FIELD_IF_UNMODIFIED
_SINCE

"If-Unmodified-
Since''

INK_MIME_LEN_IF_UNMODIFIED
_SINCE

INK_MIME_FIELD_KEEP_ALIVE "Keep-Alive'' INK_MIME_LEN_KEEP_ALIVE

INK_MIME_FIELD_KEYWORDS "Keywords'' INK_MIME_LEN_KEYWORDS

INK_MIME_FIELD_LAST_MODIFIED "Last-Modified'' INK_MIME_LEN_LAST_MODIFIED

INK_MIME_FIELD_LINES "Lines'' INK_MIME_LEN_LINES

INK_MIME_FIELD_LOCATION "Location'' INK_MIME_LEN_LOCATION

INK_MIME_FIELD_MAX_FORWARD
S

"Max-Forwards'' INK_MIME_LEN_MAX_FORWARD
S

INK_MIME_FIELD_MESSAGE_ID "Message-ID'' INK_MIME_LEN_MESSAGE_ID

INK_MIME_FIELD_NEWSGROUPS "Newsgroups'' INK_MIME_LEN_NEWSGROUPS

INK_MIME_FIELD_ORGANIZATION "Organization'' INK_MIME_LEN_ORGANIZATION

INK_MIME_FIELD_PATH "Path'' INK_MIME_LEN_PATH

INK_MIME_FIELD_PRAGMA "Pragma'' INK_MIME_LEN_PRAGMA

INK_MIME_FIELD_PROXY_AUTHEN
TICATE

"Proxy-Authenticate'' INK_MIME_LEN_PROXY_AUTHEN
TICATE

INK_MIME_FIELD_PROXY_AUTHO
RIZATION

"Proxy-Authorization'' INK_MIME_LEN_PROXY_AUTHOR
IZATION

INK_MIME_FIELD_PROXY_CONNE
CTION

"Proxy-Connection'' INK_MIME_LEN_PROXY_CONNE
CTION

INK_MIME_FIELD_PUBLIC "Public'' INK_MIME_LEN_PUBLIC

INK_MIME_FIELD_RANGE "Range'' INK_MIME_LEN_RANGE

INK_MIME_FIELD_REFERENCES "References'' INK_MIME_LEN_REFERENCES

INK_MIME_FIELD_REFERER "Referer'' INK_MIME_LEN_REFERER

INK_MIME_FIELD_REPLY_TO "Reply-To'' INK_MIME_LEN_REPLY_TO

INK_MIME_FIELD_RETRY_AFTER "Retry-After'' INK_MIME_LEN_RETRY_AFTER

INK_MIME_FIELD_SENDER "Sender'' INK_MIME_LEN_SENDER

INK_MIME_FIELD_SERVER "Server'' INK_MIME_LEN_SERVER

INK_MIME_FIELD_SET_COOKIE "Set-Cookie'' INK_MIME_LEN_SET_COOKIE

INK_MIME_FIELD_SUBJECT "Subject'' INK_MIME_LEN_SUBJECT

INK_MIME_FIELD_SUMMARY "Summary'' INK_MIME_LEN_SUMMARY

INK_MIME_FIELD_TE "TE'' INK_MIME_LEN_TE

INK_MIME_FIELD_TRANSFER_ENC
ODING

"Transfer-Encoding'' INK_MIME_LEN_TRANSFER_ENC
ODING

INK_MIME_FIELD_UPGRADE "Upgrade'' INK_MIME_LEN_UPGRADE

INK_MIME_FIELD_USER_AGENT "User-Agent'' INK_MIME_LEN_USER_AGENT

INK_MIME_FIELD_VARY "Vary'' INK_MIME_LEN_VARY

Traffic Edge pre-allocated field names HTTP and NNTP
header field names

Associated string lengths
98 MIME headers

The header field names above are defined in InkAPI.h as const char* strings. When
Traffic Edge sets the name portion of a header field (or any portion for that matter) it
makes a quick check to see if the new value is one of the known values. If it is, instead of
storing the known value in the marshal buffer it stores a pointer into a global table. The
header field names listed above are also pointers into this table. This allows simple
pointer comparison of the value returned from INKMimeHdrFieldNameGet with one of the
values listed above. It is also recommended that you use the above values when referring
to one of the known header field names as doing so removes the possibility of a spelling
error.

 custom
MIME fields

Traffic Edge adds one important feature to MIME fields that those people already familiar
with MIME headers will not know about. Namely, Traffic Edge does not print a MIME
field if the field name begins with the '@' symbol. For example, a plugin can add the field
"@My-Field" to a header. Even though Traffic Edge never sends that field out in a request
to an origin server or in a response to a client, they can be printed in TS logs by defining a
custom log config file that explicitly logs these fields. This provides a useful mechanism
for plugins to store information about an object in one of the MIME headers associated
with the object.

The MIME header functions are:

■ INKMimeHdrFieldClone

■ INKMimeHdrFieldCopy

■ INKMimeHdrFieldCopyValues

■ INKMimeHdrFieldCreate

■ INKMimeHdrFieldDestroy

■ INKMimeHdrFieldLengthGet

■ INKMimeHdrFieldNameGet

■ INKMimeHdrFieldNameSet

■ INKMimeHdrFieldNext

■ INKMimeHdrFieldNextDup

■ INKMimeHdrFieldValueAppend

■ INKMimeHdrFieldValueDelete

■ INKMimeHdrFieldValuesClear

■ INKMimeHdrFieldValuesCount

■ INKMimeHdrClone

■ INKMimeHdrCopy

■ INKMimeHdrCreate

INK_MIME_FIELD_VIA "Via'' INK_MIME_LEN_VIA

INK_MIME_FIELD_WARNING "Warning'' INK_MIME_LEN_WARNING

INK_MIME_FIELD_WWW_AUTHENT
ICATE

"Www-
Authenticate''

INK_MIME_LEN_WWW_AUTHENT
ICATE

INK_MIME_FIELD_XREF "Xref'' INK_MIME_LEN_XREF

Traffic Edge pre-allocated field names HTTP and NNTP
header field names

Associated string lengths
HTTP Headers 99

■ INKMimeHdrDestroy

■ INKMimeHdrFieldFind

■ INKMimeHdrFieldGet

■ INKMimeHdrFieldRemove

■ INKMimeHdrFieldsClear

■ INKMimeHdrFieldsCount

■ INKMimeHdrLengthGet

■ INKMimeHdrParse

■ INKMimeParserClear

■ INKMimeParserCreate

■ INKMimeParserDestroy

■ INKMimeHdrPrint
100 MIME headers

CHAPTER 9 Mutex Guide
Use mutexes to lock shared data. This chapter explains how to use the mutex interface.

Mutexes
A mutex is the basic synchronization method used within Traffic Edge to protect data
from simultaneous access by multiple threads. A mutex acts as a lock that protects data in
one program thread from being accessed by another thread.

 Important:
use TryLock

when
possible

The Traffic Edge API provides two functions that attempt to access and lock the data:
InkMutexLockTry and INKMutexLock. INKMutexLock is a blocking call; if you use it, you
can slow Traffic Edge performance (transaction processing pauses until the mutex is
unlocked). It should be used only on threads created by the plugin
(INKContThreadCreate). Never use it on a continuation handler called back by HTTP SM
or Cache, Net or Event Processor. Even if the critical section is very small, do not use it. If
you need to update a flag, set a variable, use atomic operations. If INKMutexLock is used
in any case other than the one recommended above, the result will cause serious
performance impact. INKMutexLockTry, on the other hand, attempts to lock the mutex
only if it is unlocked (not being used by another thread). It should be used in all cases
other than the above mentioned INKMutexLock case. If the INKMutexLockTry attempt
fails, you can schedule a future attempt, which must be at least 10 milliseconds later. See
for an example.

Inktomi recommends that, in general, you use INKMutexLockTry rather than
INKMutexLock.

■ InkMutexLockTry is required if you are tying to lock Traffic Edge internal or system
resources, such as network, cache, eventProcessor, HTTP state machines and IO
buffers.

■ InkMutexLockTry is required if you are making any blocking calls, such as network or
cache or file IO calls.

■ INKMutexLock might not be necessary if you are not making blocking calls, and if you
are only accessing local resources.

Traffic Edge API uses the INKMutex type for a mutex.

 2 typical
ways to use

mutexes

There are two typical uses of mutex. One use is to lock global data or data shared by
various continuations. The other typical usage is to lock data associated to a continuation
(data that might be accessed by other continuations).

Locking global data

The blacklist-1.c sample plugin implements an example of this type. The blacklist
plugin reads its blacklisted sites from a configuration file. File read operations are
protected by a mutex created in INKPluginInit. The blacklist-1.c code uses

INKMutexLockTry instead of InkMutexLock. See “blacklist-1.c” on page 245 for the
blacklist-1.c code (start by looking at the INKPluginInit function). The general
guideline for locking shared data is:

1 Create a mutex for this shared data using INKMutexCreate.

2 Whenever you need to read or modify this data, first lock it by calling
InkMutexLockTry. Then read or modify the data.

3 When you are done with the data, unlock it with INKMutexUnlock. If you are
unlocking data accessed during the processing of an HTTP transaction, you must
unlock it before calling INKHttpTxnReenable.

Protecting a continuation’s data

You need to create a mutex to protect a continuation’s data if it might be accessed by other
continuations or processes.

To protect the data associated to a continuation, follow these steps:

1 Create a mutex for the continuation using INKMutexCreate. For example,

INKMutex mutexp;

mutexp = INKMutexCreate ();

2 When you create the continuation, specify this mutex as the continuation’s mutex. For
example,

INKCont contp;

contp = INKContCreate (handler, mutexp);

If any other functions want to access contp’s data, it is up to them to get contp’s mutex
(using, for example, INKContMutexGet) and lock it. See the sample Protocol plugin for
usage.

How to associate a continuation to every HTTP transaction

There might be several reasons to create a continuation for each HTTP transaction that
calls back your plugin. Some examples include:

■ register hooks locally with the new continuation instead of registering them globally
to the continuation plugin.

■ store data specific to each HTTP transaction that you might need to reuse across
various hooks.

■ use of APIs (like INKHostLookup) which will call back this continuation with a
certain event.

How to add the new continuation

A typical way of adding the new continuation is to register the plugin continuation to be
called back by HTTP transactions globally when they reach INK_HTTP_TXN_START_HOOK.
Refer to the example below using a transaction specific continuation called txn_contp.

void INKPluginInit(int argc, const char *argv[])

 {
102 Mutexes

 /* Plugin continuation */

 INKCont contp;

 if ((contp = INKContCreate (plugin_cont_handler, NULL)) ==
INK_ERROR_PTR) {

 LOG_ERROR("INKContCreate");

 } else {

if (INKHttpHookAdd (INK_HTTP_TXN_START_HOOK, contp) == INK_ERROR) {

LOG_ERROR("INKHttpHookAdd");

}

 }

 }

In the plugin continuation handler, create teh new continuation txn_contp, and register it
to be called back at INK_HTTP_TXN_CLOSE_HOOK:

static int plugin_cont_handler(INKCont contp, INKEvent event, void *edata)

 {

 INKHttpTxn txnp = (INKHttpTxn)edata;

 INKCont txn_contp;

 switch (event) {

 case INK_EVENT_HTTP_TXN_START:

 /* Create the HTTP txn continuation */

 txn_contp = INKContCreate(txn_cont_handler, NULL);

 /* Register txn_contp to be called back when txnp reaches
INK_HTTP_TXN_CLOSE_HOOK */

 if (INKHttpTxnHookAdd (txnp, INK_HTTP_TXN_CLOSE_HOOK,
txn_contp) == INK_ERROR) {

 LOG_ERROR("INKHttpTxnHookAdd");

 }

 break;

 default:

 INKAssert(!"Unexpected Event");

 break;

 }

 if (INKHttpTxnReenable(txnp, INK_EVENT_HTTP_CONTINUE) ==
INK_ERROR) {

 LOG_ERROR("INKHttpTxnReenable");

 }

 return 0;

 }
Mutex Guide 103

Have the txn_contp handler destory itself when the HTTP transaction is closed. If you
forget, your plugin will have a big memory leak.

static int txn_cont_handler(INKCont txn_contp, INKEvent event, void
*edata)

 {

 INKHttpTxn txnp;

 switch (event) {

 case INK_EVENT_HTTP_TXN_CLOSE:

 txnp = (INKHttpTxn) edata;

 INKContDestroy(txn_contp);

 break;

 default:

 INKAssert(!"Unexpected Event");

 break;

 }

 if (INKHttpTxnReenable(txnp, INK_EVENT_HTTP_CONTINUE) ==
INK_ERROR) {

 LOG_ERROR("INKHttpTxnReenable");

 }

 return 0;

 }

How to store data specific to each HTTP transaction

For the example above, store the data in the txn_contp data structure. This means that
you will create your own data structure. Suppose you want to store the state of the HTTP
transaction:

typedef struct {

 int state;

 } ContData;

You would need to allocate the memory and initialize this structure for each HTTP txnp.
You can do that in the plugin continuation handler when it is called back with
INK_EVENT_HTTP_TXN_START:

static int plugin_cont_handler(INKCont contp, INKEvent event, void *edata)

 {

 INKHttpTxn txnp = (INKHttpTxn)edata;

 INKCont txn_contp;

 ContData *contData;

 switch (event) {
104 Mutexes

 case INK_EVENT_HTTP_TXN_START:

 /* Create the HTTP txn continuation */

 txn_contp = INKContCreate(txn_cont_handler, NULL);

 /* Allocate and initialize the txn_contp data */

 contData = (ContData*) INKmalloc(sizeof(ContData));

 contData->state = 0;

 if (INKContDataSet(txn_contp, contData) == INK_ERROR) {

 LOG_ERROR("INKContDataSet");

 }

 /* Register txn_contp to be called back when txnp reaches
INK_HTTP_TXN_CLOSE_HOOK */

 if (INKHttpTxnHookAdd (txnp, INK_HTTP_TXN_CLOSE_HOOK,
txn_contp) == INK_ERROR) {

 LOG_ERROR("INKHttpTxnHookAdd");

 }

 break;

 default:

 INKAssert(!"Unexpected Event");

 break;

 }

 if (INKHttpTxnReenable(txnp, INK_EVENT_HTTP_CONTINUE) ==
INK_ERROR) {

 LOG_ERROR("INKHttpTxnReenable");

 }

 return 0;

 }

For accessing this data from anywhere, use INKContDataGet:

INKCont txn_contp;

 ContData *contData;

 contData = INKContDataGet(txn_contp);

 if (contData == INK_ERROR_PTR) {

 LOG_ERROR("INKContDataGet");

 }

 contData->state = 1;

Remember to free this memory before destroying the continuation:
Mutex Guide 105

static int txn_cont_handler(INKCont txn_contp, INKEvent event, void
*edata)

 {

 INKHttpTxn txnp;

 ContData *contData;

 switch (event) {

 case INK_EVENT_HTTP_TXN_CLOSE:

 txnp = (INKHttpTxn) edata;

 contData = INKContDataGet(txn_contp);

 if (contData == INK_ERROR_PTR) {

 LOG_ERROR("INKContDataGet");

 } else {

 INKfree(contData);

 }

 INKContDestroy(txn_contp);

 break;

 default:

 INKAssert(!"Unexpected Event");

 break;

 }

 if (INKHttpTxnReenable(txnp, INK_EVENT_HTTP_CONTINUE) ==
INK_ERROR) {

 LOG_ERROR("INKHttpTxnReenable");

 }

 return 0;

 }

Using locks

You do not need to use locks when a continuation has registered itself to be called back by
HTTP hooks and it only uses the HTTP APIs. In the example above, the continuation
txn_contp has registered itself to be called back at HTTP hooks, and it only uses the
HTTP APIs. In this case only, it is safe to access data shared between txnp and txn_contp
without grabbing a lock. In the example above txn_contp is created with a NULL mutex.
This works because the HTTP transaction txnp is the only which will call back
txn_contp, and you are guaranteed that txn_contp will be called back only one hook at a
time. After processing is done txn_contp will reenable txnp.

In all other cases, you should create a mutex with the continuation. Basically in the case
where you are using iocore APIs, or any other API where txn_contp is scheduled to be
called back by a processor (the cache processor, the DNS processor...), a lock is needed.
106 Mutexes

This ensures that txn_contp will be called back only one at a time, (i.e. you are sure that
txn_contp will not be called back by both txnp and by the cache processor
simultaneously, which would result in a situation where you are executing two pieces of
code in conflict!)

Special case: continuations created for HTTP transactions

 continuatio
ns created in

HTTP
transactions
do not need

mutexes

If your plugin creates a new continuation for each HTTP transaction, you probably do not
have to create a new mutex for it, because each HTTP transaction (INKHttpTxn object)
already has its own mutex.

For example, if you have code such as the following, it is not necessary to specify a mutex
for the continuation created in txn_handler:

static void

txn_handler (INKHttpTxn txnp, INKCont contp) {

INKCont newCont;

....

newCont = INKContCreate (newCont_handler, NULL);

//It's not necessary to create a new mutex for newCont.

...

INKHttpTxnReenable (txnp, INK_EVENT_HTTP_CONTINUE);

}

static int

test_plugin (INKCont contp, INKEvent event, void *edata) {

INKHttpTxn txnp = (INKHttpTxn) edata;

switch (event) {

case INK_EVENT_HTTP_READ_REQUEST_HDR:

txn_handler (txnp, contp);

return 0;

default:

break;

}

return 0;

}

The mutex functions are:

■ “INKMutexCreate” on page 203

■ “INKMutexLock” on page 204

■ “INKMutexLockTry” on page 204
Mutex Guide 107

108 Mutexes

CHAPTER 10 Continuations
The continuation interface is Traffic Edge’s basic callback mechanism. Continuations are
instances of the opaque data type INKCont. In its basic form a continuation represents a
handler function and a mutex. This chapter contains:

■ Mutexes and data‚ on page 109

■ “How to activate continuations” on page 110

■ “Writing handler functions” on page 111

Mutexes and data
A continuation must be created with a mutex if your continuation does one of the
following:

■ is registered globally (INKHttpHookAdd or INKHttpSsnHookAdd) to an HTTP hook and
uses INKContDataSet/Get.

■ is registered locally (INKHttpTxnHookAdd) but for multiple transactions and uses INK
ContDataSet/Get.

■ uses INKCacheXXX, INKNetXXX, INKHostLookup or INKContSchedule APIs.

Before being activated, a caller must grab the continuation’s mutex. This requirement
makes it possible for a continuation’s handler function to safely access its data and to
prevent it from being run by multiple callers at the same time. See the sample Protocol
plugin for usage. The data protected by the mutex is: any global or continuation data
associated to the continuation by INKContDataSet. This does not include the local data
created by the continuation handler function. A typical example of continuations created
with associated data structures and mutexes is the transaction state machine created in the
sample Protocol plugin. See “One way to implement a transaction state machine” on page 60.

 Reentrant
Calls

A reentrant call occurs when the continuation passed as an argument to the API can be
called in the same stack trace as the function calling the API. For instance, if you call
INKCacheRead (contp, mykey), it is possible that contp’s handler will be called directly
and then INKCacheRead returns. Caveats that could cause a possible issues if:

■ a continuation has data associated with it (INKContDataGet).

■ the reentrant call passes itself as a continuation to the reentrant API. In this case, the
continuation should not try to access its data after having called the reentrant API.
The reason for this is that data may be modified by the section of code of the
continuation’s handler that handles the event sent by the API. It is recommended that
you always return after a reentrant call to avoid accessing something that has been
deallocated.

Below is an example with an explaination.

continuation_handler (INKCont contp, INKEvent event, void *edata) {

switch (event) {

case event1:

INKReentrantCall (contp);

/* Return right away after this call */

break;

case event2:

INKContDestroy (contp);

break;

}

}

The above example first assumes that the continuation is called back with event1 and
does the first reentrant call which schedules the continuation to receive event2. Because
the call is reentrant, the processor calls back the continuation right away with event2 and
the continuation is destroyed. If you try to access the continuation, or one of its members
after the reentrant call, you might access something that has been deallocated. To avoid
accessing something that has been deallocated, never access the continuation or any of its
members after a reentrant call, just exit the handler.

Note that most HTTP transaction plugin continuations do not need non-null mutexes,
because they are called within the processing of an HTTP transaction and thus have the
transaction’s mutex.

 null
mutexes

It is also possible to specify a continuation’s mutex as NULL. This should be done only
when registering a continuation to a global hook, by a call to INKHttpHookAdd. In this
case, the continuation can be called simultaneously by different instances of HTTP SM
running on different threads. Having a mutex here would slow down Traffic Edge
performance since all the threads will try to lock the same mutex. The drawback of not
having a mutex is that such a continuation cannot have data associated with it
(INKContDataGet/Set can not be used).

When using a NULL mutex, it is dangerous to access the continuation’s data, but it is
usually the case that continuations with NULL mutexes have no data associated with them.
An example of such a continuation would be one that gets called back every time an
HTTP request is read and determines from the request alone whether to let the request
through or whether to reject it. An HTTP transaction gives its continuation data to the
contp.

How to activate continuations
Continuations are activated when they receive an event or by INKContSchedule, which
schedules a continuation to receive an event. They might receive an event because:

■ Your plugin calls INKContCall

■ The Traffic Edge HTTP state machine sends an event corresponding to a particular
HTTP hook

■ A Traffic Edge IO processor (such as cache processor or net processor) is letting a
continuation know that there is (cache or network) data available to read or write.
These callbacks are a result of using functions such INKVConnRead/Write, or
INKCacheRead/Write
110 How to activate continuations

Writing handler functions
The handler function is the meat of the continuation. It is supposed to examine the event
and event data and do something appropriate. The probable action might be to schedule
another event for the continuation to received, or to open up a connection to a server or to
destroy itself.

The continuation’s handler function is a function of type INKEventFunc. Its arguments are
a continuation, an event, and a pointer to some data (this data is passed to the
continuation by the caller; do not confuse this data with the continuation’s own data,
associated by INKContDataSet). When the continuation is called back, the continuation
and an event are passed to the handler function. The continuation is a handle to the same
continuation that is invoked. The handler function typically has a switch statement to
handle the events it receives:

static int some_handler (INKcont contp, INKEvent event, void *edata)

{

switch(event) {

 case INK_EVENT_SOME_EVENT_1:

do_some_thing_1;

return;

case INK_EVENT_SOME_EVENT_2:

do_some_thing_2;

return;

case INK_EVENT_SOME_EVENT_3:

do_some_thing_3;

return;

default: break;

}

return 0;

}

 Caution You might notice that a continuation cannot determine if more events are “in flight”
towards it. Do not use INKContDestroy to delete a continuation before making sure that
all incoming events, such as those sent because of INKHttpTxnHookAdd, have been
handled.

 Events and
void * data

The following table lists events and the corresponding type of void * data passed to
handler functions:

Event Hook or API function that sends the event void * data
type

INK_EVENT_HTTP_READ_REQUEST_HDR INK_HTTP_READ_REQUEST_HDR_H
OOK

INKHttpTxn

INK_EVENT_HTTP_OS_DNS INK_HTTP_OS_DNS_HOOK INKHttpTxn
Continuations 111

INK_EVENT_HTTP_SEND_REQUEST_HDR INK_HTTP_SEND_REQUEST_HDR_H
OOK

INKHttpTxn

INK_EVENT_HTTP_READ_CACHE_HDR INK_HTTP_READ_CACHE_HDR_HOO
K

INKHttpTxn

INK_EVENT_HTTP_READ_RESPONSE_HDR INK_HTTP_READ_RESPONSE_HDR_
HOOK

INKHttpTxn

INK_EVENT_HTTP_SEND_RESPONSE_HDR INK_HTTP_SEND_RESPONSE_HDR_
HOOK

INKHttpTxn

INK_EVENT_HTTP_SELECT_ALT INK_HTTP_SELECT_ALT_HOOK INKHttpTxn

INK_EVENT_HTTP_TXN_START INK_HTTP_TXN_START_HOOK INKHttpTxn

INK_EVENT_HTTP_TXN_CLOSE INK_HTTP_TXN_CLOSE_HOOK INKHttpTxn

INK_EVENT_HTTP_SSN_START INK_HTTP_SSN_START_HOOK INKHttpSsn

INK_EVENT_HTTP_SSN_CLOSE INK_HTTP_SSN_CLOSE_HOOK INKHttpSsn

INK_EVENT_NONE

INK_EVENT_CACHE_LOOKUP_COMPLETE INK_HTTP_CACHE_LOOKUP_COMPLETE_HOOK INKHttpTxn

INK_EVENT_IMMEDIATE INKVConnClose, INKVIOReenable,
INKContSchedule

INK_EVENT_IMMEDIATE INK_HTTP_REQUEST_TRANSFORM_HOOK

INK_EVENT_IMMEDIATE INK_HTTP_RESPONSE_TRANSFORM_HOOK

INK_EVENT_CACHE_OPEN_READ INKCacheRead Cache VC

INK_EVENT_CACHE_OPEN_READ_FAILED INKCacheRead Error code, see
INK_CACHE_ER
ROR_XXX

INK_EVENT_CACHE_OPEN_WRITE INKCacheWrite Cache VC

INK_EVENT_CACHE_OPEN_WRITE_FAILED INKCacheWrite Error code, see
INK_CACHE_ER
ROR_XXX

INK_EVENT _CACHE_REMOVE INKCacheRemove Nothing

INK_EVENT_CACHE_REMOVE_FAILED INKCacheRemove Error code, see
INK_CACHE_ER
ROR_XXX

INK_EVENT_NET_ACCEPT INKNetAccept, INKHttpTxnServerIntercept,
INKHttpTxnIntercept

Net
VConnection

INK_EVENT_NET_ACCEPT_FAILED INKNetAccept, INKHttpTxnServerIntercept,
INKHttpTxnIntercept

Nothing

INK_EVENT_HOST_LOOKUP INKHostLookup Null pointer -
error

Non null pointer
-
INKHostLookup
Result

INK_EVENT_TIMEOUT INKContSchedule

INK_EVENT_ERROR

Event Hook or API function that sends the event void * data
type
112 Writing handler functions

The continuation functions are:

■ INKContCall

■ INKContCreate

■ INKContDataGet

■ INKContDataSet

■ INKContDestroy

■ INKContMutexGet

■ INKContSchedule

INK_EVENT_VCONN_READ_READY INKVConnRead INKVConn

INK_EVENT_VCONN_WRITE_READY INKVConnWrite INKVConn

INK_EVENT_VCONN_READ_COMPLETE INKVConnRead INKVConn

INK_EVENT_VCONN_WRITE_COMPLETE INKVConnWrite INKVConn

INK_EVENT_VCONN_EOS INKVConnRead INKVConn

INK_EVENT_NET_CONNECT INKNetConnect INKVConn

INK_EVENT_NET_CONNECT_FAILED INKNetConnect INKVConn

INK_EVENT_HTTP_CONTINUE

INK_EVENT_HTTP_ERROR

INK_EVENT_MGMT_UPDATE INKMgmtUpdateRegister NULL

Event Hook or API function that sends the event void * data
type
Continuations 113

114 Writing handler functions

CHAPTER 11 Plugin Configurations
This chapter contains:

■ “Plugin configurations” on page 115

Plugin configurations
The INKConfig family of functions provides a mechanism for accessing and changing
global configuration information within a plugin.

 external
web interface

If you want to set up a web interface for configuring your plugin through Traffic
Manager, see “Setting up a plugin management interface” on page 131.

 not Traffic
Edge

configuration

The functions discussed in this section do not examine or modify Traffic Edge
configuration variables. To examine Traffic Edge configuration and statistics variables, see
“Reading Traffic Edge settings and statistics” on page 132.

The INKConfig family of functions is designed to provide a fast and efficient mechanism
for accessing and changing global configuration information within a plugin. Such a
mechanism is simple enough to provide in a single-threaded program, but the translation
to a multi-threaded program such as Traffic Edge is difficult. A common technique is to
have a single mutex protect the global configuration information. The problem with this
solution is that a single mutex becomes a performance bottleneck very quickly.

The INKConfig family of functions define an interface to storing and retrieving an opaque
data pointer. Internally, Traffic Edge maintains reference count information about the data
pointer so that a call to INKConfigSet will not disturb another thread using the current
data pointer. The philosophy is that once a user has a hold of the configuration pointer it is
okay for him to use it even if the configuration changes. From the user’s perspective all he
wants is a non-changing snapshot of the configuration. Inktomi recommends that you use
INKConfigSet for all global data updates.

Here’s how the interface works:

/* Assume that you have previously defined a plugin configuration

* data structure named ConfigData, along with its constructor

* plugin_config_allocator () and its destructor

* plugin_config_destructor (ConfigData *data)

*/

ConfigData *plugin_config;

/* You will need to assign plugin_config a unique identifier of type

* unsigned int. It is important to initialize this identifier to zero

* (see the documentation of the function).

*/

static unsigned int my_id = 0;

/* You will need an INKConfig pointer to access a snapshot of the

* current plugin_config.

*/

INKConfig config_ptr;

/* Initialize plugin_config. */

plugin_config = plugin_config_allocator();

/* Assign plugin_config an identifier using INKConfigSet. */

my_id = INKConfigSet (my_id, plugin_config, plugin_config_destructor);

/* Get a snapshot of the current configuration using INKConfigGet. */

config_ptr = INKConfigGet (my_id);

/* With an INKConfig pointer to the current configuration, you can

* retrieve the configuration’s current data using INKConfigDataGet.

*/

plugin_config = (ConfigData*) INKConfigDataGet (config_ptr);

/* Do something with plugin_config here. */

/* When you are done with retrieving or modifying the plugin data, you

* release the pointers to the data with a call to INKConfigRelease.

*/

INKConfigRelease (my_id, config_ptr);

/* Any time you want to modify plugin_config, you must repeat these

* steps, starting with

* my_id = INKConfigSet (my_id,plugin_config, plugin_config_destructor);

* and continuing up to INKConfigRelease.

*/

The configuration functions are:

■ INKConfigDataGet

■ INKConfigGet

■ INKConfigRelease

■ INKConfigSet
116 Plugin configurations

CHAPTER 12 Actions Guide
This chapter contains:

■ Actions‚ on page 117

■ Hosts Lookup API‚ on page 120

Actions
An action is a handle to an operation initiated by a plugin which has not yet completed.
For example, when a plugin connects to a remote server it uses the call INKNetConnect
which takes an INKCont as an argument to call back when the connection is established.
INKNetConnect might not call the continuation back immediately and will return an
INKAction structure which the caller can use to cancel the operation. Cancelling the
operation does not necessarily mean that the operation will not occur, but that the
continuation passed in to the operation will not be called back. In the above example, the
connection might still occur if the action is cancelled, but the continuation that initiated
the connection would not be called back when that occurred.

It is possible that the connection, in the preceding example, will complete and callback the
continuation before INKNetConnect returns. If this occurs INKNetConnect will return a
special action which will cause INKActionDone to return 1. Basically this is specifying that
the operation has already completed. There is no point in trying to cancel the operation.
Note that an action will never change from non-completed to completed. When the
operation actually succeeds and the continuation is called back it is up to the continuation
to zero out its action pointer to indicate to itself that the operation succeeded.

The asynchronous nature of all operations in Traffic Edge necessitates actions. You should
notice from the above discussion that once a call to a function like INKNetConnect is made
by a continuation and that function returns a valid action (INKActionDone returns 0) then
it is not safe for the continuation to do anything else except return from its handler
function. It is not safe to modify or examine the continuation’s data since the continuation
may have already been destroyed.

Here is an example of a typical usage of an action:

#include “InkAPI.h”

static int

handler (INKCont contp, INKEvent event, void *edata)

{

 if (event == INK_EVENT_IMMEDIATE) {

 INKAction actionp = INKNetConnect (contp, 127.0.0.1, 9999);

 if (!INKActionDone (actionp)) {

INKContDataSet (contp, actionp);

} else {

 /* we've already been called back... */

return 0;

}

} else if (event == INK_EVENT_NET_CONNECT) {

 /* net connection succeeded */

 INKContDataSet (contp, NULL);

 return 0;

} else if (event == INK_EVENT_NET_CONNECT_FAILED) {

/* net connection failed */

INKContDataSet (contp, NULL);

return 0;

}

 return 0;

}

void

INKPluginInit (int argc, const char *argv[])

{

 INKCont contp;

 contp = INKContCreate (handler, INKMutexCreate ());

 /* We don't want to call things out of INKPluginInit

 directly since it is called before the rest of the

 system is initialized. We'll simply schedule an event

 on the continuation to occur as soon as the rest of

 the system is started up. */

 INKContSchedule (contp, 0);

}

The preceding example shows a simple plugin which creates a continuation and
schedules it to be called immediately. When the plugin’s handler function is called the
first time the event will be INK_EVENT_IMMEDIATE. The plugin then tries to open a net
connection to port 9999 on localhost (127.0.0.1). I’ve left the IP description in dot notation
to make it clearer what is going on. Please note that the above won’t actually compile until
the IP address is modified. The action returned from INKNetConnect is examined by the
plugin. If the operation has not completed the plugin stores the action in its continuation.
Otherwise the plugin knows it has already been called back and there is no reason to store
the action pointer.

A final question might be why would a plugin want to cancel an action. In the above
example a valid reason would be to place a time limit on how long it takes to open a
connection. The plugin could schedule itself to get called back in 30 seconds and then
118 Actions

initiate the net connection. If the time-out expires first then the plugin would cancel the
action. The following sample code implements this:

#include “InkAPI.h”

static int

handler (INKCont contp, INKEvent event, void *edata)

{

switch (event) {

case (INK_EVENT_IMMEDIATE):

INKContSchedule (contp, 30000);

INKAction actionp = INKNetConnect(contp, 127.0.0.1, 9999);

if (!INKActionDone (actionp)) {

INKContDataSet (contp, actionp);

} else {

/* we’ve already been called back ... */

}

break;

case (INK_EVENT_TIMEOUT):

INKAction actionp = INKContDataGet (contp);

if (!INKActionDone(actionp)) {

INKActionCancel (actionp);

}

break;

case (INK_EVENT_NET_CONNECT):

/* net connection succeeded */

INKContDataSet (contp, NULL);

break;

case (INK_EVENT_NET_CONNECT_FAILED):

/* net connection failed */

INKContDataSet (contp, NULL);

break;

}

 return 0;

}

void

INKPluginInit (int argc, const char *argv[])

{

 INKCont contp;
Actions Guide 119

 contp = INKContCreate (handler, INKMutexCreate ());

 /* We don't want to call things out of INKPluginInit

 directly since it is called before the rest of the

 system is initialized. We'll simply schedule an event

 on the continuation to occur as soon as the rest of

 the system is started up. */

 INKContSchedule (contp, 0);

}

The action functions are:

✔ “INKActionCancel” on page 209

✔ “INKActionDone” on page 210

Hosts Lookup API
The hosts lookup allows plugins to ask Traffic Edge to do a host lookup of a host name.
This is in some way similar to a DNS lookup.

The hosts lookup functions are:

✔ “INKHostLookup” on page 210

✔ “INKHostLookupResultIPGet” on page 211
120 Hosts Lookup API

CHAPTER 13 IO Guide
This chapter contains:

■ Vconnections‚ on page 121

■ Net VConnections‚ on page 124

■ Transformations‚ on page 124

■ VIOs‚ on page 127

■ IO buffers‚ on page 128

■ Guide to the cache API‚ on page 128

Vconnections
The vconnection functions allow you to schedule and obtain and modify information
about vconnections.

The vconnection user’s view

To use a vconnection, a user first needs to get a handle to one. This is usually
accomplished by having it handed to the user or the user issuing a call which creates a
vconnection such as INKNetConnect. In the case of transform plugins, plugin creates a
transformation vconnection using INKTransformCreate, and accesses the output
vconnection using INKTransformOutputVConnGet.

Once the user has a handle to a vconnection he can then issue a read or write call. It’s
important to note that not all vconnections support both reading and writing. As of yet,
there has not been a need to query a vconnection ask to whether it can perform a read or
write operation. That ability is obvious from context.

To issue a read or write operation a user calls INKVConnRead or INKVConnWrite. These
two operations both return VIO (INKVIO). The VIO describes the operation being
performed and how much progress has been made.

Transform plugins initiate output to the downstream vconnection by calling
INKVConnWrite.

A vconnection read or write operation is different from a normal Unix read(2) or write(2)
operation in that the operation can specify more data to be read or written than exists in
the buffer handed to the operation. For example, it is typical to issue a read for INT_MAX (4
billion) bytes from a network vconnection in order to read all the data from the network
connection until we reach the end of stream. Contrast this to the usual Unix fashion of
issuing repeated calls to read(2) until one of them finally returns 0 indicating the end of
stream was reached. (Yes, the underlying implementation of vconnections on Unix still
issues those calls to read(2), but the interface does not expose that detail).

A given vconnection can have at most one read operation and one write operation being
performed on it. This is restricted both by design and common sense. If two write
operations were to be performed on a single vconnection the user would not be able to
specify which one should occur first and the output would occur in an intermingled
fashion. Note that both a read operation and a write operation can happen on a single
vconnection at the same time. The restriction is on more than one operation of a given
type.

One issue that should be obvious is that the buffer passed to INKVConnRead and
INKVConnWrite won’t be large enough. There is no reasonable way to make a buffer that
can hold INT_MAX (4 billion) bytes. The secret is that vconnections engage in a protocol
whereby they signal their user (the continuation passed to INKVConnRead and
INKVConnWrite) that they have emptied out the buffers passed to them and are ready for
more data. When this occurs it is up to the user to add more data to the buffers (or wait for
more data to be added) and then wake up the vconnection by calling INKVIOReenable on
the VIO describing the operation. INKVIOReenable specifies that the buffer for the
operation has been modified and that the vconnection should reexamine it to see if it can
make further progress.

The null transform plugin gives an example of how this is done. First, here is the
prototype of INKVConnWrite:

INKVIO INKVConnWrite (INKVConn connp, INKCont contp, INKIOBufferReader
readerp, int nbytes)

Where the connp is the vconnection that the user is writing to, and contp is the “user” – it
is the continuation that connp calls back when it has emptied out its buffer and is ready
for more data.

The call made in the null transform plugin is:
INKVConnWrite (output_conn, contp, data->output_reader, INKVIONBytesGet

(input_vio));

In this example, contp is the transformation vconnection, which is writing to the output
vconnection. The number of bytes to be written is obtained from the input_vio by
INKVIONBytesGet.

When a vconnection calls back its user to indicate that it wants more data or when some
other condition has occurred, it issues a call to INKContCall and passes one of the
following values as the event parameter and the INKVIO describing the operation as the
data parameter.

Event parameter value Description

INK_EVENT_ERROR Indicates that an error has occurred on
the vconnection. This will happen for
network IO if the underlying read(2) or
write(2) call return an error.

INK_EVENT_VCONN_READ_REA
DY

The vconnection has placed data in the
buffer passed to an INKVConnRead
operation and it would like to do more IO
but the buffer is now full. When the user
consumes the data from the buffer it
should re-enable the VIO to indicate to
the vconnection that the buffer has been
modified.
122 Vconnections

The null transform plugin’s transformation, for example, receives
INK_EVENT_VCONN_WRITE_READY and INK_EVENT_VCONN_WRITE_COMPLETE events from
the downstream vconnection as a result of the call to INKVConnWrite.

When the user is finished using a vconnection he needs to call INKVConnClose or
INKVConnAbort. Both calls indicate that the vconnection can destroy itself but
INKVConnAbort should be used when the connection is being closed abnormally. After a
call to INKVConnClose or INKVConnAbort the user will not be called back by the
vconnection again.

Sometimes it’s desirable to simply close down the write portion of a connection while
keeping the read portion open. This can be accomplished using the INKVConnShutdown
function which will shutdown either the read or write portion of a vconnection.
Shutdown means that the vconnection will no longer call back the user with events for the
portion of the connection shutdown. For example, if the user shuts down the write
portion of a connection he will no longer get INK_EVENT_VCONN_WRITE_READY or
INK_EVENT_VCONN_WRITE_COMPLETE events.

In the null transform plugin, the write operation is shut down with a call to
INKVConnShutdown.

For a description of how vconnections are used in transformation plugins, see Writing
content transform plugins‚ on page 41.

The vconnection functions are:

INK_EVENT_VCONN_WRITE_RE
ADY

The vconnection has removed data from
the buffer passed to an INKVConnWrite
operation and it would like to do more IO
but the buffer does not have enough data
in it. When the user places more data in
the buffer he should re-enable the VIO to
indicate to the vconnection that the buffer
has been modified.

INK_EVENT_VCONN_READ_CO
MPLETE

The vconnection has read all the bytes
specified by an INKVConnRead
operation. The vconnection can now be
used to initiate a new IO operation.

INK_EVENT_VCONN_WRITE_CO
MPLETE

The vconnection has written all the bytes
specified by an INKVConnWrite
operation. The vconnection can now be
used to initiate a new IO operation.

INK_EVENT_VCONN_EOS An attempt was made to read past the
end of the stream of bytes during the
handling of an INKVConnRead
operation. This event occurs when the
number of bytes available for reading
from a vconnection is less than the
number of bytes the user specifies
should be read from the vconnection in a
call to INKVConnRead. A common case
where this occurs is when the user
specifies that INT_MAX bytes are to be
read from network connection.

Event parameter value Description
IO Guide 123

■ INKVConnAbort

■ INKVConnClose

■ INKVConnClosedGet (used for Transformations only)

■ INKVConnCreate

■ INKVConnRead

■ INKVConnReadVIOGet

■ INKVConnShutdown

■ INKVConnWrite

■ INKVConnWriteVIOGet

Net VConnections
A network vconnection (netvconnection) is a wrapper around a TCP socket that allows
the socket to work within the Traffic Edge vconnection framework. See Vconnections‚ on
page 121 for more information about the Traffic Edge abstraction for doing asynchronous
IO.

The net vconnection functions are:

■ INKNetAccept‚ on page 214

■ INKNetConnect‚ on page 214

Transformations

The vconnection implementor’s view

A VConnection implementor writes only transformations. All other VConnections (net
VConnections and cache VConnections) are implemented in iocore. As mentioned earlier,
a given vconnection can have at most one read operation and one write operation being
performed on it. The vconnection user gets information about the operation being
performed by examining the VIO returned by a call to INKVConnRead or INKVConnWrite.
The implementor, in turn, gets a handle on the VIO operation by examining the VIO
returned by INKVConnReadVIOGet or INKVConnWriteVIOGet. (Recall that every
vconnection created through the Traffic Edge API has an associated read VIO and write
VIO even if it only supports reading or writing.)

For example, the null transform plugin’s transformation examines the input VIO by
calling
input_vio = INKVConnWriteVIOGet (contp);

Where contp is the transformation.

A vconnection is a continuation, which means it has a handler function that gets run when
an event is sent to it, or more accurately, when an event that was sent to it is received. It is
the handler function’s job to examine the event, the current state of its read VIO and write
124 Net VConnections

VIO and any other internal state the vconnection might have and potentially make some
progress on the IO operations.

It is common for the handler function for all vconnections to look similar. Their basic form
looks something like the following code fragment.

int

vconnection_handler (INKCont contp, INKEvent event, void *edata)

{

 if (INKVConnClosedGet (contp)) {

 /* Destroy any vconnection specific data here. */

 INKContDestroy (contp);

 return 0;

} else {

 /* Handle the incoming event */

}

}

This code fragment basically shows that many vconnections simply want to destroy
themselves when they are closed. However, the situation might also require the
vconnection to do some cleanup processing which is why INKVConnClose does not
simply just destroy the vconnection.

Vconnections are state machines which are animated by the events they receive. An event
is sent to the vconnection whenever an INKVConnRead, INKVConnWrite, INKVConnClose,
INKVConnShutdown or INKVIOReenable call is performed. INKVIOReenable indirectly
references the vconnection through a back-pointer in the VIO structure to the vconnection.
The vconnection itself only knows what call was performed by examining its state and the
state of its VIOs. For example, when INKVConnClose is called, the vconnection will be sent
an immediate event (INK_EVENT_IMMEDIATE). For every event the vconnection receives, it
needs to check its closed flag to see if it has been closed. Similarly, when INKVIOReenable
is called, the vconnection is sent an immediate event. So for every event the vconnection
receives, it needs to check its VIOs to see if the buffers have been modified to a state where
it can continue processing one of its operations.

Lastly, a vconnection is likely the user of other vconnections. It also receives events as the
user of these other vconnections. When it receives such an event, like
INK_EVENT_VCONN_WRITE_READY, it might just enable another vconnection that is writing
into the buffer used by the vconnection reading from it. The above description is merely
intended to give the overall idea for what a vconnection needs to do.

Transformation VConnection

A transformation is a specific type of vconnection which supports a subset of the
vconnection functionality that allows one or more transformations to be chained together.
See Transformations‚ on page 42 for a description of how to use transformations in
transformation plugins.

A transformation is a specific type of vconnection which supports a subset of the
vconnection functionality that allows one or more transformations to be chained together.
A transformation sits as a bottleneck between an input data source and an output data
sink which enables it to view and modify all the data passing through it. Some
transformations simply scan the data and pass it on. A common transformation is to
compress the data in some manner.
IO Guide 125

A transformation can modify either the data stream being sent to an HTTP client (e.g. the
document) or the data stream being sent from an HTTP client (e.g. post data). To do so the
transformation should hook on to one of these hooks:

✔ INK_HTTP_REQUEST_TRANSFORM_HOOK

✔ INK_HTTP_RESPONSE_TRANSFORM_HOOK

Note that because a transformation is intimately associated with a given transaction that it
is only possible to add the hook to the transaction hooks and not to the global or session
hooks. Transformations reside in a chain and their ordering is very simply determined.
Transformations adding themselves to the chain are appended to it.

Data is passed in to the transformation by initiating a vconnection write operation on the
transformation. The consequence of this design is that a transformation must support the
vconnection write operation. In other words, your transformation must expect an
upstream vconnection to write data to it. The transformation has to read the data,
consume it, and tell the upstream vconnection that it is finished by send it an
INK_EVENT_WRITE_COMPLETE event.

 transforma
tions must

consume all
upstream

data before
closing

Transformations cannot send INK_EVENT_VCONN_WRITE_COMPLETE to the upstream
vconnection unless they are finished consuming all incoming data. If
INK_EVENT_VCONN_WRITE_COMPLETE is sent prematurely, certain internal Traffic Edge data
structures will not be deallocated, causing a memory leak.

How to make sure that all incoming data is consumed:

✔ Make sure that after reading or copying data, you consume the data and increase the
value of ndone for the input VIO, as in the following example taken from null-
transform.c:

INKIOBufferCopy (INKVIOBufferGet (data->output_vio),

INKVIOReaderGet (input_vio), towrite, 0);

/* Tell the read buffer that we have read the data and are no
longer interested in it. */

INKIOBufferReaderConsume (INKVIOReaderGet (input_vio),
towrite);

/* Modify the input VIO to reflect how much has been read.*/

INKVIONDoneSet (input_vio, INKVIONDoneGet (input_vio) +
towrite);

✔ Before sending INK_EVENT_VCONN_WRITE_COMPLETE, your transformation should check
the numbe of bytes remaining in the upstream vconnection’s write VIO (input VIO)
using the function INKVIONTodoGet (input_vio). This value should go to zero when
all of the upstream data is consumed (INKVIONTodoGet = nbytes - ndone). Do not
send INK_EVENT_VCONN_WRITE_COMPLETE events if INKVIONTodoGet is greater than
zero.

The transformation passes data out of itself by using the output vconnection retrieved by
INKTransformOutputVConnGet. Immediately before Traffic Edge initiates the write
operation which inputs data into the transformation it sets the output vconnection to the
next transformation in the chain of transformations or to a special terminating
transformation if this is the last transformation in the chain. Since the transformation is
handed ownership of the output vconnection it must close it at some point in order for it to
be de-allocated.
126 Transformations

All of the transformations in a transformation chain share the transaction’s mutex. This
small restriction (enforced by INKTransformCreate) removes many of the locking
complications of implementing general vconnections. For example, a transformation does
not have to grab its write VIO mutex before accessing its write VIO since it knows it
already holds the mutex.

The transformation functions are:

■ INKTransformCreate‚ on page 220

■ INKTransformOutputVConnGet‚ on page 221

VIOs
A VIO or virtual IO is a description of an in progress IO operation. The VIO data structure
is used by vconnection users to determine how much progress has been made on a
particular IO operation and to re-enable an IO operation when it stalls due to buffer space.
VIOs are used by vconnection implementors to determine the buffer for an IO operation,
to determine how much work to do on the IO operation and to determine which
continuation to call back when progress on the IO operation is made.

The INKVIO data structure itself is opaque, but it might have been defined as follows:

typedef struct {

 INKCont continuation;

 INKVConn vconnection;

 INKIOBufferReader reader;

 INKMutex mutex;

 int nbytes;

 int ndone;

} *INKVIO;

The functions below simply access and modify various parts of the data structure.

■ INKVIOBufferGet

■ INKVIOVConnGet

■ INKVIOContGet

■ INKVIOMutexGet

■ INKVIONBytesGet

■ INKVIONBytesSet

■ INKVIONDoneGet

■ INKVIONDoneSet

■ INKVIONTodoGet

■ INKVIOReaderGet

■ INKVIOReenable
IO Guide 127

IO buffers
The IO buffer data structure is the building block of the vconnection abstraction. An IO
buffer (INKIOBuffer) is composed of a list of buffer blocks which in turn point to buffer
data. Both the buffer block (INKIOBufferBlock) and buffer data (INKIOBufferData) data
structures are reference counted so that they can reside in multiple buffers at the same
time. This makes it extremely efficient to copy data from one IO buffer to another using
INKIOBufferCopy since Traffic Edge only needs to copy pointers and adjust reference
counts appropriately and not actually copy any data.

The IO buffer abstraction provides for a single writer and multiple readers. In order for
the readers to have no knowledge of each other, they manipulate IO buffers through the
INKIOBufferReader data structure. Since only a single writer is allowed, there is no
corresponding INKIOBufferWriter data structure. The writer simply modifies the IO
buffer directly.

The IO buffer functions are:

Refer to the sample code in the description of INKIOBufferBlockReadStart‚ on page 225 for a
sample that illustrates how to use IOBuffers.

■ The INKIOBufferReader data structure keeps track of how much data in the
INKIOBuffer has been read. It has an offset number of bytes which is the current start
point of a particular buffer reader. (For every read operation on an INKIOBuffer, you
must allocate an INKIOBufferReader).

■ Note that the bytes that already have been read may or may not be freed within the
INKIOBuffer. You have to call INKIOBufferConsume to consume bytes that have been
read. See the sample code on page 215. See also the output-hdr.c sample plugin that
Chris Cooper sent.

Guide to the cache API
The cache API lets plugins read, write, and remove objects in the Traffic Edge cache. All
cache APIs are keyed by an object called an INKCacheKey. Cache keys are created via
INKCacheKeyCreate. Keys are destroyed via INKCacheKeyDestroy. Use
INKCacheKeyDigestSet to set the hash of the cache key.

Note that the cache APIs differentiates between HTTP data and plugin data. The cache
APIs do not allow you to write HTTP docs in the cache. You can only write plugin specific
data which is a specific type of data which is different from the HTTP type.

Example:

 const unsigned char *key_name = "example key name";

 INKCacheKey key;

 INKCacheKeyCreate (&key);

 INKCacheKeyDigestSet (key, (unsigned char *) key_name ,
strlen(key_name));

 INKCacheKeyDestroy (key);
128 IO buffers

How to do a cache read

INKCacheRead does not really read, it is used for lookups. See the sample Protocol
plugin. The possible callback events include:

■ INK_EVENT_CACHE_OPEN_READ - indicating that the lookup was successful, the data
passed back along with this event is a cache vconnection that may be used to initiate a
read on this keyed data.

■ INK_EVENT_CACHE_OPEN_READ_FAILED - indicating that the lookup was unsuccessful.
Reasons for this event include: another continuation could be writing to that cache
location, or the cache key may not refer to a cached resource. Data payload for this
event indicates the possible reason for the read failing (INKCacheError).

How to do a cache write

Use INKCacheWrite to write to a cache. See the sample Protocol plugin. The possible
callback events include:

■ INK_EVENT_CACHE_WRITE_READ - indicating that the lookup was successful, the data
passed back along with this event is a cache vconnection that may be used to initiate a
write to the cache.

■ INK_EVENT_CACHE_OPEN_WRITE_FAILED - The event is returned if another
continuation is currently writing to this location in the cache. Data payload for this
event indicates the possible reason for the write failing (INKCacheError).

How to do a cache remove

Use INKCacheRemove to remove items from the cache. The possible callback events
include:

■ INK_EVENT_CACHE_REMOVE - item was removed. There is not data payload for this
event.

■ INK_EVENT_CACHE_REMOVE_FAILED - indicating that the cache was unabled to remove
the item idetified by the cache key. Data indicates the reason why the removed failed
(INKCacheError).

Errors

Errors as to why various cache operations failed are indicated by INKCacheError
(enumeration) as follows:

■ INK_CACHE_ERROR_NO_DOC - key does not match a cached resource.

■ INK_CACHE_ERROR_DOC_BUSY - e.g, another continuation could be writing to that cache
location.

■ INK_CACHE_ERROR_NOT_READY - the cache is not ready.

Example

In the example below, suppose we have a cache hit and the cache returns a vconnection
for us to read the document from the cache. To do this, we have to prepare a buffer
IO Guide 129

(cache_bufp) to hold the document. Meanwhile, we would use
INKVConnCachedObjectSizeGet to tell us the actual size of the document
(content_length). After, we would issue INKVConnRead to read the document with the
total data length required being content_length. Assume the following data:

 INKIOBuffer cache_bufp = INKIOBufferCreate ();
 INKIOBufferReader cache_readerp = INKIOBufferReaderAlloc (out_bufp);

 INKVConn cache_vconnp = NULL;

 INKVIO cache_vio = NULL;

 int content_length = 0;

In the INK_CACHE_OPEN_READ handler;
cache_vconnp = (INKVConn) data;

 INKVConnCachedObjectSizeGet (cache_vconnp, &content_length);

 cache_vio = INKVConnRead (cache_vconn, contp, cache_bufp,
content_length);

In the INK_EVENT_VCONN_READ_READY handler:

(usual VCONN_READ_READY handler logic)
int nbytes = INKVIONBytesGet (cache_vio);

int ntodo = INKVIONTodoGet (cache_vio);

int ndone = INKVIONDoneGet (cache_vio);

(consume data in cache_bufp)
INKVIOReenable (cache_vio);

Do not try to get continuations or vios from INKVConn objects for Cache VConnections.
Also note that the following APIs can only be used on Transformation VConnections and
must not be used on Cache or Net VConnections:
■ INKVConnWriteVIOGet

■ INKVConnReadVIOGet

■ INKVConnClosedGet

APIs such as INKVConnRead, INKVConnWrite, INKVConnClose, INKVConnAbort and
INKVConnShutdown can be used on any kind of VConnections.

When you are done:
INKCacheKeyDestroy (key);
130 Guide to the cache API

CHAPTER 14 Plugin Management
This chapter decribes:

■ “Setting up a plugin management interface” on page 131.

You can add your own HTML information pages or CGI forms to the Traffic Manager
UI. Traffic Manager can send configuration information from a CGI form to your
plugin.

■ “Reading Traffic Edge settings and statistics” on page 132.

Using the functions in this chapter, plugins can read Traffic Edge configuration
settings and statistics from the records.config file.

■ “Accessing installed plugin files” on page 132.

Have plugins access related files in the plugin installation directory, and make sure
that your plugins are preserved during Traffic Edge upgrades.

■ “Licensing your plugin” on page 133.

■ “Guide to the logging API” on page 135.

The logging API enables your plugin to log text entries in a custom Traffic Edge log
file. This section gives a basic overview of the logging interface.

Setting up a plugin management interface
To set up a plugin management interface, follow these steps:

1 Create your interface. It must be browser-based, since it is accessed through the Traffic
Manager UI. Your interface can be static or dynamic. If you are using a dynamic
interface, your CGI form submission must set the INK_PLUGIN_NAME variable to be the
name of your plugin, as it is entered in the INKMgmtUpdateRegister function.

2 Note the location of your interface files.

3 Use the INKMgmtUpdateRegister function in your plugin. It should be part of
INKPluginInit.

The INKMgmtUpdateRegister function does two things:

■ Informs Traffic Manager of the location of your interface, so that the links to your
interface appear in the Traffic Manager UI

■ If you have a dynamic interface, it sets up a callback to your plugin whenever
configuration information is submitted through the interface

Reading Traffic Edge settings and statistics
Your plugin might need to know information about Traffic Edge’s current configuration
and performance. The functions described in this section read this information from the
Traffic Edge records.config file. Configuration settings are stored in CONFIG variables
and statistics are stored in PROCESS variables.

 Caution Not all CONFIG and PROCESS variables in records.config are relevant to Traffic Edge’s
configuration and statistics. Retrieve only the records.config variables that are
documented in the Traffic Edge Administrator’s Guide.

 Four result
types

To retrieve a variable, you need to know its type (int, counter, float, or string). Plugins
store the records.config values as an INKMgmtInt, INKMgmtCounter, INKMgmtFloat, or
INKMgmtString. You can look up records.config variable types in the Traffic Edge
Administrator’s Guide.

Depending on the result type, use INKMgmtIntGet, INKMgmtCounterGet,
INKMgmtFloatGet, or INKMgmtStringGet to obtain the variable value.

See the example for “INKMgmtIntGet” on page 234..

The INKMgmt*Get functions are:

■ “INKMgmtCounterGet” on page 233.

■ “INKMgmtFloatGet” on page 234.

■ “INKMgmtIntGet” on page 234.

■ “INKMgmtStringGet” on page 234.

Accessing installed plugin files
Your plugin might rely on files in addition to its source code, such as configuration files.
When you upgrade Traffic Edge, you might need to make sure your plugin is always able
to find its associated files. The mechanism for preserving relative file locations with
upgrades is the following:

■ Make sure all plugins are contained in their own directories within the plugin
directory.

■ The plugin directory path is specified in the Traffic Edge records.config file variable
proxy.config.plugin.plugin_dir. This path is relative to the Traffic Edge install
directory. The default value is config/plugin.

■ Make sure all plugins are listed in the plugin.db file. For each plugin, this file
contains the plugin name, object file, license key, file name(s), and directory relative to
the plugin directory.

■ When Traffic Edge is upgraded, the Traffic Edge installation program looks at the
plugin.db file to see which plugins to copy over to the new Traffic Edge installation,
and what the appropriate object files, license keys, additional files, and directories
should be.

The format of the plugin.db file is as follows:

[name of your plugin]
132 Reading Traffic Edge settings and statistics

Object=[name of plugin’s shared object file

License=[license key]

Dir=[name of any directories to be copied over]

 notes
about

plugin.db
format

■ Entries in plugin.db are case-sensitive.

■ Do not include white spaces in your entries. For example, the following line is
incorrect:

Object = plugin.so

The correct entry would be:

Object=plugin.so

For example, suppose that you have a blacklist plugin in the plugin directory. Its object
file is Blacklist.so and it has some user interface files (images and HTML files) in the
Blacklist/ui directory. To make sure that the blacklist plugin is upgraded properly,
plugin.db needs the following entry:

[Blacklist plugin]

Object=Blacklist.so

License=ABCD0123456789

Dir=Blacklist/ui

In this example, if all of the necessary files and directories are in the Blacklist directory,
you could simply specify Dir = Blacklist.

This means that the Blacklist image and HTML files are always located in:

<Traffic Edge install directory>/<plugin directory>/Blacklist/ui

Your plugin might need to specify the absolute location of its associated files. The
following functions provide the Traffic Edge install directory path and plugin directory
path:

■ “INKInstallDirGet” on page 235.

■ “INKPluginDirGet” on page 235.

Licensing your plugin
When installing a plugin which requires a license, the plugin.db must be updated. This
file contains the license keys for the plugins. At load time, Traffic Edge reads the key in the
plugin.db file and checks their validity. If a key is not valid, the plugin is not executed.

Format of plugin.db

comments start by a '#' character

[plugin_name]

Object=plugin.so

License=Key

Be careful with the syntax:

■ Object is with an uppercase 'O'

 ex.: object=plugin.so is bad
Plugin Management 133

■ License is with an uppercase 'L'

 ex. license=key is bad

■ No blank between '=' and value.

 ex.: Object = plugin.so is bad

■ No blank after the value.

 ex. License=Key is bad

Setting up licensing

Set up licensing in these steps:

1 Develop your plugin, using the INKPluginLicenseRequired function.

2 Create an installation program for your plugin. The installation program must update
both plugin.config and plugin.db. When your plugin customer installs the plugin,
the program should ask the customer for the license key.

3 Use the gen_key tool to generate license keys. You can generate different keys for
different customers, and you can set expiration dates for each key.

4 Distribute your plugin together with license key to customers.

When the customer installs the plugin, the installation program should ask for the license
key. The installation program should then make an entry in plugin.db and
plugin.config for the new plugin. When the customer runs the plugin, Traffic Edge
checks the license key. If it passes, Traffic Edge then calls INKPluginInit.

Example

■ You have a plugin filtering, implemented in object filtering.so

■ You generate a key for your plugin filtering by using:

 gen_key filtering ABCDE 03312002

■ The key generated by gen_key is:

ABCDE2E01E07D95

■ You must update plugin.db and add the following lines:

[filtering]

Object=filtering.so

License=ABCDE2E01E07D95

The following function is used to license your plugin:

■ “INKPluginLicenseRequired” on page 235.

Generating a license key
The gen_key tool generates a license key based on your plugin name (which must match
the plugin name entered in the plugin.db file), an expiration date, and a customer ID (so
134 Generating a license key

that you can give different license keys to different customers). You can specify an
expiration date of 0 which means that the plugin never expires.

▼ Running the gen_key tool

1 On Unix, cd to the sdk/tools directory in your SDK package. On NT, open a DOS
command window and cd to the sdk/tools directory.

2 Enter the following:

◆ * plugin_name is the name of the plugin and it needs to match the name specified in
plugin.db

◆ ID is a string of 5 alphanumeric characters, used to identify different customers

◆ expiration is the expiration date of the plugin in the following format:

mmddyyyy

For example, 03312001 for March 31, 2001. Use 0 for no expiration.

Guide to the logging API
The logging API lets your plugin log entries in a custom text log file. You create the file
with the call INKTextLogObjectCreate. The log file is part of Traffic Edge’s logging
system. By default, the log file is stored in the logging directory. Once you have created
the log object, you can set log properties.

The logging API enables you to:

✔ Establish a custom text log for your plugin. See “INKTextLogObjectCreate” on page 240..

■ Set the log header for your custom text log. See “INKTextLogObjectHeaderSet” on page
241.

■ Enable or disable rolling your custom text log. See
“INKTextLogObjectRollingEnabledSet” on page 242.

■ Set the rolling interval in seconds for your custom text log. See
“INKTextLogObjectRollingIntervalSecSet” on page 242.

■ Set the rolling offset for your custom text log. See
“INKTextLogObjectRollingOffsetHrSet” on page 243.

✔ Write text entries to the custom text log. See “INKTextLogObjectWrite” on page 243..

✔ Flush the contents of the custom text log’s write buffer to disk. See
“INKTextLogObjectFlush” on page 243..

✔ Destroy custom text logs when you are done with them. See “INKTextLogObjectDestroy”
on page 244..

Here is how the logging API is used in the blacklist-1.c sample plugin. See “Sample
Source Code” on page 245. for complete source code.

1 A new log file is defined as a global variable.

static INKTextLogObject log;

gen_key plugin_name ID expiration
Plugin Management 135

2 In INKPluginInit, a new log object is allocated:

log = INKTextLogObjectCreate("blacklist",
INK_LOG_MODE_ADD_TIMESTAMP,

NULL, &error);

The new log is named blacklist.log. Each entry written to the log will have a
timestamp. The NULL argument specifies that the new log does not have a log header.
The error argument stores the result of the log creation. If the log is created
successfully, error is equal to INK_LOG_ERROR_NO_ERROR.

3 After creating the log, the plugin makes sure that the log was created successfully:

if (!log) {

printf("Blacklist plugin: error %d while creating log\n",
error);

}

4 The blacklist-1 plugin matches the host portion of the URL in each client request
with a list of blacklisted sites stored in the array sites[]:

for (i = 0; i < nsites; i++) {

if (strncmp (host, sites[i], host_length) == 0) {

If the host matches one of the blacklisted sites, say sites[i], then the plugin writes a
blacklist entry to blacklist.log:

if (log) {

INKTextLogObjectWrite(log, "blacklisting site: %s",
sites[i]);

The format of the log entry is :

<timestamp> blacklisting site: sites[i]

The log is not flushed or destroyed in the blacklist-1 plugin. It lives for the life of
the plugin.
136 Guide to the logging API

CHAPTER 15 Adding Statistics
This chapter describes how to add statistics to your plugins. Statistics can be coupled or
uncoupled. Coupled statistics are quantities that are related and must be updated
together. The Traffic Edge API statistics functions add your plugin’s statistics to the Traffic
Edge statistics system. You can view your plugin statistics as you would any Traffic Edge
statistic, using Traffic Line (Traffic Edge’s command line interface). This chapter contains
the following topics:

■ Uncoupled statistics‚ on page 137

■ Coupled statistics‚ on page 137

■ Viewing statistics using Traffic Line‚ on page 139

Uncoupled statistics
A statistic is an object of type INKStat. The value of the statistic is of type INKStatType.
The possible INKStatTypes are:
■ INKSTAT_TYPE_INT64

■ INKSTAT_TYPE_FLOAT

There is no INKSTAT_TYPE_INT32.

To add uncoupled statistics, follow these steps:

1 Declare your statistic as a global variable in your plugin. For example:

static INKStat my_statistic;

2 In INKPluginInit, create new statistics using INKStatCreate.

When you create a new statistic, you need to give it an “external” name that the Traffic
Edge command line interface (Traffic Line) uses to access the statistic. For example:

my_statistic = INKStatCreate (“my.statistic”,
INKSTAT_TYPE_INT64);

3 Modify (increment, decrement, or other modification) your statistic in plugin
functions.

Coupled statistics
Use coupled statistics for quantities that are related and must be updated jointly. As a very
simple example, suppose that you have three statistics: sum, part_1 and part_2, and they
must always preserve the relationship that sum = part_1 + part_2. If you update

part_1 without updating sum at the same time, the equation would be untrue. The
mechanism for updating coupled statistics jointly is to create local copies of global
coupled statistics in the routines that modifiy them. When each local copy is updated
appropriately, you do a global update using INKStatsCoupledUpdate. To specify which
statistics are related to one another, you establish a coupled statistic category, and make
sure that each coupled statistic belongs to the appropriate category. When it is time to do
the global update, you specify the category to be updated.

 Note The local statistic copy must have a duplicate set of statistics as that of the master copy.
Local statistics must also be added to the local statistic category in the same order as their
master copy counterparts were added originally.

Here are the steps you needed, followed by an example of code that is taken from the
redirect-1.c sample plugin.

▼ To add coupled statistics:

1 Declare the global category for your coupled statistics as a global INKCoupledStat
variable in your plugin.

2 Declare your coupled statistics as global INKStat variables in your plugin.

3 In INKPluginInit, create a new global coupled category using
INKStatCoupledGlobalCategoryCreate.

4 In INKPluginInit, create new global coupled statistics using
INKStatCoupledGlobalAdd.

When you create a new statistic, you need to give it an “external” name that the Traffic
Edge command line interface (Traffic Line) uses to access the statistic.

5 In any routine where you want to modify (increment, decrement, or other
modification) your coupled statistics, declare local copies of the coupled category and
coupled statistics.

6 Then create local copies using INKStatCoupledLocalCopyCreate and
INKStatCoupledLocalAdd.

7 Modify the local copies of your statistics. Then to update the global copies jointly, call
INKStatsCoupledUpdate.

8 When you are done, you must destroy the all of the local copies in the category using
INKStatCoupledLocalCopyDestroy.

Example using the redirect-1.c sample plugin

static INKCoupledStat request_outcomes;

static INKStat requests_all;

static INKStat requests_redirects;

static INKStat requests_unchanged;

request_outcomes = INKStatCoupledGlobalCategoryCreate ("request_outcomes");

requests_all = INKStatCoupledGlobalAdd (request_outcomes, "requests.all",
INKSTAT_TYPE_FLOAT);
138 Coupled statistics

requests_redirects = INKStatCoupledGlobalAdd (request_outcomes,
"requests.redirects",

INKSTAT_TYPE_INT64);

requests_unchanged = INKStatCoupledGlobalAdd (request_outcomes,
"requests.unchanged",

INKSTAT_TYPE_INT64);

INKCoupledStat local_request_outcomes;

INKStat local_requests_all;

INKStat local_requests_redirects;

INKStat local_requests_unchanged;

local_request_outcomes = INKStatCoupledLocalCopyCreate("local_request_outcomes",

request_outcomes);

local_requests_all = INKStatCoupledLocalAdd(local_request_outcomes,
"requests.all.local",

INKSTAT_TYPE_FLOAT);

local_requests_redirects = INKStatCoupledLocalAdd(local_request_outcomes,

"requests.redirects.local", INKSTAT_TYPE_INT64);

local_requests_unchanged = INKStatCoupledLocalAdd(local_request_outcomes,

"requests.unchanged.local", INKSTAT_TYPE_INT64);

INKStatFloatAddTo(local_requests_all, 1.0) ;

...

INKStatIncrement (local_requests_unchanged);

INKStatsCoupledUpdate(local_request_outcomes);

INKStatCoupledLocalCopyDestroy(local_request_outcomes);

Viewing statistics using Traffic Line
To view your plugin’s statistics, follow these steps:

1 Make sure you know the name of your statistic (the name used in the
INKStatCoupledGlobalAdd, INKStatCreate, or
INKStatCoupledGlobalCategoryCreate call).

2 In your <Traffic Edge>/bin directory, enter the following:

./traffic_line -r the_name
Adding Statistics 139

140 Viewing statistics using Traffic Line

CHAPTER 16 Function Reference
This chapter provides a description of each function in the Traffic Edge API. The functions
are grouped according to what they do. The following section lists all the function groups.
You can look up functions alphabetically in the Function Index‚ on page 281.

List of function groups
✔ Initialization functions‚ on page 142

✔ Debugging functions‚ on page 143

✔ The INKfopen family‚ on page 145

✔ Memory allocation‚ on page 148

✔ Thread functions‚ on page 150

✔ HTTP functions‚ on page 151

✔ Initiate Connection‚ on page 162

✔ Intercepting HTTP transaction functions‚ on page 163

✔ Mutex functions‚ on page 203

✔ Continuation functions‚ on page 205

✔ Plugin configuration functions‚ on page 207

✔ Action functions‚ on page 209

✔ Host Lookup Functions‚ on page 210

✔ Vconnection functions‚ on page 211

✔ Netvconnection functions‚ on page 214

✔ Cache interface functions‚ on page 215

✔ Transformation functions‚ on page 220

✔ VIO functions‚ on page 221

✔ IO buffer interface‚ on page 225

✔ Management interface function‚ on page 233

✔ Traffic Edge Configuration Read Functions‚ on page 233

✔ Customer installation and licensing functions‚ on page 235

✔ Statistics functions‚ on page 236

✔ Logging functions‚ on page 240

Initialization functions

INKPluginInit

INKPluginRegister

Registers the appropriate SDK version for your plugin.

Prototype void INKPluginInit (int argc, const char *argv[])

Arguments argc is a count of the number of arguments in the argument vector, argv. The count is at least
one because the first argument in the argument vector is the plugin’s name, which must exist in
order for the plugin to be loaded.

argv is the vector of arguments. The number of arguments in the vector is argc, and argv[0]
always contains the name of the plugin shared library.

Description This function must be defined by all plugins. Traffic Edge calls this initialization routine when it
loads the plugin and sets argc and argv appropriately based on the values in plugin.config.

First release Traffic Server 3.0

Prototype int INKPluginRegister (INKSDKVersion sdk_version,
INKPluginRegistrationInfo *plugin_info)

Arguments sdk_version can have the following values: INK_SDK_VERSION_1_0,
INK_SDK_VERSION_1_1, INK_SDK_VERSION_2_0, INK_SDK_VERSION_5_2.

INKPluginRegistrationInfo is the following struct:

typedef struct

{

 char *plugin_name;

 char *vendor_name;

 char *support_email;

} INKPluginRegistrationInfo;

Description Registers the appropriate SDK version for your plugin. Use this function to make sure that the
version of Traffic Edge on which your plugin is running supports the plugin. See Modified hello-
world that checks Traffic Edge version‚ on page 20 for usage.

Important: Previous versions of Traffic Edge are named Traffic Server. Throughout this manual,
Traffic Server, Traffic Server 3.0, Traffic Server 3.5, and Traffic Server 5.2 refer to previous
versions of Traffic Edge. For version checking, Traffic Edge 1.5 is equivalent to Traffic Server 5.5.

Returns Returns 0 if the plugin registration fails.

First release Traffic Server 3.5
142 Initialization functions

INKTrafficServerVersionGet

Returns the version of Traffic Edge running the plugin.

Debugging functions
The debugging functions are:

INKDebug

Issues debug statements.

Prototype const char* INKTrafficServerVersionGet (void)

Description Returns the release version of Traffic Edge running the plugin as a string. See Modified hello-
world that checks Traffic Edge version‚ on page 20 for usage.

Returns A pointer to a string of characters that describes the Traffic Edge release version.

Important: Previous versions of Traffic Edge are named Traffic Server. Throughout this manual,
Traffic Server, Traffic Server 3.0, Traffic Server 3.5, and Traffic Server 5.2 refer to previous
versions of Traffic Edge. For version checking, Traffic Edge 1.5 is equivalent to Traffic Server 5.5.

First release Traffic Server 3.5

Prototype void INKDebug (const char *tag, const char *format_str, ...)

Arguments tag is the Traffic Edge parameter that enables Traffic Edge to print out format_str.

... is a variable for format_str.

Description INKDebug prints out the statement format_str if debugging is enabled. There are two ways to
enable debugging:

◆ On UNIX systems, run Traffic Edge with the -Ttag option. For example, if the tag is my-
plugin:
traffic_server -Tmy-plugin
In this case, the debug output goes to traffic.out.

◆ On either UNIX or Windows NT systems, set the following variables in records.config (in the
Traffic Edge config directory):
proxy.config.diags.debug.enabled INT 1
proxy.config.diags.debug.tags STRING debug-tag-name
In this case, debug output goes to traffic.out on UNIX systems, and to diags.log on
Windows NT systems.

Example INKDebug ("my-plugin", “Starting my-plugin at %d\n”, the_time);

The statement “Starting my-plugin at <time>” appears whenever you run Traffic Edge with the my-
plugin tag:

traffic_server -Tmy-plugin

First release Traffic Server 3.5
Function Reference 143

INKIsDebugTagSet

Tells you if a particular debug tag is set.

INKError

Writes an error to the Traffic Edge error log.

INKAssert
Allows the use of assertion in a plugin.

Prototype int INKIsDebugTagSet (const char *t)

Description Returns 1 if the debug tag t is set. You can use this tag to let the Traffic Edge administrator know
whether the debug tag is set or not.

Example if (INKIsDebugTagSet("demo"))
INKDebug("init", "The demo tag is set");

else
INKDebug("init", "The demo tag is not set") ;

In this example if you run Traffic Edge with the init tag, it will tell you whether or not the demo
tag is set. You can run Traffic Edge with more than one debug tag set, by adding the tags to the
debug tag variable in records.config, for example:

proxy.config.diags.debug STRING init demo

Returns 0 if the specified debug tag is not set.

1 if the specified debug tag is set.

First release Traffic Server 3.5

Prototype void INKError (const char *fmt, ...)

Arguments fmt is the printf format description.

... is the argument for the format description.

Description It is sometimes useful to log messages when errors occur. Traffic Edge has a global error log file
to which it writes such messages. The function INKError is the API interface to this error log.
INKError is similar to printf except that instead of writing the output to the C standard output,
INKError writes output to the Traffic Edge error log. One advantage of INKError over printf
is that each call is atomically placed into the error log and is not garbled with other error entries.
This is not an issue in single-threaded programs but is a definite nuisance in multi-threaded
programs.

Example INKError ("couldn't retrieve client request header\n");

First release Traffic Server 3.0

Prototype void INKAssert(expression);

Arguments A boolean expression.
144 Debugging functions

INKReleaseAssert

Allows the use of assertion in a plugin.

The INKfopen family
The fopen family of functions in C is normally used for reading configuration files, since
fgets is an easy way to parse files on a line by line basis. The INKfopen family of
functions is aimed at solving the same problem of buffered IO and line at a time IO in a
platform independent manner. The INKfopen family of functions works exactly the same
under Microsoft Windows NT as it does under any of the Unix platforms Traffic Edge
runs on. Further, the fopen family of C library functions can only open a file if a file
descriptor less than 256 is available. Traffic Edge often has more than 2000 file descriptors
open at once, making the likelihood of an available file descriptor less than 256 very small.
The INKfopen family can open files with descriptors greater than 256.

 INKfopen
not optimized

for speed

The INKfopen family of routines is not intended for high speed IO or for flexibility. It is
intended for reading and writing configuration information when corresponding usage of
the fopen family of functions is inappropriate because of file descriptor and portability
limitations. The INKfopen family of functions consists of:

Description If expression is false:

In debug mode, causes the Traffic Edge to print the file name, line number and expression, then
to abort.

In optim mode, the expression is *not* removed. But the effect of printing an error message and
aborting are. This is an artifact of the way the system assert is normally used and permits:

ink_assert(!setsockopt(...));

Allows the use of assertion in a plugin.

Note that when using the system “assert”, you do not have to worry about the condition as the
code will be 'dead code eliminated' by the compiler. With INKAssert you do.

Example switch (event) {

case EVENT_IMMEDIATE:

....

default:

INKAssert (!setsockopt(...));

break;

}

First release Traffic Server 5.2

Prototype void INKReleaseAssert(expression);

Arguments A boolean expression.

Description If expression is false, causes the Traffic Edge in debug AND optim mode to print the file name,
line number and expression, then to abort.

Allows the use of assertion in a plugin.

First release Traffic Server 5.2
Function Reference 145

INKfclose

Closes a file.

INKfflush

Flushes a file.

INKfgets

Reads a line from a file to a buffer.

INKfopen

Reads a line from a file to a buffer.

Prototype void INKfclose (INKFile filep)

Arguments filep is the file to close.

Description Closes the file pointed to by filep and frees the data structures and buffers associated with it. If
the file was opened for writing, any pending data is flushed.

Example See the example for INKfopen.

First release Traffic Server 3.0

Prototype void INKfflush (INKFile filep)

Arguments filep is the file to flush.

Description Flushes pending data that has been buffered up in memory from previous calls to INKfwrite.

First release Traffic Server 3.0

Prototype char* INKfgets (INKFile filep, char *buf, int length)

Arguments filep is the file to read from.

buf is the buffer to read into.

length is the size of the buffer to read into.

Description Reads a line from the file pointed to by filep into the buffer buf. Lines are terminated by a line
feed character,'\n'. The line placed in the buffer includes the line feed character and is
terminated with a NUL. If the line is longer than length bytes then only the first length - 1
bytes are placed in buf.

First release Traffic Server 3.0

Prototype INKFile INKfopen (const char *filename, const char *mode)

Arguments filename is the name of the file to open.

mode specifies whether to open the file for reading or writing. If mode is

“r” then the file is opened for reading.

“w”, then the file is opened for writing.

“a” then the file is opened for appending.

Currently “r” ,“w” and “a” are the only two valid modes for opening a file.
146 The INKfopen family

INKfread

Reads a specified number of bytes from a file to a buffer.

Description Opens a file for reading or writing and returns a descriptor for accessing the file. Descriptors of
type INKFile can be greater than 256. INKfopen can open a file for reading or for writing, but
not both. (This is a limitation of the current implementation).

Example The following example is taken from the append-transform plugin. The append-transform plugin appends text to the
end of HTTP response bodies. This subroutine loads the text to be added from a file.
static int
load (const char *filename)
{

INKFile fp;
INKIOBufferBlock blk;
INKIOBufferData data;
char *p;
int avail;
int err;

fp = INKfopen (filename, "r");
if (!fp) {

return 0;
}

append_buffer = INKIOBufferCreate ();
append_buffer_reader = INKIOBufferReaderAlloc (append_buffer);

for (;;) {
blk = INKIOBufferStart (append_buffer);
p = INKIOBufferBlockWriteStart (blk, &avail);

err = INKfread (fp, p, avail);
if (err > 0) {

INKIOBufferProduce (append_buffer, err);
} else {

break;
}

}

append_buffer_length = INKIOBufferReaderAvail (append_buffer_reader);

INKfclose (fp);
return 1;

}

First release Traffic Server 3.0

Prototype int INKfread (INKFile filep, void *buf, int length)

Arguments filep is the name of the file to read from.

buf is the buffer to read into.

length is the amount of data to read.

Description Attempts to read length bytes of data from the file pointed to by filep into the buffer buf. If the
file was not opened for reading, INKfread returns -1. If an error occurs while reading the file,
INKfread returns -1. If the end of the file is reached, INKfread returns 0. Otherwise,
INKfread returns the number of bytes read.
Function Reference 147

INKfwrite

Writes a specified number of bytes to a file.

Memory allocation
Traffic Edge provides five routines for allocating and freeing memory. These routines
correspond to similar routines in the C library. For example, INKrealloc behaves like the
C library routine realloc. There are two reasons to use the routines provided by Traffic
Edge. The first is portability. The Traffic Edge API routines behave the same on all of
Traffic Edge’s supported platforms. For example, realloc does not accept an argument of
NULL on some platforms. The second reason is that the Traffic Edge routines actually track
the memory allocations by file and line number. This tracking is very efficient, is always
turned on, and is useful for tracking down memory leaks.

The memory allocation functions are:

INKfree

Frees memory allocated by INKmalloc or INKrealloc.

INKmalloc

Allocates memory.

Example See the example for INKfopen.

First release Traffic Server 3.0

Prototype int INKfwrite (INKFile filep, void *buf, int length)

Arguments filep is the file to write to.

buf is the buffer containing the data to be written.

length is the amount of data to write to filep.

Description Attempts to write length bytes of data to the file pointed to by filep from the buffer buf. If the
file was not opened for writing, INKfwrite returns -1. Otherwise, INKfwrite returns the
number of bytes written. Unless an error occurs when writing data to the file, the number of bytes
written is equal to length. One common error is an insufficient amount of space on disk.

First release Traffic Server 3.0

Prototype void INKfree (void *ptr)

Arguments ptr is a pointer to the memory to deallocate.

Description Releases the memory allocated by INKmalloc or INKrealloc. If ptr is NULL, INKfree does
no operation.

First release Traffic Server 3.0

Prototype void* INKmalloc (unsigned int size)

Arguments size is the number of bytes to allocate.
148 Memory allocation

INKrealloc

Changes the size of an allocated block of memory.

INKstrdup

Returns a pointer to a duplicate string.

INKstrndup

Returns a pointer to a duplicate string of specified length.

Description Returns a pointer to size bytes of memory allocated from the heap. Traffic Edge uses
INKmalloc internally for memory allocations. Always use INKfree to release memory allocated
by INKmalloc; do not use free.

Returns A pointer to the newly allocated memory.

First release Traffic Server 3.0

Prototype void* INKrealloc (void *ptr, unsigned int size)

Arguments ptr is the pointer to the memory to reallocate.

size is the number of bytes to allocate.

Description Changes the size of the memory block pointed to by ptr to size bytes and returns a pointer to
the new block. It may not be possible to simply extend ptr to satisfy a request to increase the
allocated block, so the returned pointer might point to a new block of memory. If ptr is NULL,
INKrealloc behaves like INKmalloc and returns a pointer to the newly allocated memory.

Returns A pointer to the reallocated memory.

First release Traffic Server 3.0

Prototype char* INKstrdup (const char *str)

Arguments str is a pointer to the null-terminated string to duplicate.

Description Returns a pointer to a new string that is a duplicate of the string pointed to by str. The memory
for the new string is allocated using INKmalloc and should be freed by a call to INKfree.

Returns Pointer to the duplicated string.

Note: A valid null-terminated string may not be returned if the input str argument is not a valid
pointer (i.e. a NULL argument would simply cause INKstrdup to return NULL).

First release Traffic Server 3.0

Prototype char* INKstrndup (const char *str, int length)

Arguments str is a pointer to the string to duplicate.

length is the length of the string to duplicate.

Description Returns a pointer to a new string that is a duplicate of the string pointed to by str and length
bytes long. The new string will be null-terminated. This API is very useful for transforming non-
null terminated string values returned by APIs such as INKMimeHdrFieldStringValueGet into null-
terminated string values. The memory for the new string is allocated using INKmalloc and
should be freed by a call to INKfree.
Function Reference 149

Thread functions
The Traffic Edge API thread functions enable you to create, destroy, and identify threads
within Traffic Edge. Multithreading enables a single program to have more than one
stream of execution and to process more than one transaction at a time.

Threads serialize their access to shared resources and data using the INKMutex type,
described in Mutexes‚ on page 101.

The thread functions are:

INKThreadCreate

Creates a new thread.

INKThreadDestroy

Destroys a thread.

Returns Pointer to the duplicated string.

Note: A valid null-terminated string may not be returned if the input str argument is not a valid
pointer (i.e. a NULL argument would simply cause INKstrndup to return NULL).

First release Traffic Server 3.0

Prototype INKThread INKThreadCreate (INKThreadFunc func, void *data)

Arguments INKThreadFunc func is the function that the new thread executes.

void *data is the data passed as an argument to func.

Description Creates a new thread and calls func with the argument data. When func exits, the thread is
destroyed automatically.

Note: the INKThread return pointer does not provide any indication of the status of the new
thread, and cannot be modified.

Returns A valid pointer to an INKThread object if successful.

A NULL pointer in case of an error.

First release Traffic Server 3.0

Prototype INKReturnCode INKThreadDestroy (INKThread thread)

Description Destroys a thread and frees all memory and associated data structures. This should only be
called on threads that have been initialized using INKThreadInit.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
150 Thread functions

INKThreadInit

Initializes a thread.

INKThreadSelf

Obtain a thread identifier.

HTTP functions

Hook functions

INKHttpHookAdd

Adds an HTTP hook.

Prototype INKThread INKThreadInit (void)

Description Initializes a thread for use by Traffic Edge. This function should only be used if you create your
own thread using something other than the INKThreadCreate function. This should not be
called more than once for any given thread.

Returns A valid pointer to an INKThread object if successful.

A NULL pointer in case of an error.

First release Traffic Server 3.0

Prototype INKThread INKThreadSelf (void)

Description Returns the thread identifier for the currently executing thread.

Returns A valid pointer to an INKThread object if successful.

A NULL pointer in case of an error.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpHookAdd (INKHttpHookId id, INKCont contp)

Description Adds contp to the end of the list of global HTTP hooks specified by id. Since
INKHttpHookAdd is adding contp to a global list this function is only safe to call from the plugin
initialization routine.

Returns INK_SUCCESS if the hook is successfully added.

INK_ERROR if the hook is not added.

First release Traffic Server 3.0
Function Reference 151

Session functions

IINKHttpSsnHookAdd

Adds an HTTP session hook.

Prototype INKReturnCode INKHttpSsnHookAdd (INKHttpSsn ssnp, INKHttpHookID id,

INKCont contp)

Description Adds contp to the end of the list of HTTP transaction hooks specified by id. This means that
contp is called back for every transaction within the session, at the point specified by the hook
ID. Since contp is added to a session, it is not possible to call INKHttpSsnHookAdd from the
plugin initialization routine; the plugin needs a handle to an HTTP session. See the following
example.

Returns INK_SUCCESS if the hook is successfully added.

INK_ERROR if the hook is not added.
152 HTTP functions

INKHttpSsnReenable

Re-enables an HTTP session.

First release Traffic Server 3.0

Example #include InkAPI.h

static void txn_handler (INKHttpTxn txnp, INKCont contp)
{

//handle transaction
}

static void handle_session (INKHttpSsn ssnp, INKCont contp)
{

INKHttpSsnHookAdd (ssnp, INK_HTTP_TXN_START_HOOK, contp);
}

static int ssn_handler (INKCont contp, INKEvent event, void *edata)
{
 INKHttpSsn ssnp;
 INKHttpTxn txnp;

 switch (event){
 case INK_EVENT_HTTP_SSN_START:
 ssnp = (INKHttpSsn) edata;
 handle_session (ssnp, contp);
 INKHttpSsnReenable (ssnp, INK_EVENT_HTTP_CONTINUE);
 return 0;

 case INK_EVENT_HTTP_TXN_START:
 txnp = (INKHttpTxn) edata;
 txn_handler (txnp, contp);
 INKHttpTxnReenable (txnp, INK_EVENT_HTTP_CONTINUE);
 return 0;

 default:

break;
 }
 return 0;
}

void INKPluginInit (int argc, const char *argv[])
{
 INKCont contp;
 contp = INKContCreate (ssn_handler, NULL);
 INKHttpHookAdd (INK_HTTP_SSN_START_HOOK, contp);
}

Prototype INKReturnCode INKHttpSsnReenable (INKHttpSsn ssnp, INKEvent event)

Description Notifies the HTTP session ssnp that the plugin is done processing the current hook. If
INK_EVENT_HTTP_CONTINUE is specified for event, then the plugin wants the session to
continue. If INK_EVENT_HTTP_ERROR is specified for event, then the plugin wants the session
to be terminated and for an error to be sent back to the client if no response has already been
sent.

Returns INK_SUCCESS if the session is successfully re-enabled.

INK_ERROR if the hook is not added.

First release Traffic Server 3.5
Function Reference 153

HTTP transaction functions

INKHttpTxnCacheLookupStatusGet

Stores the current cache lookup status for the ongoing transaction. Also stores the number of cache lookup
operations already performed.

INKHttpTxnCachedReqGet

Gets the cached request header for a specified HTTP transaction.

Prototype INKReturnCode INKHttpTxnCacheLookupStatusGet (INKHttpTxn txnp,

int *lookup_status)

Arguments INKHttpTxn txnp is the ongoing transaction.

int *lookup_status is set to the lookup status.

Description Obtains the status of the current cache lookup for the ongoing transaction txnp in the
lookup_status variable.

This function should only be called from INK_HTTP_CACHE_LOOKUP_COMPLETE_HOOK.

The possible status values returned in lookup_status are:

INK_CACHE_LOOKUP_MISS - Document was not in the cache. It will be fetched from the OS.

INK_CACHE_LOOKUP_HIT_STALE - Document was present in the cache but stale. A fresher
version will be fetched from the OS (IMS request).

INK_CACHE_LOOKUP_HIT_FRESH - Document was present in the cache and is fresh. Document
will be served from the cache.

INK_CACHE_LOOKUP_SKIPPED - Traffic Edge didn't perform a cache lookup as the request was
not cacheable (url looks dynamic or request marked as noncacheable).

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 5.2

Prototype INKReturnCode INKHttpTxnCachedReqGet (INKHttpTxn txnp,

INKMBuffer *bufp, INKMLoc *hdr_loc)

Description Retrieves the cached request header from the HTTP transaction txnp and stores the cached
request header in bufp, at location hdr_loc.

Call after READ_CACHE_HDR_HOOK.

Caution: Do not modify any cached request headers returned by INKHttpTxnCachedReqGet.
The underlying data structure is read-only.

Release the returned hdr_loc with a call to INKHandleMLocRelease.

Returns If the cached request header does not exist, then INKHttpTxnCachedReqGet returns 0.

Otherwise returns 1.

First release Traffic Server 3.0
154 HTTP functions

INKHttpTxnCachedRespGet

Gets the cached response header for a specified HTTP transaction.

INKHttpTxnClientIncomingPortGet

Gets the port on which the incoming request is received.

INKHttpTxnClientIPGet

Gets the client IP address for a specified HTTP transaction.

Prototype int INKHttpTxnCachedRespGet (INKHttpTxn txnp, INKMBuffer *bufp, INKMLoc
*hdr_loc)

Description Retrieves the cached response header from the HTTP transaction txnp and stores the cached
response header in bufp, at location hdr_loc.

Call after SEND_RESPONSE_HDR_HOOK.

Caution: Do not modify any cached response headers returned by
INKHttpTxnCachedRespGet. The underlying data structure is read-only.

Release the returned hdr_loc with a call to INKHandleMLocRelease.

Returns If the cached response header does not exist, then INKHttpTxnCachedRespGet returns 0.

Otherwise returns 1.

First release Traffic Server 3.0

Prototype int INKHttpTxnClientIncomingPortGet (INKHttpTxn txnp)

Description Returns the port on which the HTTP transaction txnp was received. This is not the destination
port in the URL. It is the proxy port to which the client browser is pointed.

Call after TXN_START_HOOK.

Returns The port number in host byte order.

Returns -1 if an error occurred.

First release Traffic Server 3.5

Prototype unsigned int INKHttpTxnClientIPGet (INKHttpTxn txnp)

Description Returns the IP address of the client for the HTTP transaction txnp.

INKHttpTxnClientIPGet returns the IP address in network byte order.

Call after TXN_START_HOOK.

Returns The client IP address.

Returns 0 if an error occurred.

First release Traffic Server 3.0
Function Reference 155

INKHttpTxnClientRemotePortGet

Gets the remote host’s port number for a specified HTTP transaction.

NKHttpTxnClientReqGet

Gets the client request header for a specified HTTP transaction.

INKHttpTxnClientRespGet

Gets the client response header for a specified HTTP transaction.

Prototype INKReturnCode INKHttpTxnClientRemotePortGet(INKHttpTxn txnp, int *port)

Arguments INKHttpTxn txnp is an HTTP transaction.

int *port is set to the client’s remote port value (port number used by the client when creating
a socket connection with the proxy for the transaction txnp) in network byte order.

Description Obtains the port number of the remote host for the specified HTTP transaction. The port number
is returned in network byte order. Note: this is an exception to the rule that port numbers are
retrieved in host byte order.

The proxy port on which the connection was accepted can be retrieved using
INKHttpTxnClientIncomingPortGet.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 5.2

Prototype int INKHttpTxnClientReqGet (INKHttpTxn txnp, INKMBuffer *bufp,
INKMLoc *hdr_loc)

Description Retrieves the client request header from the HTTP transaction txnp.
INKHttpTxnClientReqGet stores the client request header in bufp, at location hdr_loc.

Call after READ_REQUEST_HDR_HOOK.

Release the returned hdr_loc with a call to INKHandleMLocRelease.

Returns If the client request header does not exist or in case of an error, then
INKHttpTxnClientReqGet returns 0.

Otherwise returns 1.

First release Traffic Server 3.0

Prototype int INKHttpTxnClientRespGet (INKHttpTxn txnp, INKMBuffer *bufp,
INKMLoc *hdr_loc)

Description Retrieves the client response header from the HTTP transaction txnp.
INKHttpTxnClientRespGet stores the client response header in bufp, at location hdr_loc.

Call after SEND_RESPONSE_HOOK.

Release the returned hdr_loc with a call to INKHandleMLocRelease.
156 HTTP functions

INKHttpTxnErrorBodySet

Sets the format and content of the error body (or response data) that Traffic Edge sends to clients.

INKHttpTxnHookAdd

Adds a continuation to the list of HTTP transaction hooks for a specified HTTP transaction.

Returns If the client response header does not exist or in the case of an error, then
INKHttpTxnClientRespGet returns 0.

Otherwise returns 1.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpTxnErrorBodySet (INKHttpTxn txnp, char *buf,

int buflength, char *mimetype)

Arguments txnp is the HTTP transaction to act upon.

buf contains the error (or response) body. The error body can be text, an HTML document,
image, or another format. Before you call INKHttpTxnErrorBodySet, be sure to allocate buf
using INKmalloc.

buflength is the length of the error body.

mimetype contains the format of the error body. If you want to set the mimetype to a value
other than NULL, you must allocate mimetype using INKmalloc before you call
INKHttpTxnErrorBodySet.

Description Sets the format of the error body that Traffic Edge sends back when sending an error or response
to a client. The error body data is stored in the buffer buf. If the error body is just plain text,
setting mimetype to NULL works fine. If the error body is HTML then mimetype should be
"text/html". If the error body is a JPEG image then mimetype should be “image/jpeg".

Note: Traffic Edge automatically calls INKfree to free buf when buf is no longer needed; make
sure that the buffer buf is allocated by a call to INKmalloc. Similarly, if you want to set
mimetype to something other than NULL, make sure that you allocate mimetype with a call to
INKmalloc. Traffic Edge automatically calls INKfree to free mimetype.

Call after SEND_RESPONSE_HDR_HOOK.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpTxnHookAdd (INKHttpTxn txnp, INKHttpHookID id,

INKCont contp)

Description Adds contp to the end of the list of HTTP transaction hooks specified by id. Since contp is
added to a transaction, it is not possible to call INKHttpTxnHookAdd from the plugin
initialization routine but only when the plugin has a handle to an HTTP transaction.

Call after HTTP_TXN_START_HOOK.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
Function Reference 157

INKHttpTxnNextHopIPGet

Gets the IP address of the next server from which Traffic Edge tries to retrieve requested HTTP content.

INKHttpTxnParentProxyGet

Gets the parent proxy name and port, if parent proxying is enabled.

INKHttpTxnParentProxySet

Sets the parent proxy name and port.

Prototype unsigned int INKHttpTxnNextHopIPGet (INKHttpTxn txnp)

Description Returns the IP address of the next server from which Traffic Edge attempts to retrieve the
requested document, in network byte order. This IP address could be the origin server IP address
or it could be the parent proxy’s IP address.

Call after SEND_REQUEST_HDR_HOOK.

Returns Returns the IP address of the next server from which Traffic Edge attempts to retrieve the
request, in network byte order. Returns 0 if an error occurred.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpTxnParentProxyGet (INKHttpTxn txnp,

char **hostname, int *port)

Description Retrieves the value set previously by INKHttpParentProxySet. Does not return values set in
records.config parameter proxy.config.http.parent_proxies or in
parent.config file.

This function can be called from within any txn hook.

The hostname string returned must not be deallocated.

Note: if parent proxying is not enabled, INKHttpTxnParentProxyGet returns NULL in
hostname and -1 in port.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpTxnParentProxySet (INKHttpTxn txnp,

char *hostname, int port)

Description This can be used to overwrite the value set in records.config parameter
proxy.config.http.parent_proxies or in parent.config file.

Call before or within CACHE_LOOKUP_COMPLETE.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
158 HTTP functions

INKHttpTxnReenable

Tells a transaction whether or not the processing of a particular hook has completed.

INKHttpTxnServerIPGet

Gets the origin server IP address for a specified HTTP transaction.

Prototype INKReturnCode INKHttpTxnReenable (INKHttpTxn txnp, INKEvent event)

Description Notifies the HTTP transaction txnp that the plugin is done processing the current hook. If
INK_EVENT_HTTP_CONTINUE is specified for event, then the plugin wants the transaction to
continue. If INK_EVENT_HTTP_ERROR is specified for event, then the plugin wants the
transaction to be terminated and for an error to be sent back to the client if no response has
already been sent.

You must always re-enable the HTTP transaction after the processing of each transaction event.
However, never re-enable twice. Re-enabling twice is a serious error.

When event is set to INK_EVENT_HTTP_ERROR, Traffic Edge performs different processing
depending on the type of hook involved.

INK_HTTP_TXN_START_HOOK: The transaction is stopped right away, the connection to the
client is closed, and no response is sent back to the origin server.

INK_HTTP_READ_REQUEST_HDR_HOOK: Traffic Edge does not send any request to the origin
server, it directly sends a 500 to the client.

INK_HTTP_SEND_REQUEST_HDR_HOOK: Traffic Edge opens a connection to the origin server,
sends an empty request to the origin server, and sends back 500 to the client. Then the
connection to the origin server is closed.

INK_HTTP_READ_RESPONSE_HDR_HOOK, INK_HTTP_SEND_RESPONSE_HOOK,
INK_HTTP_OS_DNS_HOOK, INK_HTTP_READ_CACHE_HDR_HOOK, and
INK_HTTP_CACHE_LOOKUP_COMPLETE_HOOK: Traffic Edge receives all the headers of the
response from the origin server, then closes the connection to the origin server and sends a 500
to the client. TS does not receive the response body.

INK_HTTP_TXN_CLOSE_HOOK: The client receives whatever answer was sent by the origin
server because with this hook, the response has already been sent to the client.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype unsigned int INKHttpTxnServerIPGet (INKHttpTxn txnp)

Description Returns the IP address of the origin server specified by the client request in network byte order.
INKHttpTxnServerIPGet returns 0 if it is called before INK_HTTP_OS_DNS_HOOK in a
transaction.

Call after INK_HTTP_OS_DNS_HOOK.

Returns Returns the origin server IP address in network byte order.

Returns 0 if an error occurred.

First release Traffic Server 3.0
Function Reference 159

INKHttpTxnServerReqGet

Gets the server request header from a specified HTTP transaction.

INKHttpTxnServerRespGet

Gets the server response header from a specified HTTP transaction.

INKHttpTxnSsnGet

Returns the session handle associated to a specified HTTP transaction.

Prototype int INKHttpTxnServerReqGet (INKHttpTxn txnp, INKMBuffer *bufp, INKMLoc
*hdr_loc)

Description Retrieves the server request header from the HTTP transaction txnp.
INKHttpTxnServerReqGet stores the server request header in bufp, at location hdr_loc.

Call after SEND_REQUEST_HDR_HOOK.

Release the returned hdr_loc with a call to INKHandleMLocRelease.

Returns If the server request header does not exist or in the case of an error, then
INKHttpTxnServerReqGet returns 0.

Otherwise returns 1.

First release Traffic Server 3.0

Prototype int INKHttpTxnServerRespGet (INKHttpTxn txnp, INKMBuffer *bufp, INKMLoc
*hdr_loc)

Description Retrieves the server response header from the HTTP transaction txnp.
INKHttpTxnServerRespGet stores the server response header in bufp, at location
hdr_loc.

Call after READ_RESPONSE_HDR_HOOK.

Release the returned hdr_loc with a call to INKHandleMLocRelease.

Returns If the server response header does not exist or in the case of an error, then
INKHttpTxnServerRespGet returns 0.

Otherwise returns 1.

First release Traffic Server 3.0

Prototype INKHttpSsn INKHttpTxnSsnGet (INKHttpTxn txnp)

Description Retrieves the INKHttpSsn handle associated with the HTTP transaction txnp.

Call after TXN_START_HOOK.

Returns The session handle associated with the specified HTTP transaction.

INK_ERROR_PTR if error.

First release Traffic Server 3.0
160 HTTP functions

INKHttpTxnTransformedRespCache

Indicates whether or not Traffic Edge writes transformed documents to the cache.

INKHttpTxnTransformRespGet

Gets the transform response header from a specified HTTP transaction.

Prototype INKReturnCode INKHttpTxnTransformedRespCache (INKHttpTxn txnp, int on)

Description Specifies whether the transformed document should be written to the cache or not. If a
transformation is occurring the default is for the transformed copy to be written to the cache. The
default maintains a rule that only a single version of a document will be written to the cache for a
single transaction. It is valid for that rule to be broken by specifying that both the transformed and
the un-transformed documents be written to the cache. Calls need to be made prior to the actual
transformation, (i.e. at the time of creating the transformation) rather than in the transformation.

Note: This function does not overwrite HTTP directives, like Cache-Control or Expire, that
determine whether or not a document may be cached. If the document can be cached, this
function determines whether or not to cache the transformed version. Untransformed and
transformed documents are cached as HTTP alternates.

Call from within or after hook TXN_START_HOOK.

If called after hook SEND_RESPONSE_HDR, this function will not be taken into account by TS.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype int INKHttpTxnTransformRespGet (INKHttpTxn txnp, INKMBuffer *bufp,
INKMLoc *offset)

Description Retrieves the transform response header from the HTTP transaction txnp and stores the
transform response header in bufp, at location offset.

Call from within your transformation, before transform data is written to the downstream
vconnection.

Returns If the transform response header does not exist, then INKHttpTxnTransformRespGet returns
0.

Otherwise returns 1.

First release Traffic Server 3.0
Function Reference 161

INKHttpTxnUntransformedRespCache

Indicates whether or not Traffic Edge writes un-transformed documents to the cache.

Initiate Connection
INKHttpConnect

Sends an HTTP request through the Traffic Edge HTTP SM.

Prototype INKReturnCode INKHttpTxnUntransformedRespCache (INKHttpTxn txnp,

int on)

Description Specifies whether the un-transformed document should be written to the cache or not. If there is
no transformation occurring then the default is for the un-transformed copy to be written to the
cache. If a transformation is occurring the default is for the un-transformed copy to not be written
to the cache. The defaults maintain a rule that only a single version of a document will be written
to the cache for a single transaction. It is valid for that rule to be broken by specifying that both
the transformed and un-transformed document be written to the cache. Calls need to be made
prior to the actual transformation, (i.e. at the time of creating the transformation) rather than in the
transformation.

Note: This function does not overwrite HTTP directives, like Cache-Control or Expire, that
determine whether or not a document can be cached. If the document can be cached, this
function determines whether or not to cache the untransformed version. Untransformed and
transformed documents are cached as HTTP alternates.

Call from within or after hook TXN_START_HOOK.

If called after hook SEND_RESPONSE_HDR, this function will not be taken into account by TS.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype InkReturnCode INKHttpConnect (unsigned int ip, int port, INKVConn *vc)

Arguments unsigned int ip is the IP address used to set the value of the VC remote IP address. This is
equivalent to a client IP address: IP from which the connection is originated. Value is in host byte
order.

int port is the port used to set the value of the VC remote port. This is equivalent to a client
port: port from which the connection is originated. Value is in host byte order.

INKVConn *vc is the VConnection returned.
Once VConnection is established, you can use regular VConnection operations (INKVConnRead,

INKVConnWrite, etc).
162 Initiate Connection

Intercepting HTTP transaction functions
INKHttpTxnIntercept

Allows a plugin to intercept an HTTP client’s request and to serve the content in place of the origin server.

Description Sends an HTTP request through the Traffic Edge HTTP SM. The HTTP request goes through the
Traffic Edge the same way a request from a client (for instance a browser) does.

A typical scenario when using is:

Call INKHttpConnect.

Use INKVConnWrite to send an HTTP request.

Use INKVConnRead to get the HTTP response.

If needed, use INKHttpParser to parse the response.

Note that the request and response go through the Traffic Edge HTTP SM. The request and the
response can be cached and the transaction will be logged in squid.log.

Also note that the ip address passed to INKHttpConnect will be used as the client IP address in
squid.log.

Returns INK_SUCCESS if API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 5.2

Prototype INKReturnCode INKHttpTxnIntercept (INKCont contp, INKHttpTxn txnp)

Arguments INKCont contp is the continuation that is called to accept the connection.

INKHttpTxn txnp is the current HTTP txn the plugin wants to intercept.
Function Reference 163

INKHttpTxnServerIntercept

Allows a plugin to intercept an HTTP request sent to an origin server and to serve the content in place of the origin
server.

Description Allows a plugin to intercept an HTTP client's request and to serve the content in place of the
origin server. The request is intercepted right after being read by Traffic Edge. The origin server is
not contacted.

This API should be used in the INK_HTTP_READ_REQUEST_HDR_HOOK hook.

Once INKHttpTxnIntercept has been called, the handler of the continuation contp receives
an event INK_EVENT_NET_ACCEPT. Note that the continuation passed should not have a NULL
mutex or an error is returned.

The void *data passed to the handler of the continuation contp is a data of type
NetVConnection representing the connection.

Once VConnection is established, user can use regular VConnection operations
(INKVConnRead, INKVConnWrite, etc...).

A typical scenario when using INKHttpTxnIntercept is:

 Call INKHttpTxnIntercept from hook INK_HTTP_READ_REQUEST_HDR_HOOK.

 Get called back on the continuation's handler passed as argument to INKHttpTxnIntercept.

 Get the VC from argument void *data .

 Use INKVConnRead to get the HTTP request. Note that you will not receive an event
INK_VCONN_READ_COMPLETE, only INK_VCONN_READ_READY, as the number of characters to
read is unknown. You should rely on INKTHttpParser to parse the request and return a status
INK_PARSE_DONE when request is fully received (escape sequence “\r\n\r\n” read).

Use INKHttpParser to parse the request.

Use INKVConnWrite to write the HTTP response.

Note: the request and response do not go through the Traffic Edge HTTP state machine. So the
request and response are not cached by Traffic Edge. The request is logged in squid.log.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid. This error is also
returned if the continuation passed has a NULL mutex.

First release Traffic Server 5.2

Prototype INKReturnCode INKHttpTxnServerIntercept (INKCont contp, INKHttpTxn txnp
)

Arguments INKCont contp is the continuation that is called to accept the connection.

INKHttpTxn txnp is the current HTTP txn the plugin wants to intercept.
164 Intercepting HTTP transaction functions

Alternate selection functions

INKHttpAltInfoCachedReqGet

Gets the cached request header from the specified alternate information.

Description Allows a plugin to intercept an HTTP request sent to an origin server and to serve the content in
place of the origin server. The origin server is not contacted.

This API should be used in the INK_HTTP_READ_REQUEST_HDR_HOOK hook.

Once INKHttpTxnServerIntercept has been called, the handler of the continuation contp
receives an event INK_EVENT_NET_ACCEPT. Note that the continuation passed should not have
a NULL mutex or an error is returned.

The void *data passed to the handler of the continuation contp is a data of type
NetVConnection representing the connection.

Once VConnection is established, you can use regular VConnection operations
(INKVConnRead, INKVConnWrite, etc...).

A typical scenario when using INKHttpTxnServerIntercept is:

Call INKHttpTxnServerIntercept from hook INK_HTTP_READ_REQUEST_HDR_HOOK .

Get called back on the continuation's handler passed as argument to
INKHttpTxnServerIntercept.

Get the VC from argument void *data.

Use INKVConnRead to get the HTTP header. Note that you will not receive an event
INK_VCONN_READ_COMPLETE, only INK_VCONN_READ_READY, as the number of characters to
read is unknown. You should rely on INKTHttpParser to parse the request and return a status
INK_PARSE_DONE when request is fully received (escape sequence “\r\n\r\n” read).

Use INKHttpParser to parse the request.

Use INKVConnWrite to write the HTTP response.

Note that the request and response go through the Traffic Edge HTTP SM. The request and
response can be cached. The request is logged in squid.log.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid. This error is also
returned if the continuation passed has a NULL mutex.

First release Traffic Server 5.2

Prototype INKReturnCode INKHttpAltInfoCachedReqGet (INKHttpAltInfo infop,

INKMBuffer *bufp, INKMLoc *offset)

Description Retrieves the cached client request header from the alternate informationinfop.

Call from within HTTP_SELECT_ALT_HOOK.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
Function Reference 165

INKHttpAltInfoCachedRespGet

Gets the cached response header from the specified alternate information.

INKHttpAltInfoClientReqGet

Gets the client request header from the specified alternate information.

INKHttpAltInfoQualitySet

Sets the quality value for the specified alternate information.

Prototype INKReturnCode INKHttpAltInfoCachedRespGet (INKHttpAltInfo infop,

INKMBuffer *bufp, INKMLoc *offset)

Description Retrieves the cached client response header from the alternate information infop.

Call from within HTTP_SELECT_ALT_HOOK.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpAltInfoClientReqGet (INKHttpAltInfo infop,

INKMBuffer *bufp, INKMLoc *offset)

Description Retrieves the client request header from the alternate information infop.

Call from within HTTP_SELECT_ALT_HOOK.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurrs.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpAltInfoQualitySet (INKHttpAltInfo infop,

float quality)

Description Sets the quality value for this alternate information infop.

Call from within HTTP_SELECT_ALT_HOOK.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
166 Intercepting HTTP transaction functions

Handle release functions

INKHandleMLocRelease

Releases INKMLoc handles.

INKHandleStringRelease

Releases string handles.

Marshal buffers

The marshal buffer or INKMBuffer is a heap data structure that stores parsed URLs,
MIME headers and HTTP headers. You can allocate new objects out of marshal buffers,
and change the values within the marshal buffer. Whenever you manipulate an object,
you require the handle to the object (INKMLoc) and the marshal buffer containing the
object (INKMBuffer).

Routines exist for manipulating the object based on these two pieces of information. See,
for example:

✔ HTTP header functions‚ on page 168

✔ URL functions‚ on page 178

Prototype INKReturnCode INKHandleMLocRelease (INKMBuffer bufp, INKMLoc parent,

INKMLoc mloc)

Arguments bufp is the marshal buffer containing the INKMLoc to be released.

parent is the location of the parent object from which the handle was created.

mloc is the INKMLoc to be released.

Description Releases the INKMLoc mloc created from the INKMLoc parent. If there is no parent
INKMLoc, use INK_NULL_MLOC. See Release marshal buffer handles‚ on page 88 for a details
about parent INKMLocs and the use of the null parent.

Returns INK_SUCCESS if the handle is successfully released.

INK_ERROR if the hook is not added.

First release Traffic Server 3.5

Prototype InkReturnCode INKHandleStringRelease (INKMBuffer bufp, INKMLoc parent,

const char *str)

Arguments bufp is the marshal buffer containing the string to be released.

parent is the location of the parent object from which the handle was created.

str is the string to be released.

Description Releases the string str created from the INKMLoc parent. Do not use
INKHandleStringRelease for strings created by INKUrlStringGet (in that special case,
use INKfree).

Returns INK_SUCCESS if the string handle is successfully released.

INK_ERROR if the hook is not added.

First release Traffic Server 3.5
Function Reference 167

✔ MIME headers‚ on page 187

The marshal buffer functions allow you to create and destroy Traffic Edge’s marshal
buffers, which are the data structures that hold parsed URLs, MIME headers, and HTTP
headers.

 Caution Any marshal buffer fetched by INKHttpTxn*Get (for example, INKHttpTxnClientReqGet
or INKHttpTxnServerRespGet) will be used by other parts of the system. Be careful not to
destroy these shared, transaction marshal buffers.

INKMBufferCreate

Creates a new marshal buffer.

INKMBufferDestroy

Destroys a marshal buffer.

HTTP header functions

The HTTP header functions are:

INKHttpHdrClone

Copies an HTTP header to a marshal buffer and returns the INKMLoc location of the copied header.

Prototype INKMBuffer INKMBufferCreate (void)

Description Creates a new marshal buffer and initializes the reference count to 1.

Returns A pointer to the new marshal buffer.

First release Traffic Server 3.0

Prototype void INKMBufferDestroy (INKMBuffer bufp)

Arguments bufp is the marshal buffer to be destroyed.

Description Ignores the reference count and destroys the marshal buffer bufp. The internal data buffer
associated with the marshal buffer is also destroyed if the marshal buffer allocated it.

First release Traffic Server 3.0

Prototype INKMLoc INKHttpHdrClone (INKMBuffer dest_bufp, INKMBuffer src_bufp,
INKMLoc src_hdr)

Description Copies the contents of the HTTP header located at src_hdr within the marshal buffer src_bufp to the marshal
buffer located at dest_bufp. If the HTTP header located at the src_hdr is a HTTP request header, ensure that it
has a valid method, url, protocol and version. If the HTTP header located at the src_hdr is a HTTP response header,
ensure that it has a valid protocol, version, status and reason.

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.

Release the returned handle with a call to INKHandleMLocRelease.

Returns Returns the INKMLoc location of the copied header.

INK_ERROR_PTR if error.

First release Traffic Server 3.5
168 Intercepting HTTP transaction functions

INKHttpHdrCopy

Copies an HTTP header.

INKHttpHdrCreate

Creates a new HTTP header.

INKHttpHdrDestroy

Destroys an HTTP header.

Prototype INKReturnCode INKHttpHdrCopy (INKMBuffer dest_bufp, INKMLoc
dest_hdr_loc, INKMBuffer src_bufp, INKMLoc src_hdr_loc)

Description Copies the contents of the HTTP header located at src_hdr_loc within the marshal buffer src_bufp to the
HTTP header located at dest_hdr_loc within the marshal buffer dest_bufp. INKHttpHdrCopy works
correctly even if src_bufp and dest_bufp point to different marshal buffers. Make sure that the destination
HTTP header exists (has been created) before copying into it. INKHttpHdrCopy automatically makes sure that
types of the source and destination HTTP headers match; if the destination type is not equal to the source type,
INKHttpHdrCopy calls INKHttpHdrTypeSet. Do not call INKHttpHdrTypeSet on the destination
header after using INKHttpHdrCopy.

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.

Note: INKHttpHdrCopy appends the port number to the domain of the URL portion of the header. For example,

http://www.inktomi.com appears as:

http://www.inktomi.com:80/ in the destination buffer.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKMLoc INKHttpHdrCreate (INKMBuffer bufp)

Description Creates a new HTTP header with the marshal buffer bufp. When newly created, the HTTP header is assigned an
INKHttpType value of INK_HTTP_TYPE_UNKNOWN. You can change the type after creating the header
using INKHttpHdrTypeSet, but you can only change the type once. You cannot modify the type after setting it.

Release with a call to INKHandleMLocRelease.

Returns A pointer to the new HTTP header.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpHdrDestroy (INKMBuffer bufp, INKMLoc hdr_loc)

Description Destroys the HTTP header located at hdr_loc within the marshal buffer bufp.

Caution: Do not forget to use INKHandleMLocRelease to release the handle hdr_loc.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR_PTR if error.

First release Traffic Server 3.0
Function Reference 169

INKHttpHdrLengthGet

Calculates the length of an HTTP header.

INKHttpHdrMethodGet

Gets the method portion of an HTTP request header.

INKHttpHdrMethodSet

Set the HTTP method.

Prototype int INKHttpHdrLengthGet (INKMBuffer bufp, INKMLoc hdr_loc)

Description Calculates the length of the HTTP header located at hdr_loc within the marshal buffer bufp if
it were returned as a string. This is the length of the HTTP header in its un-parsed form and is
also the number of bytes that will be added to the IO buffer by a call to INKHttpHdrPrint.

The header could be a request header, response header, or a standalone header that you have
created. Be sure to call this function appropriately (if you want the length of a request header, call
this function after READ_REQUEST_HDR_HOOK, for example).

Returns The length of the specified HTTP header.

INK_ERROR if error.

First release Traffic Server 3.0

Prototype const char* INKHttpHdrMethodGet (INKMBuffer bufp, INKMLoc hdr_loc, int
*length)

Description Retrieves the method from the HTTP header located at hdr_loc within the marshal buffer
bufp. The length of the returned string is placed in the length argument. If length is NULL,
then no attempt is made to de-reference it.

It is an error to try and retrieve the method from an HTTP header which is not of type
INK_HTTP_TYPE_REQUEST.

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.

Release with a call to INKHandleStringRelease.

Returns A pointer to the method portion of the specified HTTP request header.

INK_ERROR_PTR if error.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpHdrMethodSet (INKMBuffer bufp, INKMLoc hdr_loc,
const char *value, int length)

Description Sets the method in the HTTP header located at hdr_loc within the marshal buffer bufp. If length is -1 then
it is assumed that value is null-terminated. Otherwise, the length of the string value is taken to be length. The
string is copied to within bufp, so it is okay to modify or delete value after calling INKHttpHdrMethodSet.
It is an error to try and set the method in an HTTP header which is not of type INK_HTTP_TYPE_REQUEST.

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
170 Intercepting HTTP transaction functions

INKHttpHdrPrint

Prints the HTTP header to an IO buffer.

INKHttpHdrReasonGet

Gets the reason phrase from an HTTP header.

INKHttpHdrReasonLookup

Provides the default reason phrase for a specified Traffic Edge HTTP status code.

Prototype INKReturnCode INKHttpHdrPrint (INKMBuffer bufp, INKMLoc hdr_loc,

INKIOBuffer iobufp)

Description Formats the HTTP header located at hdr_loc within the marshal buffer bufp into the IO buffer iobufp. See IO
buffers‚ on page 128 for information on allocating an IO Buffer and retrieving data from within one.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype const char* INKHttpHdrReasonGet (INKMBuffer bufp, INKMLoc hdr_loc, int
*length)

Description Retrieves the reason phrase from the HTTP header located at hdr_loc within the marshal buffer bufp. The length
of the returned string is placed in the length argument. It is an error to try and retrieve the reason phrase from an
HTTP header which is not of type INK_HTTP_TYPE_RESPONSE.

Call after READ_RESPONSE_HDR_HOOK, if it is a transaction header.

Note: the returned string is not guaranteed to be null-terminated.

Release with a call to INKHandleStringRelease.

Returns Pointer to the reason phrase in the specified HTTP header.

INK_ERROR_PTR if error.

First release Traffic Server 3.0

Prototype const char* INKHttpHdrReasonLookup (INKHttpStatus status)

Description Returns the default reason phrase for the status code status.

INKHttpHdrReasonLookup returns a string which is null-terminated and should not be freed or released.
It's a global shared value.

Returns Pointer to the default reason phrase for the specified Traffic Edge status code.

INK_ERROR_PTR if error.

First release Traffic Server 3.0
Function Reference 171

INKHttpHdrReasonSet

Sets the reason phrase in an HTTP header.

INKHttpHdrStatusGet

Retrieves the status code from an HTTP header.

Prototype INKReturnCode INKHttpHdrReasonSet (INKMBuffer bufp, INKMLoc hdr_loc,

const char *value, int length)

Description Sets the reason phrase in the HTTP header located at hdr_loc within the marshal buffer bufp.
If length is -1 then it is assumed that value is null-terminated. Otherwise, the length of the
string value is taken to be length. The string is copied to within bufp, so it is okay to modify or
delete value after calling INKHttpHdrReasonSet. It is an error to try and set the reason
phrase in an HTTP header which is not of type INK_HTTP_TYPE_RESPONSE.

Call after READ_RESPONSE_HDR_HOOK, if it is a transaction header.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if the operation does not complete successfully.

First release Traffic Server 3.0

Prototype INKHttpStatus INKHttpHdrStatusGet (INKMBuffer bufp, INKMLoc hdr_loc)

Description Retrieves the status code from the HTTP header located at hdr_loc within the marshal buffer
bufp. It is an error to try and retrieve the status code from an HTTP header which is not of type
INK_HTTP_TYPE_RESPONSE. INKHttpStatus is an enumerated type.

Call after READ_RESPONSE_HDR_HOOK, if it is a transaction header.

Returns The status code from the specified HTTP header.

INK_ERROR if error.
172 Intercepting HTTP transaction functions

Example The values of INKHttpStatus are the following:

typedef enum

{

 INK_HTTP_STATUS_NONE = 0,

 INK_HTTP_STATUS_CONTINUE = 100,

 INK_HTTP_STATUS_SWITCHING_PROTOCOL = 101,

 INK_HTTP_STATUS_OK = 200,

 INK_HTTP_STATUS_CREATED = 201,

 INK_HTTP_STATUS_ACCEPTED = 202,

 INK_HTTP_STATUS_NON_AUTHORITATIVE_INFORMATION = 203,

 INK_HTTP_STATUS_NO_CONTENT = 204,

 INK_HTTP_STATUS_RESET_CONTENT = 205,

 INK_HTTP_STATUS_PARTIAL_CONTENT = 206,

 INK_HTTP_STATUS_MULTIPLE_CHOICES = 300,

 INK_HTTP_STATUS_MOVED_PERMANENTLY = 301,

 INK_HTTP_STATUS_MOVED_TEMPORARILY = 302,

 INK_HTTP_STATUS_SEE_OTHER = 303,

 INK_HTTP_STATUS_NOT_MODIFIED = 304,

 INK_HTTP_STATUS_USE_PROXY = 305,

 INK_HTTP_STATUS_BAD_REQUEST = 400,

 INK_HTTP_STATUS_UNAUTHORIZED = 401,

 INK_HTTP_STATUS_PAYMENT_REQUIRED = 402,

 INK_HTTP_STATUS_FORBIDDEN = 403,

 INK_HTTP_STATUS_NOT_FOUND = 404,

 INK_HTTP_STATUS_METHOD_NOT_ALLOWED = 405,

 INK_HTTP_STATUS_NOT_ACCEPTABLE = 406,

 INK_HTTP_STATUS_PROXY_AUTHENTICATION_REQUIRED = 407,

 INK_HTTP_STATUS_REQUEST_TIMEOUT = 408,

 INK_HTTP_STATUS_CONFLICT = 409,

 INK_HTTP_STATUS_GONE = 410,

 INK_HTTP_STATUS_LENGTH_REQUIRED = 411,

 INK_HTTP_STATUS_PRECONDITION_FAILED = 412,

 INK_HTTP_STATUS_REQUEST_ENTITY_TOO_LARGE = 413,

 INK_HTTP_STATUS_REQUEST_URI_TOO_LONG = 414,

 INK_HTTP_STATUS_UNSUPPORTED_MEDIA_TYPE = 415,

 INK_HTTP_STATUS_INTERNAL_SERVER_ERROR = 500,

 INK_HTTP_STATUS_NOT_IMPLEMENTED = 501,

 INK_HTTP_STATUS_BAD_GATEWAY = 502,
Function Reference 173 INK_HTTP_STATUS_SERVICE_UNAVAILABLE = 503,

 INK_HTTP_STATUS_GATEWAY_TIMEOUT = 504,

 INK_HTTP_STATUS_HTTPVER_NOT_SUPPORTED = 505

} INKHttpStatus;

INKHttpHdrStatusSet

Sets the status code within an HTTP header.

INKHttpHdrTypeGet

Retrieves the HTTP header type.

INKHttpHdrTypeSet

Sets the HTTP header type.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpHdrStatusSet (INKMBuffer bufp, INKMLoc hdr_loc,
INKHttpStatus status)

Description Sets the status code in the HTTP header located at hdr_loc within the marshal buffer bufp. It is an error to try
and set the status code in an HTTP header which is not of type INK_HTTP_TYPE_RESPONSE.

Call after READ_RESPONSE_HDR_HOOK, if it is a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKHttpType INKHttpHdrTypeGet (INKMBuffer bufp, INKMLoc hdr_loc)

Description Retrieves the type of the HTTP header located at hdr_loc within the marshal buffer bufp.
INKHttpType is an enumerated type.

typedef enum

{

 INK_HTTP_TYPE_UNKNOWN,

 INK_HTTP_TYPE_REQUEST,

 INK_HTTP_TYPE_RESPONSE

} INKHttpType;

Returns The type of the specified HTTP header.

INK_ERROR if error.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpHdrTypeSet (INKMBuffer bufp, INKMLoc hdr_loc,
INKHttpType type)

Description Sets the type of the HTTP header located at hdr_loc within the marshal buffer bufp to type.
Use INKHttpHdrTypeSet only after you create an HTTP header. The INKHttpHdrCreate
function automatically assigns the new header a type of INK_HTTP_TYPE_UNKNOWN, and you
would only use INKHttpHdrTypeSet to change the type of a header from
INK_HTTP_TYPE_UNKNOWN to either INK_HTTP_TYPE_REQUEST or
INK_HTTP_TYPE_RESPONSE.You can only change the type once. You cannot modify the type
after setting it.
174 Intercepting HTTP transaction functions

INKHttpHdrUrlGet

Gets the location of the URL portion of an HTTP header.

INKHttpHdrUrlSet

Sets a URL location within an HTTP request header.

INKHttpHdrVersionGet

Retrieves the HTTP version of the specified HTTP header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKMLoc INKHttpHdrUrlGet (INKMBuffer bufp, INKMLoc req_hdr_loc)

Description Retrieves the URL from the HTTP header located at req_hdr_loc within the marshal buffer
bufp. It is an error to try and retrieve the URL from an HTTP header which is not of type
INK_HTTP_TYPE_REQUEST.

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.

Release with a call to INKHandleMLocRelease. When you release the handle created by
INKHttpHdrUrlGet, the parent should be req_hdr_loc.

Returns The URL from the specified HTTP header.

INK_ERROR_PTR if error.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpHdrUrlSet (INKMBuffer bufp, INKMLoc hdr_loc,
INKMLoc url)

Description Sets the URL in the HTTP header located at hdr_loc within the marshal buffer bufp. It is an
error to try and set the URL in an HTTP header which is not of type INK_HTTP_TYPE_REQUEST.

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype int INKHttpHdrVersionGet (INKMBuffer bufp, INKMLoc hdr_loc)

Description Retrieves the version from the HTTP header located at hdr_loc within the marshal buffer bufp.
An HTTP version is composed of a major and a minor version. Traffic Edge encodes the major
version in the upper 16 bits of the returned integer and the minor version in the lower 16 bits. The
macros INK_HTTP_MAJOR (ver) and INK_HTTP_MINOR (ver) can be used to extract the
major and minor versions respectively.

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.
Function Reference 175

INKHttpHdrVersionSet

Sets the HTTP version of the specified HTTP header.

INKHttpParserClear

Clears an HTTP parser.

INKHttpParserCreate

Creates a parser for HTTP headers.

Returns The HTTP version from the specified HTTP header.

INK_ERROR if error.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpHdrVersionSet (INKMBuffer bufp, INKMLoc hdr_loc,

int ver)

Description Sets the version in the HTTP header located at hdr_loc within the marshal buffer bufp to ver.
An HTTP version is composed of a major and a minor version. Traffic Edge encodes the major
version in the upper 16 bits of the returned integer and the minor version in the lower 16 bits. The
macro INK_HTTP_VERSION (maj, min) can be used to encode a major and minor version
into the single integer expected by INKHttpHdrVersionSet.

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if the operation does not complete successfully.

First release Traffic Server 3.0

Prototype INKReturnCode INKHttpParserClear (INKHttpParser parser)

Description Clears the specified HTTP parser so it may be used again.

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKHttpParser INKHttpParserCreate (void)

Description Creates an HTTP parser. The parser’s data structure contains information about the header
being parsed. A single HTTP parser can be used multiple times, though not simultaneously.
Before being used again, the parser must be cleared by calling INKHttpParserClear.

Returns Parser structure for HTTP headers.

INK_ERROR_PTR if error.

First release Traffic Server 3.0
176 Intercepting HTTP transaction functions

INKHttpParserDestroy

Destroys an HTTP parser.

INKHttpHdrParseReq

Parses an HTTP request header.

INKHttpHdrParseResp

Parses an HTTP response header.

Prototype INKReturnCode INKHttpParserDestroy (INKHttpParser parser)

Description Destroys the specified HTTP parser and frees the associated memory.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if the operation does not complete successfully.

First release Traffic Server 3.0

Prototype int INKHttpHdrParseReq (INKHttpParser parser, INKMBuffer bufp, INKMLoc
hdr_loc, const char **start, const char *end)

Description Parses an HTTP request header. The HTTP header hdr_loc must already be created, and must reside inside the
marshal buffer bufp. The start argument points to the current position of the string buffer being parsed and the
end argument points to one byte after the end of the buffer to be parsed. On return, start is modified to point
past the last character parsed.

It is possible to parse an HTTP request header a single byte at a time using repeated calls to
INKHttpHdrParseReq. As long as an error does not occur, the INKHttpHdrParseReq function will
consume that single byte and ask for more.

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.

Returns INK_PARSE_ERROR is returned on error.

INK_PARSE_DONE is returned when a \r\n\r\n pattern is encountered, indicating the end of the header.

INK_PARSE_CONT is returned if parsing of the header stopped because the end of the buffer was reached.

First release Traffic Server 3.0

Prototype int INKHttpHdrParseResp (INKHttpParser parser, INKMBuffer bufp, INKMLoc
hdr_loc, const char **start, const char *end)

Description Parses an HTTP response header. The HTTP header hdr_loc must already be created, and must reside inside the
marshal buffer bufp. The start argument points to the current position of the string buffer being parsed and the
end argument points to one byte after the end of the buffer to be parsed. On return, start is modified to point
past the last character parsed.

It is possible to parse an HTTP response header a single byte at a time using repeated calls to
INKHttpHdrParseResp. As long as an error does not occur, the INKHttpHdrParseResp function will
consume that single byte and ask for more.

Call after READ_RESPONSE_HDR_HOOK, if it is a transaction header.

Returns INK_PARSE_ERROR is returned on error.

INK_PARSE_DONE is returned when a \r\n\r\n pattern is encountered, indicating the end of the header.

INK_PARSE_CONT is returned if parsing of the header stopped because the end of the buffer was reached

First release Traffic Server 3.0
Function Reference 177

URL functions

The URL functions are:

INKUrlClone

Copies a URL from a specified location in a source marshal buffer to a target marshal buffer.

INKUrlCopy

Copies a URL at a specified location in a source marshal buffer to a specified location in a target marshal buffer.

INKUrlCreate

Creates a new URL in a marshal buffer.

Prototype INKMLoc INKUrlClone (INKMBuffer dest_bufp, INKMBuffer src_bufp, INKMLoc
src_url_loc)

Arguments src_bufp and dest_bufp are the source and destination marshal buffers.

src_url_loc is the source URL location within the source marshal buffer.

Description Copies the contents of the URL at location src_url_loc within the marshal buffer src_bufp to
a location within the marshal buffer dest_bufp. INKUrlClone.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Release the returned handle with a call to INKHandleMLocRelease.

Returns Returns the INKMLoc location of the copied URL.

INK_ERROR_PTR if error.

First release Traffic Server 3.5

Prototype INKReturnCode INKUrlCopy (INKMBuffer dest_bufp, INKMLoc dest_url_loc,
INKMBuffer src_bufp, INKMLoc src_url_loc)

Arguments src_bufp and dest_bufp are the source and destination marshal buffers.

src_url_loc and dest_url_loc are the source and destination URL locations within the
source and destination marshal buffers. The type INKMLoc is used for marshal buffer locations.

Description Copies the contents of the URL at location src_url_loc within the marshal buffer src_bufp to
the location dest_url_loc within the marshal buffer dest_bufp. INKUrlCopy works correctly
even if src_bufp and dest_bufp point to different marshal buffers. It is important for the
destination URL (its marshal buffer and INKMLoc) to have been created before copying into it.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKMLoc INKUrlCreate (INKMBuffer bufp)

Description Creates a new URL within the marshal buffer bufp. Release the resulting handle with a call to
INKHandleMLocRelease, and destroy the URL with a call to INKUrlDestroy (note that if you
destroy the URL, you must also release the handle).

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.
178 Intercepting HTTP transaction functions

INKUrlDestroy

Destroys a specific URL within a marshal buffer.

INKUrlPrint

Formats a URL stored in a marshal buffer to an INKIOBuffer.

INKUrlFtpTypeGet

Gets the FTP type of a specific URL.

Returns A location handle for the URL within the marshal buffer.

INK_ERROR_PTR if error.

First release Traffic Server 3.0

Prototype INKReturnCode INKUrlDestroy (INKMBuffer bufp, INKMLoc url_loc)

Description Destroys the URL located at url_loc within the marshal buffer bufp.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Caution: Do not forget to release the handle url_loc with a call to INKHandleMLocRelease.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKUrlPrint (INKMBuffer bufp, INKMLoc url_loc,
INKIOBuffer iobufp)

Description Formats a URL stored in an INKMBuffer to an INKIOBuffer.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype int INKUrlFtpTypeGet (INKMBuffer bufp, INKMLoc url_loc)

Description Retrieves the FTP type portion of the URL located at url_loc within the marshal buffer bufp.

Call after READ_REQUEST_HDR_HOOK, if it is within a transaction header.

Returns Returns 65 if the FTP type is ASCII.

Return 73 if the FTP type is binary.

INK_ERROR_PTR if error.

First release Traffic Server 3.0
Function Reference 179

INKUrlFtpTypeSet

Sets the FTP type of a specific URL.

INKUrlHostGet

Gets the host portion of a specific URL.

INKUrlHostSet

Sets the host portion of a URL to a specific value.

Prototype INKReturnCode INKUrlFtpTypeSet (INKMBuffer bufp, INKMLoc url_loc, int
type)

Description Sets the FTP type portion of the URL located at url_loc within the marshal buffer bufp to the
value type. The valid values for the type argument are : 0, 65('A'), 97('a'), 69('E'),
101('e'), 73 ('I') and 105('i').

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype const char* INKUrlHostGet (INKMBuffer bufp, INKMLoc url_loc,

int *length)

Description Retrieves the host portion of the URL located at url_loc within the marshal buffer bufp. The length of the
returned string is placed in the length argument.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns A pointer to the host portion of the specified URL. Release with a call to INKHandleStringRelease.

INK_ERROR_PTR if error.

Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0

Prototype INKReturnCode INKUrlHostSet (INKMBuffer bufp, INKMLoc url_loc, const
char *value, int length)

Description Sets the host portion of the URL located at url_loc within the marshal buffer bufp to the string value. If
length is -1 then INKUrlHostSet assumes that value is null-terminated. Otherwise, the length of the string
value is taken to be length. The string is copied to within bufp, so it is okay to modify or delete value after
calling INKUrlHostSet.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
180 Intercepting HTTP transaction functions

INKUrlHttpFragmentGet

Gets a specified HTTP fragment of a URL.

INKUrlHttpFragmentSet

Sets a specified HTTP fragment within a URL.

INKUrlHttpParamsGet

Gets the HTTP params portion of a specified URL.

Prototype const char* INKUrlHttpFragmentGet (INKMBuffer bufp, INKMLoc url_loc,
int *length)

Description Retrieves the HTTP fragment portion of the URL located at url_loc within the marshal buffer bufp.
INKUrlHttpFragmentGet places the length of the returned string in the length argument.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns A pointer to the HTTP fragment portion of the specified URL. Release with a call to
INKHandleStringRelease.

INK_ERROR_PTR if error.

Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0

Prototype INKReturnCode INKUrlHttpFragmentSet (INKMBuffer bufp, INKMLoc url_loc,
const char *value, int length)

Description Sets the HTTP fragment portion of the URL located at url_loc within the marshal buffer bufp to the string value.
If length is -1 then INKUrlHttpFragmentSet assumes that value is null-terminated. Otherwise, the
length of the string value is taken to be length. The string is copied to within bufp, so it is okay to modify or
delete value after calling INKUrlHttpFragmentSet.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype const char* INKUrlHttpParamsGet (INKMBuffer bufp, INKMLoc url_loc, int
*length)

Description Retrieves the HTTP params portion of the URL located at url_loc within the marshal buffer bufp.
INKUrlHttpParamsGet places the length of the returned string in the length argument.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns A pointer to the HTTP params portion of the specified URL. Release with a call to INKHandleStringRelease.

INK_ERROR_PTR if error.

Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0
Function Reference 181

INKUrlHttpParamsSet

Sets the HTTP params portion of a specified URL.

INKUrlHttpQueryGet

Gets the HTTP query portion of a specified URL.

INKUrlHttpQuerySet

Sets the HTTP query portion of a specified URL.

Prototype INKReturnCode INKUrlHttpParamsSet (INKMBuffer bufp, INKMLoc url_loc,
const char *value, int length)

Description Sets the HTTP params portion of the URL located at url_loc within the marshal buffer bufp to the string value.
If length is -1 then INKUrlHttpParamsSet assumes that value is null-terminated. Otherwise, the
length of the string value is taken to be length. INKUrlHttpParamsSet copies the string to within
bufp, so it is okay to modify or delete value after calling INKUrlHttpParamsSet.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype const char* INKUrlHttpQueryGet (INKMBuffer bufp, INKMLoc url_loc, int
*length)

Description Retrieves the HTTP query portion of the URL located at url_loc within the marshal buffer bufp.
INKUrlHttpQueryGet places the length of the returned string in the length argument.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns A pointer to the HTTP query portion of the specified URL. Release with a call to INKHandleStringRelease.

INK_ERROR_PTR if error.

Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0

Prototype INKReturnCode INKUrlHttpQuerySet (INKMBuffer bufp, INKMLoc url_loc,
const char *value, int length)

Description Sets the HTTP query portion of the URL located at url_loc within the marshal buffer bufp to the string value.
If length is -1 then INKUrlHttpQuerySet assumes that value is null-terminated. Otherwise, the length
of the string value is taken to be length. INKUrlHttpQuerySet copies the string to within bufp, so it is
okay to modify or delete value after calling INKUrlHttpQuerySet.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
182 Intercepting HTTP transaction functions

INKUrlLengthGet

Calculates the length of the string representation of a URL.

INKUrlParse

Parses the specified URL.

INKUrlPasswordGet

Gets the password portion of a specified URL.

Prototype int INKUrlLengthGet (INKMBuffer bufp, INKMLoc url_loc)

Description Calculates the length of URL located at url_loc within the marshal buffer bufp if it were
returned as a string. This length will be the same as the length returned by INKUrlStringGet.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns Returns the calculated length.

INK_ERROR if error.

First release Traffic Server 3.0

Prototype int INKUrlParse (INKMBuffer bufp, INKMLoc url_loc, const char **start,
const char *end)

Description Parses a URL. The start pointer is both an input and an output parameter and marks the start of the URL to be
parsed. After a successful parse, the start pointer equals the end pointer. The end pointer must be one byte after the
last character you want to parse.The URL parsing routine assumes that everything between start and end is part
of the URL. It is up to higher level parsing routines, such as INKHttpHdrParseReq, to determine the actual end
of the URL.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns Returns INK_PARSE_ERROR if an error occurs, otherwise INK_PARSE_DONE is returned to indicate success.

First release Traffic Server 3.0

Prototype const char* INKUrlPasswordGet (INKMBuffer bufp, INKMLoc url_loc, int
*length)

Description Retrieves the password portion of the URL located at url_loc within the marshal buffer bufp.
INKUrlPasswordGet places the length of the returned string in the length argument.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns A pointer to the password portion of the specified URL. Release with a call to INKHandleStringRelease.

INK_ERROR_PTR if error.

Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0
Function Reference 183

INKUrlPasswordSet

Sets the password portion of a specified URL.

INKUrlPathGet

Gets the path portion of a specified URL.

INKUrlPathSet

Sets the path portion of a specified URL.

Prototype INKReturnCode INKUrlPasswordSet (INKMBuffer bufp, INKMLoc url_loc,
const char *value, int length)

Description Sets the password portion of the URL located at url_loc within the marshal buffer bufp to the string value. If
length is -1 then INKUrlPasswordSet assumes that value is null-terminated. Otherwise, the length of
the string value is taken to be length. INKUrlPasswordSet copies the string to within bufp, so it is
okay to modify or delete value after calling INKUrlPasswordSet.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype const char* INKUrlPathGet (INKMBuffer bufp, INKMLoc url_loc, int
*length)

Description Retrieves the path portion of the URL located at url_loc within the marshal buffer bufp. INKUrlPathGet
places the length of the returned string in the length argument.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns A pointer to the path portion of the specified URL. Release with a call to INKHandleStringRelease.

INK_ERROR_PTR if error.

Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0

Prototype INKReturnCode INKUrlPathSet (INKMBuffer bufp, INKMLoc url_loc, const
char *value, int length)

Description Sets the path portion of the URL located at url_loc within the marshal buffer bufp to the string value. If
length is -1 then INKUrlPathSet assumes that value is null-terminated. Otherwise, the length of the
string value is taken to be length. INKUrlPathSet copies the string to within bufp, so it is okay to modify
or delete value after calling INKUrlPathSet.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
184 Intercepting HTTP transaction functions

INKUrlPortGet

Gets the port number portion of a specified URL.

INKUrlPortSet

Sets the port number portion of a URL to a specified value.

INKUrlSchemeGet

Gets the scheme portion of a specified URL.

Prototype int INKUrlPortGet (INKMBuffer bufp, INKMLoc url_loc)

Description Retrieves the port number portion of the URL located at url_loc within the marshal buffer bufp.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns The port number portion of the specified URL.

INK_ERROR if error.

First release Traffic Server 3.0

Prototype INKReturnCode INKUrlPortSet (INKMBuffer bufp, INKMLoc url_loc, int
port)

Description Sets the port number portion of the URL located at url_loc within the marshal buffer bufp to the value port.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype const char* INKUrlSchemeGet (INKMBuffer bufp, INKMLoc url_loc, int
*length)

Description Retrieves the scheme portion of the URL located at url_loc within the marshal buffer bufp.
INKUrlSchemeGet places the length of the returned string in the length argument.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns A pointer to the scheme portion of the specified URL. Release with a call to INKHandleStringRelease.

INK_ERROR_PTR if error.

Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0
Function Reference 185

INKUrlSchemeSet

Sets the scheme portion of a specified URL.

INKUrlStringGet

Constructs a string representation of the URL located at url_loc within the marshal buffer bufp.

INKUrlUserGet

Gets the user portion of a specified URL.

Prototype INKReturnCode INKUrlSchemeSet (INKMBuffer bufp, INKMLoc url_loc, const
char *value, int length)

Description Sets the scheme portion of the URL located at url_loc within the marshal buffer bufp to the string value. If
length is -1 then INKUrlSchemeSet assumes that value is null-terminated. Otherwise, the length of the
string value is taken to be length. INKUrlSchemeSet copies the string to within bufp, so it is okay to
modify or delete value after calling INKUrlSchemeSet.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype char* INKUrlStringGet (INKMBuffer bufp, INKMLoc url_loc, int *length)

Description Constructs a string representation of the URL located at url_loc within the marshal buffer bufp.
INKUrlStringGet stores the length of the allocated string in the parameter length. This is the same length
that INKUrlLengthGet returns. The returned string is allocated by a call to INKmalloc. It should be freed by
a call to INKfree. If length is NULL then no attempt is made to de-reference it.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns A null-terminated string.

INK_ERROR_PTR in case of an error.

First release Traffic Server 3.0

Prototype const char* INKUrlUserGet (INKMBuffer bufp, INKMLoc url_loc, int
*length)

Description Retrieves the user portion of the URL located at url_loc within the marshal buffer bufp. INKUrlUserGet
places the length of the returned string in the length argument.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns A pointer to the user portion of the specified URL. Release with a call to INKHandleStringRelease.

INK_ERROR_PTR if error.

Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0
186 Intercepting HTTP transaction functions

INKUrlUserSet

Sets the user portion of a specified URL.

MIME headers

MIME headers and fields can be components of request headers, response headers, or
standalone headers created within your plugin. Make sure you call the MIME header
functions appropriately; for example, if you want to clone a MIME header field within a
request header, call INKMimeHdrFieldClone after READ_REQUEST_HDR_HOOK.

The MIME header functions are:

INKMimeHdrFieldAppend

Appends a field in a MIME header.

INKMimeHdrFieldClone

Copies a MIME field to a marshal buffer, and returns the INKMLoc location of the copied field.

Prototype INKReturnCode INKUrlUserSet (INKMBuffer bufp, INKMLoc url_loc, const
char *value, int length)

Description Sets the user portion of the URL located at url_loc within the marshal buffer bufp to the string value. If
length is -1 then INKUrlUserSet assumes that value is null-terminated. Otherwise, the length of the string
value is taken to be length. INKUrlUserSet copies the string to within bufp, so it is okay to modify or
delete value after calling INKUrlUserSet.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKMimeHdrFieldAppend (INKMBuffer bufp, INKMLoc hdr_loc,
INKMLoc field)

Description Appends the MIME field located at field within the marshal buffer bufp into the MIME header located at
hdr_loc within the marshal buffer bufp.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.0

Prototype INKMLoc INKMimeHdrFieldClone (INKMBuffer dest_bufp, INKMLoc dest_hdr,
INKMBuffer src_bufp, INKMLoc src_hdr, INKMLoc src_field)

Description Copies the contents of the MIME field located at src_field within the marshal buffer src_bufp to a MIME
header located at dest_hdr within the marshal buffer dest_bufp.

Returns The INKMLoc location of the copied field. Release the returned handle with a call to
INKHandleMLocRelease.

INK_ERROR_PTR if error.

First release Traffic Server 3.5
Function Reference 187

INKMimeHdrFieldCopy

Copies a MIME field from a specified location to another specified location.

INKMimeHdrFieldCopyValues

Copies MIME field values from one location to another.

INKMimeHdrFieldCreate

Creates a new MIME field within a specified marshal buffer.

Prototype INKReturnCode INKMimeHdrFieldCopy (INKMBuffer dest_bufp, INKMLoc
dest_hdr, INKMLoc dest_field, INKMBuffer src_bufp, INKMLoc src_hdr,
INKMLoc src_field)

Description Copies the contents of the MIME field located at src_field within the marshal buffer src_bufp to the MIME
field located at dest_field within the marshal buffer dest_bufp. INKMimeHdrFieldCopy works
correctly even if src_bufp and dest_bufp point to different marshal buffers. Note: you must first create the
destination MIME field before copying into it.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldCopyValues (INKMBuffer dest_bufp, INKMLoc
dest_hdr, INKMLoc dest_field, INKMBuffer src_bufp, INKMLoc src_hdr,
INKMLoc src_field)

Description Copies the values contained within the MIME field located at src_field within the marshal buffer src_bufp
to the MIME field located at dest_field within the marshal buffer dest_bufp.
INKMimeHdrFieldCopyValues works correctly even if src_bufp and dest_bufp point to different
marshal buffers. INKMimeHdrFieldCopyValues does not copy the field’s name.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype INKMLoc INKMimeHdrFieldCreate (INKMBuffer bufp, INKMLoc hdr)

Description Creates a new MIME field with the marshal buffer bufp.

Returns The location of the new MIME field. Release with a call to INKHandleMLocRelease.

First release Traffic Server 3.5
188 Intercepting HTTP transaction functions

INKMimeHdrFieldDestroy

Deletes a specified MIME field from a marshal buffer.

INKMimeHdrFieldLengthGet

Calculates the length of a string representation of a specified MIME field.

INKMimeHdrFieldNameGet

Gets the name and name length of a specified MIME field.

Prototype void INKMimeHdrFieldDestroy (INKMBuffer bufp, INKMLoc hdr, INKMLoc
field)

Description Destroys the MIME field located at field within the MIME header located at hdr within the marshal buffer
bufp.

After the call to INKMimeHdrFieldDestroy, you must release the INKMLoc handle field with a call to
INKHandleMLocRelease.

First release Traffic Server 3.5

Prototype int INKMimeHdrFieldLengthGet (INKMBuffer bufp, INKMLoc hdr, INKMLoc
field)

Description Calculates the length of the MIME field located at field within the marshal buffer bufp if it were returned as a
string. This is the length of the MIME field in its unparsed form.

Returns The calculated length of a string representation of the specified MIME field.

INK_ERROR if there is an error.

First release Traffic Server 3.5

Prototype const char* INKMimeHdrFieldNameGet (INKMBuffer bufp, INKMLoc hdr,
INKMLoc field, int *length)

Description Returns the name of the field located at field within the marshal buffer bufp.
INKMimeHdrFieldNameGet places the length of the returned string in the length argument.

Returns A pointer to the name of the specified field within the specified MIME header. Release the returned string with a call
to INKHandleStringRelease.

INK_ERROR_PTR if error.

Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.5
Function Reference 189

INKMimeHdrFieldNameSet

Sets a specified MIME field’s name.

INKMimeHdrFieldNext

Returns the next MIME field after a specified MIME field in a MIME header.

Prototype INKReturnCode INKMimeHdrFieldNameSet (INKMBuffer bufp, INKMLoc hdr,
INKMLoc field, const char *name, int length)

Description Sets the name of the field located at field within the marshal buffer bufp to the string name. If length is -1
then INKMimeHdrFieldNameSet assumes thatname is null-terminated. Otherwise, the length of the string
name is taken to be length. INKMimeHdrFieldNameSet copies the string to within bufp, so it is okay to
modify or delete name after calling INKMimeHdrFieldNameSet.

For name, use the INK_MIME_FIELD_XXX tokens when possible. See Constant Index‚ on page 277.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype INKMLoc INKMimeHdrFieldNext (INKMBuffer bufp, INKMLoc hdr, INKMLoc
field)

Description Conceptually, there are a list of MIME fields in a MIME header (see Guide to Traffic Edge HTTP
header system‚ on page 87). INKMimeHdrFieldNext returns the location of the next field in the
list after the field located at field within the marshal buffer bufp. If the next field is not found, a
NULL pointer is returned.

Returns The location of the MIME field following the specified MIME field within the specified MIME
header. Release the returned INKMLoc with a call to INKHandleMLocRelease. See the code
example below.

INK_ERROR_PTR if error.

Example An example of a loop through each MIME field of an HTTP header:

field_loc = INKMimeHdrFieldGet (hdr_bufp, hdr_loc, 0);

 while (field_loc) {

 /* Temp variable used only for the loop */

 INKMLoc next_field_loc;

 /* Do your job with the field here */

 /* Get the next field and release the current one */

 next_field_loc = INKMimeHdrFieldNext (hdr_bufp, hdr_loc,
field_loc);

 INKHandleMLocRelease(hdr_bufp, hdr_loc, field_loc);

 field_loc = next_field_loc;

 }

First release Traffic Server 3.5
190 Intercepting HTTP transaction functions

INKMimeHdrFieldNextDup

Returns the next duplicate MIME field after a specified MIME field in a MIME header.

INKMimeHdrFieldValueAppend

Appends a string to a specified value in a MIME field.

Prototype INKMLoc INKMimeHdrFieldNextDup (INKMBuffer bufp, INKMLoc hdr, INKMLoc
field)

Description MIME headers MAY contain more than one MIME field with the same name. Previous versions of
Traffic Edge joined multiple fields with the same name into one field with composite values. This
behavior comes at a performance cost, and causes inter-operability problems with some older
clients and servers. Future versions of Traffic Edge will cease coalescing duplicate fields.

Your plugins should check for the presence of duplicate fields, and iterate over duplicate fields, by
using INKMimeHdrFieldNextDup.INKMimeHdrFieldNextDup returns the location of the
next duplicated field in the list after the field located at field within the marshal buffer bufp. If
the next field is not found, a NULL pointer is returned.

Returns The location of the next duplicate MIME field that follows the specified field within the specified
MIME header. Release with a call to INKHandleMLocRelease.

INK_ERROR_PTR if error.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldValueAppend (INKMBuffer bufp, INKMLoc hdr,

INKMLoc field, int idx, const char *value, int length)

Arguments bufp is the marshal buffer containing the MIME field.

hdr is the location of the parent object within the marshal buffer bufp from which field was
retrieved.

field is the location of the MIME field to be appended to.

idx is the index of the field value to be appended. For example, in the MIME field Foo: bar,
car the index of the value bar is 0, and the index of car is 1.

value is the string to be appended to the MIME field value at idx.

length is the length of the string value to be appended.

Description Appends the string stored in value to a specific value in the MIME field located at field within the marshal
buffer bufp. The effect of INKMimeHdrFieldValueAppend is as if the previous value were retrieved, the
string value were appended to it and this new string were stored back in the MIME field at the same position. The
idx parameter specifies which value in the field to append to. If idx is not between 0 and
INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1 then no operation will be performed.

Returns INK_SUCCESS if the string is successfully appended.

INK_ERROR if the hook is not added.

First release Traffic Server 3.5
Function Reference 191

INKMimeHdrFieldValueDateGet

Gets date value from a MIME field.

INKMimeHdrFieldValueDateInsert

Inserts a date value into a MIME field.

INKMimeHdrFieldValueDateSet

Sets a date value in a MIME field.

Prototype INKReturnCode INKMimeHdrFieldValueDateGet (INKMBuffer bufp, INKMLoc
hdr_loc, INKMLoc field, time_t *value)

Description Retrieves a date value from within the MIME field located at field within the marshal buffer bufp. All values are
stored as strings within the MIME field. INKMimeHdrFieldValueDateGet parses the string value to return
an integer date representation.

Returns The date value from the specified MIME header.

INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldValueDateInsert (INKMBuffer bufp, INKMLoc
hdr_loc, INKMLoc field, time_t value)

Description Inserts the data value into the MIME field located at field within the marshal buffer bufp. All values are stored
as strings within the MIME field. INKMimeHdrFieldValueDateInsert simply formats the date into a
string and then calls INKMimeHdrFieldValueInsert.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldValueDateSet (INKMBuffer bufp, INKMLoc
hdr_loc, INKMLoc field, time_t value)

Description Sets a value in the MIME field located at field within the marshal buffer bufp to the date value. All values are
stored as strings within the MIME field. INKMimeHdrFieldValueDateSet simply formats the date into a
string and then calls INKMimeHdrFieldValueStringSet.

This API has been deprecated by .

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5
192 Intercepting HTTP transaction functions

INKMimeHdrFieldValueDelete

Deletes a specified value from a MIME field.

INKMimeHdrFieldValueIntGet

Gets an integer field value in a MIME field.

INKMimeHdrFieldValueIntInsert

Inserts an integer value into a MIME field.

Prototype INKReturnCode INKMimeHdrFieldValueDelete (INKMBuffer bufp, INKMLoc hdr,
INKMLoc field, int idx)

Description Removes and deletes a value from the MIME field located at field within the marshal buffer bufp. The idx
parameter specifies which value should be deleted. If idx is not between 0 and
INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1 then no operation will be performed.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldValueIntGet (INKMBuffer bufp, INKMLoc
hdr_loc, INKMLoc field, int idx, int *value)

Description Retrieves an integer value from within the MIME field located at field within the marshal buffer bufp. The idx
parameter specifies which value within the field to retrieve. The fields are numbered from 0 to
INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1. If idx does not lie within that range,
INKMimeHdrFieldValueIntGet returns (int) 0. All values are stored as strings within the MIME field.
INKMimeHdrFieldValueIntGet parses the string value to return an integer.

Returns The interger value from the specified MIME field.

INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldValueIntInsert (INKMBuffer bufp, INKMLoc
hdr_loc, INKMLoc field, int value, int idx)

Description Inserts the integer value into the MIME field located at field within the marshal buffer bufp.
The idx parameter specifies where the inserted value should be put with respect to the other
values already in the MIME field. If idx is 0 then the value is prepended to the list of values in the
field. Increasing values of idx places the value further down the list of values. If idx is -1 then
the value is appended to the list of values. Normal usage is to specify -1 for idx so that the value
is appended to the list of values. All values are stored as strings within the MIME field.
INKMimeHdrFieldValueIntInsert simply formats the integer into a string and then calls
INKMimeHdrFieldValueInsert.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5
Function Reference 193

INKMimeHdrFieldValueIntSet

Sets an integer value within a MIME field.

INKMimeHdrFieldValueStringGet

Gets a specified field value from a MIME header.

INKMimeHdrFieldValueStringInsert

Inserts a value into a specified location within a MIME field.

Prototype INKReturnCode INKMimeHdrFieldValueIntSet (INKMBuffer bufp, INKMLoc
hdr_loc, INKMLoc field, int idx, int value)

Description Sets a value in the MIME field located at field within the marshal buffer bufp to the integer value. The idx
parameter specifies which value in the field to change. If idx is not between 0 and
INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1 then no operation will be performed. All
values are stored as strings within the MIME field. INKMimeHdrFieldValueIntSet simply formats the
integer into a string and then calls INKMimeHdrFieldValueSet.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldValueStringGet (INKMBuffer bufp, INKMLoc
hdr_loc, INKMLoc field, int idx, const char **value, int *value_len)

Description Retrieves a string value from within the MIME field located at field within the marshal buffer bufp. The idx
parameter specifies which field to retrieve. The fields are numbered from 0 to
INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1. If idx does not lie within that range then
NULL will be returned. The length of the returned string is placed in the value_len argument. If value_len
is NULL then no attempt is made to dereference it.

Returns A pointer to the specified field value in the MIME header. Release with a call to INKHandleStringRelease.

INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldValueStringInsert (INKMBuffer bufp,
INKMLoc hdr_loc, INKMLoc field, const char *value, int len, int idx)

Description Inserts the string value into the MIME field located at field within the marshal buffer bufp. If len is -1 then
INKMimeHdrFieldValueStringInsert assumes that value is null-terminated. Otherwise, the length
of the string value is taken to be length. INKMimeHdrFieldValueStringInsert copies the string
to within bufp, so it is okay to modify or delete value after calling
INKMimeHdrFieldValueStringSet. The idx parameter specifies where the inserted value should be put
with respect to the other values already in the MIME field. If idx is 0 then
INKMimeHdrFieldValueStringInsert prepends the value to the list of values in the field. Increasing
values of idx place the value further down the list of values. If idx is -1,
INKMimeHdrFieldValueStringInsert appends the value to the list of values. Normal usage is to
specify -1 for idx so that the value is appended to the list of values.
194 Intercepting HTTP transaction functions

INKMimeHdrFieldValueStringSet

Sets a value in a MIME field.

INKMimeHdrFieldValueUintGet

Gets unsigned integer field value in a MIME field.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldValueStringSet (INKMBuffer bufp, INKMLoc
hdr_loc, INKMLoc field, int idx, const char *value, int len)

Description Sets a value in the MIME field located at field within the marshal buffer bufp to the string value. If len is
-1 then it is assumed that value is null-terminated. Otherwise, the length of the string value is taken to be
len. The string is copied to within bufp, so it is okay to modify or delete value after calling
INKMimeHdrFieldValueStringSet. The idx parameter specifies which value in the field to change. If
idx is not between 0 and INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1 then no
operation will be performed. If idx is set to -1 then all the mime field values are returned. For instance, suppose the
mime field is MyField: value1, value2, value3. If INKMimeHdrFieldGet is called with idx
set to -1, it will return a pointer to “value1, value2, value3”.

Note that like for other mime header manipulation APIs, the string is not null terminated.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldValueUintGet (INKMBuffer bufp, INKMLoc
hdr_loc, INKMLoc field, int idx, unsigned int *value)

Description Retrieves an unsigned integer value from within the MIME field located at field within the marshal buffer bufp.
The idx parameter specifies which field to retrieve. The fields are numbered from 0 to
INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1. If idx does not lie within that range,
INKMimeHdrFieldValueGetUnit returns (unsigned int) 0. All values are stored as strings within
the MIME field. INKMimeHdrFieldValueUintGet parses the string value to return an unsigned integer.

It is not possible to determine if INKMimeHdrFieldValueUintGet is returning an unsigned int value in
error. If you need to check for errors in MIME header field values, you can fetch the header as a string and examine it.
Here is some sample code that fetches MIME headers from marshal buffers into strings using
INKMimeHdrFieldValueGet instead. The context of this example is that the plugin is processing an HTTP
transaction and has access to a transaction.

Returns The unsigned integer value from the specified MIME field.

INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.
Function Reference 195

Example static void

handle_string (INKHttpTxn txnp, INKCont contp) {

 INKMBuffer bufp;

 INKMLoc hdr_loc;

 INKMLoc field;

 int len;

 char* output_string;

 const char* value;

/* Fetch the transaction's client request header into a marshal buffer.
*/

 if (!INKHttpTxnClientReqGet (txnp, &bufp, &hdr_loc)) {

 INKError ("couldn't retrieve client request header\n");

 goto done;

 }

 field=INKMimeHdrFieldFind(bufp, hdr_loc,

 INK_MIME_FIELD_CONTENT_LENGTH);

 if (!field) {

 INKError ("Content-Length field not found.\n");

 INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 goto done;

 }

 /* Obtain the value of the content length (normally an

* unsigned int) as a string. */

 value=INKMimeHdrFieldValueGet (bufp, hdr_loc, field, 0, &len);

 if ((!value) || (len<=0))}

 INKHandleMLocRelease (bufp, hdr_loc, field);

 INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 goto done;

 }

 /* Allocate the string with an extra byte for the string terminator.
*/

 output_string = (char*) INKmalloc(len + 1);

 /* Copy the value. */

 strncpy (output_string, value, len);

 /* Terminate the string */

 output_string[len] = '\0';

/* Now that you have the MIME fields as a string, you can do

 whatever you want to do with it, for example, print it, or

 make sure it's an unsigned integer: either by using the
196 Intercepting HTTP transaction functions

 atol C function or by scanning each ASCII character. */

 INKDebug("my-plugin", "%s", output_string);

 /* Release handles and allocated memory. */

 INKHandleStringRelease (bufp, field, value);

INKf (t t t i)

INKMimeHdrFieldValueUIntInsert

Inserts an unsigned integer value into a MIME field.

INKMimeHdrFieldValueUintSet

Sets a value in a MIME field to a specified unsigned integer.

INKMimeHdrFieldValuesClear

Clears all values in a MIME field.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldValueUIntInsert (INKMBuffer bufp, INKMLoc
hdr_loc, INKMLoc field, unsigned int value, int idx)

Description Inserts the unsigned integer value into the MIME field located at field within the marshal
buffer bufp. The idx parameter specifies where the inserted value should be put with respect to
the other values already in the MIME field. If idx is 0 then the value will be prepended to the list
of values in the field. Increasing values of idx will place the value further down the list of values.
If idx is -1 then the value will be appended to the list of values. Normal usage is to specify -1 for
idx so that the value will be appended to the list of values. All values are stored as strings within
the MIME field. INKMimeHdrFieldValueUIntInsert simply formats the unsigned integer
into a string and then calls INKMimeHdrFieldValueStringInsert.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldValueUintSet (INKMBuffer bufp, INKMLoc
hdr_loc, INKMLoc field, int idx, unsigned int value)

Description Sets a value in the MIME field located at field within the marshal buffer bufp to the unsigned integer value.
The idx parameter specifies which value in the field to change. If idx is not between 0 and
INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1 then no operation will be performed. All
values are stored as strings within the MIME field. INKMimeHdrFieldValueUintSet simply formats the
unsigned integer into a string and then calls INKMimeHdrFieldValueStringSet.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrFieldValuesClear (INKMBuffer bufp, INKMLoc hdr,
INKMLoc field)

Description Removes and destroys all of the values within the MIME field located at field within the marshal buffer bufp.

Make sure you release any corresponding INKMLoc or string handles using INKHandleMLocRelease or
INKHandleStringRelease.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.5
Function Reference 197

INKMimeHdrFieldValuesCount

Counts the values in a MIME field.

INKMimeHdrClone

Copies a MIME header and returns the location of the copy.

INKMimeHdrCopy

Copies a MIME header to a specified MIME header location.

Prototype int INKMimeHdrFieldValuesCount (INKMBuffer bufp, INKMLoc hdr, INKMLoc
field)

Description Retrieves a count of the number of values in the MIME field located at field within the marshal buffer bufp.

Returns The number of values in the specified MIME field.

INK_ERROR if error.

First release Traffic Server 3.5

Prototype INKMLoc INKMimeHdrClone(INKMBuffer dest_bufp, INKMBuffer src_bufp,
INKMLoc src_hdr_loc)

Description Copies the contents of the MIME header located at src_hdr_loc within the marshal buffer
src_bufp to the marshal buffer dest_bufp.

Returns The INKMLoc location of the copied header. Release the returned handle with a call to
INKHandleMLocRelease.

INK_ERROR_PTR if error.

First release Traffic Server 3.5

Prototype INKReturnCode INKMimeHdrCopy (INKMBuffer dest_bufp, INKMLoc
dest_hdr_loc, INKMBuffer src_bufp, INKMLoc src_hdr_loc)

Description Copies the contents of the MIME header located at src_hdr_loc within the marshal buffer
src_bufp to the MIME header located at dest_hdr_loc within the marshal buffer
dest_bufp.INKMimeHdrCopy works correctly even if src_bufp and dest_bufp point to
different marshal buffers.

Note: Make sure that the destination marshal buffer and destination MIME header location have
been created before copying. See the example below, illustrating copying a response MIME
header.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.
198 Intercepting HTTP transaction functions

INKMimeHdrCreate

Creates a MIME header.

Example static void

copyResponseMimeHdr (INKCont pCont, INKHttpTxn pTxn)

{

INKMBuffer respHdrBuf, tmpBuf;

INKMLoc respHttpHdrLoc, tmpMimeHdrLoc;

if (!INKHttpTxnClientRespGet (pTxn, &respHdrBuf, &respHttpHdrLoc))
{

INKError ("couldn't retrieve client response header\n");

INKHandleMLocRelease (respHdrBuf, INK_NULL_MLOC,
respHttpHdrLoc);

goto done;

}

tmpBuf = INKMBufferCreate ();

tmpMimeHdrLoc = INKMimeHdrCreate(tmpBuf);

INKMimeHdrCopy(tmpBuf, tmpMimeHdrLoc, respHdrBuf, respHttpHdrLoc);

INKHandleMLocRelease (tmpBuf, INK_NULL_MLOC, tmpMimeHdrLoc);

INKHandleMLocRelease (respHdrBuf, INK_NULL_MLOC, respHttpHdrLoc);

INKMBufferDestroy(tmpBuf);

done:

INKHttpTxnReenable(pTxn, INK_EVENT_HTTP_CONTINUE); }

First release Traffic Server 3.0

Prototype INKMLoc INKMimeHdrCreate (INKMBuffer bufp)

Description Creates a new MIME header within the marshal buffer bufp.

Returns Location of the newly created MIME header. Release with a call to INKHandleMLocRelease.

INK_ERROR_PTR if error.

First release Traffic Server 3.0
Function Reference 199

INKMimeHdrDestroy

Destroys a MIME header.

INKMimeHdrFieldFind

Finds fields in a MIME header.

INKMimeHdrFieldGet

Gets a field in a MIME header.

Prototype INKReturnCode INKMimeHdrDestroy (INKMBuffer bufp, INKMLoc hdr_loc)

Description Destroys the MIME header located at hdr_loc within the marshal buffer bufp.

Release the INKMLoc handle hdr_loc with a call to INKHandleMLocRelease.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKMLoc INKMimeHdrFieldFind (INKMBuffer bufp, INKMLoc loc, const char*
name, int length)

Description Retrieves a MIME field from within the MIME header located at loc within the marshal buffer bufp. The name and
length parameters specify which field to retrieve. For each MIME field in the MIME header, a case insensitive
string comparison is done between the field name and name. The length parameter specifies how long the string
pointed to by name is. If length is -1, then name is assumed to be null-terminated. If the requested field cannot
be found then 0 is returned.

Returns The location of the retrieved MIME header. Release with a call to INKHandleMLocRelease.

INK_ERROR_PTR if error.

First release Traffic Server 3.0

Prototype INKMLoc INKMimeHdrFieldGet (INKMBuffer bufp, INKMLoc hdr_loc, int idx)

Description Retrieves a MIME field from within the MIME header located at hdr_loc within the marshal buffer bufp. The
idx parameter specifies which field to retrieve. The fields are numbered from 0 to
INKMimeHdrFieldsCount (bufp, hdr_loc) - 1. If idx does not lie within that range then 0 will be
returned.

Returns The location of the MIME field from within the MIME header. Release with a call to INKHandleMLocRelease.

INK_ERROR_PTR if error.

First release Traffic Server 3.0
200 Intercepting HTTP transaction functions

INKMimeHdrFieldRemove

Removes a field in a MIME header.

INKMimeHdrFieldsClear

Clears all the fields of a MIME header.

INKMimeHdrFieldsCount

Counts the fields in a MIME header.

Prototype INKReturnCode INKMimeHdrFieldRemove (INKMBuffer bufp, INKMLoc hdr_loc,
INKMLoc field)

Description Removes the MIME header located at field within the marshal buffer bufp from the MIME header located at
hdr_loc within the marshal buffer bufp. If the specified field cannot be found in the list of fields associated with
the header then nothing is done.

After the call to INKMimeHdrFieldDestroy, you must release the INKMLoc handle field with a call to
INKHandleMLocRelease.

Note: removing the MIME field doesn't destroy the field, it only detaches it, hiding it from the printed output.The field
can be reattached by calling INKMimeHdrFieldAppend.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKMimeHdrFieldsClear (INKMBuffer bufp, INKMLoc hdr_loc)

Description Removes and destroys all the MIME fields within the MIME header located at hdr_loc within the marshal buffer
bufp.

Make sure you release any corresponding INKMLoc or string handles using INKHandleMLocRelease or
INKHandleStringRelease.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype int INKMimeHdrFieldsCount (INKMBuffer bufp, INKMLoc hdr_loc)

Description Obtains a count of the number of MIME fields within the MIME header located at hdr_loc within the marshal
buffer bufp.

Returns The number of fields within the specified MIME header.

INK_ERROR if error.

First release Traffic Server 3.0
Function Reference 201

INKMimeHdrLengthGet

Gets the length of a MIME header.

INKMimeHdrParse

Parses a MIME header.

INKMimeParserClear

Clears a MIME header parser so it may be reused.

Prototype int INKMimeHdrLengthGet (INKMBuffer bufp, INKMLoc hdr_loc)

Description Calculates the length of the MIME header located at hdr_loc within the marshal buffer bufp if it were returned
as a string. This is the length of the MIME header in its unparsed form.

Returns The length of the specified MIME header.

INK_ERROR if error.

First release Traffic Server 3.0

Prototype int INKMimeHdrParse (INKMimeParser parser,
INKMBuffer bufp, INKMLoc hdr_loc,
const char **start, const char *end)

Description Parses a MIME header. The MIME header must have already been allocated and both bufp and hdr_loc must
point within that header. The start argument points to the current position of the buffer being parsed and the end
argument points to one byte after the end of the buffer. On return, start is modified to point past the last character
parsed. It is possible to parse a MIME header a single byte at a time using repeated calls to INKMimeHdrParse.
As long as an error does not occur, the INKMimeHdrParse function will consume that single byte and ask for
more.

Returns INK_PARSE_ERROR is returned on error.

INK_PARSE_DONE is returned when a \r\n\r\n pattern is encountered, indicating the end of the header.
INK_PARSE_CONT is returned if parsing of the header stopped because the end of the buffer was reached.

First release Traffic Server 3.0

Prototype INKReturnCode INKMimeParserClear (INKMimeParser parser)

Description Clears the specified MIME parser so it may be used again.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
202 Intercepting HTTP transaction functions

INKMimeParserCreate

Creates a parser for MIME headers.

INKMimeParserDestroy

Destroys a MIME header parser.

INKMimeHdrPrint

Prints a MIME header to an IO buffer.

Mutex functions

INKMutexCreate

Creates a new INKMutex.

Prototype INKMimeParser INKMimeParserCreate (void)

Description Creates a MIME parser. The parser’s data structure contains information about the header being parsed. A single
MIME parser can be used multiple times, though not simultaneously. Before being used again, the parser must be
cleared by callingINKMimeParserClear.

Returns A pointer to the newly created MIME parser.

INK_ERROR_PTR if error.

First release Traffic Server 3.0

Prototype INKReturnCode INKMimeParserDestroy (INKMimeParser parser)

Description Destroys the specified MIME parser and frees the associated memory.

Returns INK_SUCCESS if the parser is successfully destroyed.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKMimeHdrPrint (INKMBuffer bufp, INKMLoc hdr_loc,

INKIOBuffer iobufp)

Description Formats the MIME header located at hdr_loc within the marshal buffer bufp into the IO buffer iobufp. See
IO buffers‚ on page 128 for information on allocating an IO Buffer and retrieving data from within one.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKMutex INKMutexCreate (void)

Description Creates a new INKMutex.
Function Reference 203

INKMutexLock

Locks an INKMutex.

INKMutexLockTry

Tries to lock an INKMutex.

Returns A handle to the newly created mutex.

INK_ERROR_PTR if error.

First release Traffic Server 3.0

Prototype INKReturnCode INKMutexLock (INKMutex mutexp)

Description Locks the INKMutex mutexp. If mutexp is already locked then INKMutexLock will block until
the mutex is unlocked. An INKMutex will be recursively locked if INKMutexLock is called on the
same mutex twice from the same thread. That is, the following example will succeed and not
block on the second call to INKMutexLock.

Returns INK_SUCCESS if the mutex is successfully locked.

INK_ERROR if an error occurs.

Example INKMutexLock (some_mutex);

INKMutexLock (some_mutex);

INKMutexUnlock (some_mutex);

INKMutexUnlock (some_mutex);

First release Traffic Server 3.0

Prototype INKReturnCode InkMutexLockTry (INKMutex mutex, int *lock)

Description Tries to lock the INKMutex mutex. Information as to whether the lock was grabbed or not is set
in int *lock. INKReturnCode will tell you if the call was successful or not, but does not
indicate whether or not the lock was grabbed.

In general, use InkMutexLockTry to obtain a mutex. See the example below.

Returns If the mutex was successfully locked, 1 will be returned.

If mutex is already locked then 0 will be returned.
204 Mutex functions

INKMutexUnlock

Unlocks an INKMutex.

Continuation functions
INKContCall

Calls a continuation.

Example int handler (INKCont contp, INKEvent event, void *edata)

{

//this continuation tries to grab a mutex

int retval, lock = 0;

retvak = InkMutexLockTry (mutex, &lock);

if (!lock)

{

/* Schedule a retry; RETRY_TIME should be 10 ms or longer. */

INKContSchedule (contp, RETRY_TIME);

return INK_EVENT_IMMEDIATE;

}

// Now the mutex is grabbed

do_some_job ...

INKMutexUnlock (mutexp);

}

First release Traffic Server 3.0

Prototype INKReturnCode INKMutexUnlock (INKMutex mutexp)

Description Unlocks the INKMutex mutexp. If mutexp was recursively locked then INKMutexUnlock will
not actually unlock the mutex but simply decrement the recursion count.

Returns INK_SUCCESS if the mutex is successfully unlocked.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype int INKContCall (INKCont contp, INKEvent event, void *edata)

Description Sends event and edata to the contp’s handler function. It is an error to call a continuation
without holding the continuation’s lock.

Returns The values returned by the continuation contp event handler.

First release Traffic Server 3.0
Function Reference 205

INKContCreate

Creates a continuation.

INKContDataGet

Gets a data pointer from a continuation.

INKContDataSet

Sets a data pointer for a specified continuation.

INKContDestroy

Destroys a continuation.

Prototype INKCont INKContCreate (INKEventFunc funcp, INKMutex mutexp)

Description Creates a new INKCont. The continuation’s handler function is funcp, and its mutex is mutexp.
As mentioned previously, a continuation’s mutex can be NULL. This is accomplished by
specifying NULL for mutexp.

Note: If you specify a NULL mutex, a mutex is created for the continuation and this mutex is held
when the continuation is called back.

Returns A handle to the newly created continuation.

INK_ERROR_PTR if INKCont object is not successfully created.

First release Traffic Server 3.0

Prototype void* INKContDataGet (INKCont contp)

Description Retrieves the data pointer from contp. The data pointer can be set via a call to
INKContDataSet. It is up to the plugin to allocate/deallocate the pointer.

Returns The pointer on the continuation contp data, or

INK_ERROR_PTR if error.

First release Traffic Server 3.0

Prototype INKReturnCode INKContDataSet (INKCont contp, void *data)

Description Sets the data pointer of contp to data. The data can later be retrieved by a call to
INKContDataGet.

Returns INK_SUCCESS if the pointer is successfully set.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKContDestroy (INKCont contp)

Description Destroys the continuation contp. INKContDestroy is used to destroy both continuations and
vconnections (see Vconnections‚ on page 121). The internal continuation data structures are
destroyed, but no attempt is made to guarantee that there are no outstanding references to this
continuation.
206 Continuation functions

INKContMutexGet

Gets the mutex for a specified continuation.

INKContSchedule

Schedules a continuation to receive an event.

Plugin configuration functions
INKConfigDataGet

Gets configuration data.

Returns INK_SUCCESS if the continuation is successfully destroyed.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKMutex INKContMutexGet (INKCont contp)

Description Gets the mutex for contp.

Returns A handle to the mutex for the specified continuation.

INK_ERROR_PTR if error.

First release Traffic Server 3.0

Prototype INKAction INKContSchedule (INKCont contp, unsigned int timeout)

Description Schedules the continuation represented by contp to receive an event. The timeout refers to a
time in milliseconds from the present at which to send the event. When the contp is called back
and if timeout is 0, then the event sent will be INK_EVENT_IMMEDIATE. If timeout is greater
than 0 then the event sent will be INK_EVENT_TIMEOUT.

Returns An INKAction object.

INK_ERROR_PTR if error.

First release Traffic Server 3.0

Prototype void* INKConfigDataGet (INKConfig configp)

Description Retrieves the data pointer from within the configuration pointer configp. Before you use
INKConfigDataGet, you must give the configuration data an identifier with INKConfigSet
and then retrieve the INKConfig pointer configp with a call to INKConfigGet. See the code
snippet in the previous section.

First release Traffic Server 3.0
Function Reference 207

INKConfigGet

Returns a pointer to the Traffic Edge configuration.

INKConfigRelease

Releases a configuration pointer.

INKConfigSet

Assigns an identifier to plugin configuration data.

Prototype INKConfig INKConfigGet (unsigned int id)

Description Retrieves the current configuration pointer associated with the configuration identifier id. The
function INKConfigDataGet can then be used to retrieve the data pointer from within the
configuration. INKConfigGet increments the reference count inside the configuration. It is
important to call INKConfigRelease to decrement the reference count when the user is done
with the configuration pointer.

Before you call INKConfigGet, you must set the identifier id to some plugin configuration data
using INKConfigSet. See the code snippet in the previous section.

Returns A pointer to the current Traffic Edge configuration.

First release Traffic Server 3.0

Prototype void INKConfigRelease (unsigned int id, INKConfig configp)

Description Releases the configuration pointer configp on the configuration associated with the identifierid.
It is possible thatconfigp is no longer the current configuration in which case
INKConfigRelease may end up calling the configuration’s destroy function. See the code
snippet in the previous section.

First release Traffic Server 3.0

Prototype unsigned int INKConfigSet (unsigned int id, void *data,
INKConfigDestroyFunc funcp)

Arguments unsigned int id is the identifier that is assigned to configuration data. Do not use 1 or 2 for
id. Traffic Edge internally assigns these IDs to parent and HTTP configurations. You can enter 0
as id, and INKConfigSet will allocate an identifier for you (with a value of 3 or greater). There
is an internal upper limit of 100 on id.

void *data points to the data that you are associating to id.

INKConfigDestroyFunc funcp is a pointer to a destroy function that is called when Traffic
Edge determines that there are no more references to data. The only argument of funcp is
data.

Returns The unsigned int that was assigned to the data. If the input id is 0 then a new configuration
identifier is allocated (of value 3 or larger). If the input id is 0, the return value is the available
identifier allocated by Traffic Edge. If id is non-zero, the return value is id.
208 Plugin configuration functions

Action functions
INKActionCancel

Cancels an action.

Description Sets the opaque data pointer data to be associated with the configuration identifier id. If id is 0
then Traffic Edge allocates a new configuration identifier, and INKConfigSet returns this value.
If id is non-zero, INKConfigSet returns id. To make sure that the configuration identifier stays
within the recommended range of 3 to 100, follow the code example in the previous section.

Caution: Never pick a configuration identifier yourself. When you need a new config id, you
MUST always pass 0 as id to the INKConfigSet API which will return a new valid id. It is not
safe to pick up a randomly selected id because there might be some conflict with ids already in
use by Traffic Edge. This can cause severe memory corruption as the INKConfig mechanism is
also used internally by Traffic Edge.

The funcp parameter is a pointer to a destroy function which will be called with data as its only
parameter when Traffic Edge determines that there are no more references to data.

Note: data will not be destroyed while it is the current piece of configuration data since the
current data always has a reference count of at least 1.

See the code snippet in the previous section for usage.

First release Traffic Server 3.0

Prototype INKReturnCode INKActionCancel (INKAction actionp)

Description Cancels an INKAction. If a NULL argument is passed to INKActionCancel, Traffic Edge will
crash and will not return INK_ERROR. Note that it is the programmer’s responsibility to ensure
that a non-null value is passed to INKActionCancel.

Returns INK_SUCCESS if the action is successfully cancelled.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
Function Reference 209

INKActionDone

Tells you if an action is completed.

Host Lookup Functions

INKHostLookup

Asks Traffic Edge to do a DNS lookup of a host name.

Prototype int INKActionDone (INKAction actionp)

Description Is actionp a completed action. If a NULL argument is passed to INKActionDone, Traffic Edge
will crash and will not return INK_ERROR. Note that it is the programmer’s responsibility to ensure
that a non-null value is passed to INKActionDone.

Important: Always use INKActionDone immediately after the call that assigns the action. For
example:

actionp = INKContSchedule(contp, SOME_TIMEOUT_VALUE);

if (INKActionDone(actionp)){

//event has already occurred

}

If you call INKActionDone(actionp) some time later or some where else, it always returns
false, and therefore does not accurately reflect whether the action is completed.

Returns 0 if the action has not completed.

1 if the action has completed

INK_ERROR if an error has occurred.

First release Traffic Server 3.0

Prototype INKAction INKHostLookupResult (INKCont contp, char *hostname,

int namelen)

Arguments INKCont contp is the continuation that Traffic Edge calls back when the DNS lookup occurs.

char *hostname is the name to look up. Null terminated.

int namelen is the length of hostname +1 (add one to account for null termination).

Description Initiates a DNS lookup of hostname. When the lookup occurs, Traffic Edge sends contp
INK_EVENT_DNS_LOOKUP. If the lookup is successful (IP address resolved), the void * data
passed to the handler of the continuation contp is a data of type INKHostLookupResult. You
can then use INKHostLookupResultIPGet to convert this information to an unsigned int
representing the IP address.

If the lookup fails (IP address not resolved), the void * data passed to the handler of
continuation contp is a null pointer.

You have the option to cancel the action returned by INKHostLookup by using
INKActionCancel.

Note that reentrant calls are possible, i.e. the cache can call back the user (contp) in the same
call.
210 Host Lookup Functions

INKHostLookupResultIPGet

Gets the IP address of a host name that Traffic Edge has looked up.

Vconnection functions
INKVConnAbort

Closes a vconnection and specifies that the operations it was performing were aborted.

INKVConnClose

Closes a vconnection.

Returns An INKAction object if successful.

INK_ERROR_PTR if an argument is incorrect or if the API fails.

First Release Traffic Server 5.2

Prototype InkReturnCode INKHostLookupResultIPGet (INKHostLookupResult
lookup_result, unsigned int *ip)

Arguments INKHostLookupResult lookup_result is information returned by
INKHostLookupResult.

unsigned int *ip is set to the value of the IP address, in network byte order.

Description Converts the information retrieved by INKHostLookupResult to an unsigned int representing
the IP address.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First Release Traffic Server 5.2

Prototype INKReturnCode INKVConnAbort (INKVConn connp, int error)

Description Closes the vconnection connp and specifies that the operations it was performing were aborted.
The vconnection will be de-allocated at some point in the near future after having
INKVConnAbort called upon it. After calling INKVConnClose, a user will not receive any more
events from connp. For most vconnections, INKVConnClose and INKVConnAbort perform
identical operations. A potential difference is that when a vconnection is aborted the vconnection
implementor can decide to do something special. For instance, a vconnection writing a file to disk
might decide to delete the file.

Returns INK_SUCCESS if the connection is successfully aborted.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKVConnClose (INKVConn connp)

Description Closes the vconnection connp. The vconnection will be de-allocated at some point in the near
future after having INKVConnClose called upon it. After calling INKVConnClose, a user will
not receive any more events from connp.
Function Reference 211

INKVConnClosedGet

Gets a closed vconnection.

INKVConnRead

Reads a vconnection.

INKVConnReadVIOGet

Obtains the output VIO for a vconnection.

Returns INK_SUCCESS if the connection is successfully closed.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKVConnClosedGet (INKVConn connp)

Description Retrieves the closed status for a vconnection.

INKVConnClosedGet is intended to be used by vconnection implementors and not by
vconnection users. It is not safe for a vconnection user to call INKVConnClosedGet since if the
vconnection actually is closed then it is possible (and likely) for it to be de-allocated at any time.

Note: This API can be used ONLY on transformation VConnections. NEVER use it on Cache
VConnections, Net VConnections or any other type of VConnections.

Returns INK_SUCCESS if successful.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKVIO INKVConnRead (INKVConn connp, INKCont contp, INKIOBuffer bufp,
int nbytes)

Description Initiates a read operation on the vconnection connp. The read operation writes into the buffer
bufp. The continuation contp will be called back with either INK_EVENT_ERROR,
INK_EVENT_VCONN_READ_READY, INK_EVENT_VCONN_READ_COMPLETE or
INK_EVENT_VCONN_EOS. Refer to The vconnection user’s view‚ on page 121 for more
information about these events. The number of bytes to read is specified by the nbytes
parameter.

Returns A handle to the vconnection.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype INKVIO INKVConnReadVIOGet (INKVConn connp)

Description Retrieves the read VIO for a vconnection. INKVConnReadVIOGet is intended to be used by
vconnection implementors and not by vconnection users.

Note that this API can only be used for transformations. It is not used for NetVConn or
CacheVConn.
212 Vconnection functions

INKVConnShutdown

Shuts down a vconnection.

INKVConnWrite

Writes a vconnection.

INKVConnWriteVIOGet

Obtains the input VIO for a vconnection.

Returns A handle to the vconnection.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKVConnShutdown (INKVConn connp, int read, int write)

Description Shuts down a portion of the vconnection connp. If read is non-zero, then the read portion of
connp is shutdown indicating that the user does not want to be called back regarding any more
read events on this vconnection. If write is non-zero, then the write portion of connp is
shutdown indicating that the user does not want to be called back regarding any more write
events on this vconnection.

Returns INK_SUCCESS if the connection is successfully shutdown.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKVIO INKVConnWrite (INKVConn connp, INKCont contp, INKIOBufferReader
readerp, int nbytes)

Description Initiates a write operation on the vconnection connp. The write operation reads from the buffer
reader readerp. The continuation contp will be called back with either INK_EVENT_ERROR,
INK_EVENT_VCONN_WRITE_READY, or INK_EVENT_VCONN_WRITE_COMPLETE. Refer to The
vconnection user’s view‚ on page 121 for more information about these events. The number of
bytes to write is specified by the nbytes parameter.

Returns A handle to the vconnection.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype INKVIO INKVConnWriteVIOGet (INKVConn connp)

Description Retrieves the write VIO for a vconnection. INKVConnWriteVIOGet is intended to be used by
vconnection implementors and not by vconnection users.

Note that this API can only be used for transformations.

Returns A handle to the vconnection.

INK_ERROR_PTR if error.

First release Traffic Server 3.0
Function Reference 213

Netvconnection functions
INKNetAccept

Accepts a TCP/IP connection on a specified port.

INKNetConnect

Initiate a network connection to a server.

Prototype INKAction INKNetAccept (INKCont contp, int port)

Arguments INKCont contp is the continuation that is called back when a connection is accepted.

int port is the port to listen to for incoming TCP/IP connections.

Description Accepts a TCP/IP connection on port. When Traffic Edge receives a connection on a specified
port, it calls back contp with the event INK_EVENT_NET_ACCEPT or
INK_EVENT_NET_ACCEPT_FAILED

If event is INK_EVENT_NET_ACCEPT, the void * data passed to the handler of the
continuation contp is a data of type NetVConnection representing the connection.

If event is INK_EVENT_NET_ACCEPT_FAILED, it means an attempt of connection was aborted
or failed. The plugin should just return from the continuation's handler.

The user (contp) has the option to cancel the action returned by INKNetAccept by using
INKActionCancel.

Returns An INKAction object if successful.

INK_ERROR_PTR if an argument was incorrect or if the API failed.

First Release Traffic Server 5.2

Prototype INKAction INKNetConnect (INKCont contp, unsigned int ip, int port)

Arguments INKCont contp is the continuation to be associated with the connection.

int ip is the IP address , in network byte order, of the host to connect to.
int port is port number for the host, specified in network byte order.

Description Opens up a network connection to the host specified by ip on the port specified by port. T If the
connection is successfully opened, contp will be called back with the event
INK_EVENT_NET_CONNECT and the new network vconnection will be passed in the event data
parameter. If the connection is not successful, contp will be called back with the event
INK_EVENT_NET_CONNECT_FAILED.

Note: It’s possible to receive INK_EVENT_NET_CONNECT even if the connection failed, because
of the implementation of network sockets in the underlying operating system. There is an
exception: if a plugin tries to open a connection to a port on its own host machine, then
INK_EVENT_NET_CONNECT is sent only if the connection is successful. In general, however,
your plugin needs to look for INK_EVENT_VCONN_WRITE_READY or
INK_EVENT_VCONN_READ_READY to make sure that the connection is successfully opened.

Note that reentrant calls are possible, i.e. the net processor can call back the user (contp) in the
same call.

Returns An INKAction object.

First release Traffic Server 3.0
214 Netvconnection functions

INKNetVConnRemoteIPGet

Retrieves the remote host’s IP address.

INKNetVConnRemotePortGet

Retrieves the remote host’s port number.

Cache interface functions
INKCacheKeyCreate

Creates a new cache key to be assigned to an object to be cached.

Prototype INKReturnCode INKNetVConnRemoteIPGet (INKVConn vc, unsigned int *ip)

Arguments INKVConn vc is the connection between Traffic Edge and the other end of the connection (can
be remote client or server).

unsigned int *ip is set to the remote IP address in network byte order.

Description Obtains the remote IP address in network byte order.

Returns INK_SUCCESS if API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

Note this returns IP in IP Version 4.

First release Traffic Server 5.2

Prototype InkReturnCode INKNetVConnRemotePortGet (INKVConn vc, int *port)

Arguments INKVConn vc is the connection between Traffic Edge and the other end of the connection (can
be remote client or server).

int *port is set to the remote port value in host byte order.

Description Obtains the port number of the remote host for the specified connection. The port is returned in
host byte order.

Returns INK_SUCCESS if API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 5.2

Prototype INKReturnCode INKCacheKeyCreate(InkCacheKey *new_key)

Arguments INKCacheKey *new_key is set to the allocated key.

Description Creates (allocates memory for) a new cache key. The key can then be generated and assigned
to an object using INKCacheKeyDigestSet.

Returns INK_SUCCESS if success.

INK_ERROR if cache key could not be allocated.

First Release Traffic Server 5.2
Function Reference 215

INKCacheKeyDigestSet

Generates and assigns a cache key to an object to be cached.

INKCacheKeyHostNameSet

Associates a host name to a cache key. Use if you want to support cache partitioning by host name.

INKCacheKeyDestroy

Destroys a cache key.

Prototype INKReturnCode INKCacheKeyDigestSet(INKCacheKey key,

const unsigned char *input, int length)

Arguments INKCacheKey key is the key to be associated to the cached object. Before calling
INKCacheKeyDigestSet you must create the key with INKCacheKeyCreate. Note that in
order to generate unique keys, you must use unique input strings. In other words, if the input
strings are identical, INKCacheKeyCreate will generate identical keys.

const unsigned char *input is a character string that uniquely identifies the object. In most
cases, it is the URL of the object.

int length is the length of the string input.

Description Generates and assigns a cache key to an object to be cached.

Returns INK_SUCCESS if the cache key was successfully generated.

INK_ERROR if digest could not be set.

Example const char *digest_string = "mydigest"

INKCacheKey mykey;

INKCacheKeyCreate(&mykey);

INKCacheKeyDigestSet(mykey,digest_string, strlen(digest_string);

First Release Traffic Server 5.2

Prototype INKReturnCode INKCacheKeyHostNameSet(INKCacheKey key,

const unsigned char *hostname, int host_len;

Arguments INKCacheKey key is the key to the cached object.

const unsigned char *hostname is the host name you are associating to the cache key.

int host_len is the length of the string hostname.

Description Associates a host name to a cache key. The host name setting is used in conjunction with the TS
config file partition.config and hosting.config that allows you to specify under which
cache partition the object should be stored.

Returns INK_SUCCESS if the host name was successfully associated with the cache key.

INK_ERROR if hostname could not be set or is invalid.

First Release Traffic Server 5.2

Prototype INKReturnCode INKCacheKeyDestroy(INKCacheKey key)

Arguments INKCacheKey key is the key to be destroyed.
216 Cache interface functions

INKCacheRead

Initiates a cache read or lookup of an object in the Traffic Edge cache.

Description Destroys a cache key (deallocate memory). You must destroy cache keys when you are finished
with them (after all reads and writes are completed).

Returns INK_SUCCESS if the cache key was successfully destroyed.

INK_ERROR if key could not be deallocated or was not valid.

First Release Traffic Server 5.2

Prototype INKAction INKCacheRead (INKCont contp, INKCacheKey key)

Arguments INKCont contp is the continuation that the cache calls back (telling it either the object exists
and can be read or not).

INKCacheKey key is the cache key corresponding to the object to be read.

Description Asks the Traffic Edge cache if the object corresponding to key exists in the cache and can be
read.

You can do a cache lookup to determine whether or not an object is in the cache. To do a cache
lookup, call INKCacheRead on a continuation contp. If the object can be read, the cache calls
contp back with the event INK_EVENT_CACHE_OPEN_READ. In this case, the cache also passes
contp a cache vconnection and contp can then initiate a read operation on that vconnection
using INKVConnRead. INKVConnCacheObjectSizeGet can be used to determine the size of
the object in the cache.

If the object cannot be read (if, for instance, it is not in the cache), the cache calls contp back
with the event INK_EVENT_CACHE_OPEN_READ_FAILED. An error code is passed in the void
*edata argument of contp. The error code can be:

INK_CACHE_ERROR_NOT_READY: Trying to access to the cache while it's not yet initialized.

INK_CACHE_ERROR_NO_DOC: Document does not exist in cache.

INK_CACHE_ERROR_DOC_BUSY: Trying to read a document while another continuation is
writing on it.

Any other value: unknown read failure

Finally, once you have performed a cache lookup, you can write into cache with INKCacheWrite.
The user (contp) also has the option to cancel the action returned by INKCacheRead by using
INKActionCancel.

Note: It is up to the user to read the data from the cache vc iobuffer and consume it. The
cache does not bufferize the data. The cache will not call the user back unless all the data from
the cache iobuffer is consumed.

Note that reentrant calls are possible; in other words, the cache can call back the user (contp) in
the same call.

Returns An INKAction object if successful.

INK_ERROR_PTR if an argument is incorrect or if the API failed.

First Release Traffic Server 5.2
Function Reference 217

INKCacheReady

Determines if the Traffic Edge cache is initialized and ready to accept requests for the specified data type.

INKCacheWrite

Initiates writing an object to the Traffic Edge cache.

Prototype INKReturnCode INKCacheReady (int *is_ready)

Arguments int *is_ready is the argument set to non-zero if cache ready and 0 if cache not ready.

Description Asks the Traffic Edge cache if it is initialized and ready to accept requests. If the cache is not
initialized, any attempt to read, write or remove document will fail.

When a plugin starts (its INKPluginInit function is called), there is no guarantee that the
cache is already initialized. This API is useful if a plugin needs to access to the cache from the
INKPluginInit function. If the cache is not ready, the plugin should retry later.

Returns INK_SUCCESS if API is called successfully.

INK_ERROR if cache ready could not be set or is invalid.

First Release Traffic Server 5.2

Prototype INKAction INKCacheWrite (INKCont contp, INKCacheKey key)

Arguments INKCont contp is the continuation that the cache calls back (telling it whether the write
operation can proceed or not).

INKCacheKey key is the cache key corresponding to the object to be cached.

Description Asks the Traffic Edge cache if contp can start writing the object (corresponding to key) to the
cache.

If the object can be written, the cache calls contp back with the event
INK_EVENT_CACHE_OPEN_WRITE. In this case, the cache also passes contp a cache
vconnection in the void *edata argument and contp can then initiate a write operation on that
vconnection using INKVConnWrite. The object is not committed to the cache until the
vconnection is closed.

If the object cannot be written, the cache calls contp back with the event
INK_EVENT_CACHE_OPEN_WRITE_FAILED. This can happen, for example, if there is another
object with the same key being written to the cache. An error code is passed in the void *edata
argument of contp. The error code can be:

INK_CACHE_ERROR_NOT_READY: Trying to access to the cache while it's not yet initialized.

INK_CACHE_ERROR_DOC_BUSY: Trying to write a document while another continuation is writing
or reading it.

Any other value: unknown write failure.

The user (contp) has the option to cancel the action returned by INKCacheWrite.

The actual data is written/read to the cache through the cache vconnection. When the cache calls
the user back with OPEN_READ or OPEN_WRITE, it passes a INKVConn to the user. The user
uses this vconnection for any data transfer. When all data has been transferred, the user must do
a INKVConnClose. In case of any errors, the user must do an INKVConnAbort(contp, 0).

Note: reentrant calls are possible; in other words, the cache can call back the user (contp) in the
same call.

Note: INKCacheWrite does not overwrite content already stored in the cache under the same
cache key. If you try to do so, the cache returns INK_EVENT_CACHE_OPEN_WRITE_FAILED. To
overwrite content, first call INKCacheRemove to remove the content, then call INKCacheWrite.
218 Cache interface functions

INKCacheRemove

Removes an object from the Traffic Edge cache.

INKCacheKeyPinnedSet

Pins the document corresponding to the specified key in the cache so that the garbage collection process will not
delete the document from the cache for the specified number of seconds.

Returns An INKAction object if successful.

INK_ERROR_PTR if an argument is incorrect or the API fails.

First Release Traffic Server 5.2

Prototype INKAction INKCacheRemove (INKCont contp, INKCacheKey key)

Arguments INKCont contp is the continuation that the cache calls back reporting the success or failure of
the remove.

INKCacheKey key is the cache key corresponding to the object to be removed.

Description Removes the object corresponding to key from the cache.

If the object was removed successfully, the cache calls contp back with the event
INK_EVENT_CACHE_REMOVE.

If the object was not found in the cache, the cache calls contp back with the event
INK_EVENT_CACHE_REMOVE_FAILED. An error code is passed in the void *edata argument
of contp. The error code can be:

INK_CACHE_ERROR_NOT_READY: Trying to access to the cache while it's not yet initialized.

INK_CACHE_ERROR_NO_DOC: Doc doesn't exist in cache

any other value: unknown remove failure

In both of these callbacks, the user does not have to do anything. The user does not get any
vconnection from the cache, since no data needs to be transferred. When the cache calls the
user back with INK_EVENT_CACHE_REMOVE, the remove has already been committed.

Note that reentrant calls are possible, i.e. the cache can call back the user (contp) in the same
call.

Returns An INKAction object if successful.

INK_ERROR_PTR if an argument is incorrect or if the API fails.

First Release Traffic Server 5.2

Prototype INKReturnCode INKCacheKeyPinnedSet (INKCacheKey key, time_t
pin_in_cache)

Arguments INKCacheKey key is the cache key for the document to be pinned.

time_t pin_in_cache represents the number of seconds the document is to be pinned in the
cache.
Function Reference 219

INKVConnCacheObjectSizeGet

Gets the size of the object in the cache.

Transformation functions

INKTransformCreate

Creates a transformation vconnection.

Description Pins the document corresponding to the specified key in the cache for the specified number of
seconds specified in pin_in_cache. Once the document is pinned, the garbage collection will
not delete this document from the specifed number of seconds and the document can even
persist across Traffic Edge re-runs. However, after the pin_in_cache interval has expired, the
cache may delete the document at any time in order to reclaim space.

To delete this document before the pin_in_cache interval expires, call the
INKCacheRemove() function with the document’s cache key.

InkCacheKeyPinnedSet() should be used after a key is created and before writing the
document to cache using INKCacheWrite().

By default, a document is not pinned in the cache and so can be garbage collected at anytime.

Note that it is important that the records.config variable
proxy.config.cache.permit.pinning be set to 1 in records.config to enable pinning.

Returns INK_SUCCESS if the specified object was successfully pinned in the cache.

INK_ERROR if the pin could not be set or is invalid.

First Release Traffic Server 5.2

Prototype INKReturnCode INKVConnCacheObjectSizeGet (INKVConn connp, int
*obj_size)

Arguments INKConn connp is the vconnection to the cache.

int *obj_size is set to the object size.

Description When a cached object is requested from the cache (using INKCacheRead), and if the cache
open was successful, this function can be called to get the size of the object in the cache.

Returns INK_SUCCESS if API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First Release Traffic Edge 4.0

Prototype INKVConn INKTransformCreate (INKEventFunc event_funcp, INKHttpTxn txnp)

Description Creates a new transformation INKVConn. The vconnection’s handler function is funcp and its
mutex is taken from txnp.

Returns The newly created transformation connection.

Example See The sample null transform plugin‚ on page 43.

First release Traffic Server 3.0
220 Transformation functions

INKTransformOutputVConnGet

Retrieves the downstream (output) vconnection for a transformation.

VIO functions
INKVIOBufferGet

Gets a VIO buffer.

IINKVIOVConnGet

Gets a VIO connection.

Prototype INKVConn INKTransformOutputVConnGet (INKVConn connp)

Description Retrieves the output vconnection for the transformation connp. The output
vconnection may be NULL if INKTransformOutputVConnGet is called
before the write operation is initiated on connp. This is normally not an issue
since a transformation would not want to output data until it has data input into
it.

Returns The downstream vconnection for the transformation.

INK_ERROR_PTR if error.

First release Traffic Server 3.0

Prototype INKIOBuffer INKVIOBufferGet (INKVIO viop)

Description Gets the buffer for the IO operation described by viop. INKVIOBufferGet is used by
vconnections performing read operations. Read operations write into their buffers.

Returns The buffer for the specified IO operation.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype INKVConn INKVIOVConnGet (INKVIO viop)

Description Gets the vconnection associated with the IO operation described by viop. This is the
vconnection passed to INKVConnRead or INKVConnWrite.

Returns The vconnection for the specified IO operation.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0
Function Reference 221

INKVIOContGet

Gets an INKVIOCont.

INKVIOMutexGet

Returns the mutex for the specified IO operation.(

INKVIONBytesGet

Returns the number of bytes associated with a specified IO operation.

Prototype INKCont INKVIOContGet (INKVIO viop)

Description Gets the continuation (user) for the IO operation described by viop. This is the continuation that
the vconnection will call back when progress is made on the IO operation.

Returns The continuation for the specified IO operation.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype INKMutex INKVIOMutexGet (INKVIO viop)

Description Gets the mutex for the IO operation described by viop. The mutex for the IO operation protects
the buffer and continuation and other VIO members from simultaneous access. The vconnection
implementor must obtain the mutex for a VIO before accessing any of its members. Since the
VIO mutex is the same as the continuation’s mutex, the vconnection user already holds the
mutex whenever he is running and does not have to worry about grabbing it. For information on
why vconnection transformations do not have to worry about grabbing the VIO mutex before
accessing their write VIO, see Transformations‚ on page 124.

Returns The mutex for the specified IO operation.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype int INKVIONBytesGet (INKVIO viop)

Description Gets the number of bytes to be performed by the IO operation described by viop. This is the
nbytes parameter passed to INKVConnRead or INKVConnWrite.

Returns The number of bytes associated with the specified IO operation.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
222 VIO functions

INKVIONBytesSet

Sets the number of bytes for the specified IO operation.

INKVIONDoneGet

Returns the number of bytes completed for the specified IO operation.

INKVIONDoneSet

Sets the number of bytes completed for the specified IO operation.

Prototype INKReturnCode INKVIONBytesSet (INKVIO viop, int nbytes)

Description Sets the number of bytes to be performed by the IO operation described by viop. Only the user
of a vconnection should call INKVIONBytesSet and then, only carefully. INKVIONBytesSet
should only be used to set the number of bytes to be done by the IO operation to a value that is
greater than or equal to INKVIONDoneGet. The common usage of this function is to indicate to a
vconnection that enough IO has been performed. By setting nbytes to the number done and re-
enabling the operation, the user can indicate to the vconnection that the operation has
completed.

Returns INK_SUCCESS if the number of bytes associated with the IO operation is successfully set.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype int INKVIONDoneGet (INKVIO viop)

Description Gets the number of bytes that have been completed on the IO operation described by viop. The
number of completed bytes is also the number of bytes consumed out of or produced into the
buffer passed to the IO operation.

Returns The number of bytes that have been completed in the specified IO operation.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKVIONDoneSet (INKVIO viop, int ndone)

Description Sets the number of bytes that have been completed on the IO operation described by viop to
ndone. Only vconnection implementors should call INKVIONDoneSet.

Returns INK_SUCCESS if the number of completed bytes associated with the IO operation is successfully
set.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
Function Reference 223

INKVIONTodoGet

Returns the number of bytes remaining for the specified IO operation.

INKVIOReaderGet

Obtains the buffer reader for the specified IO operation.

INKVIOReenable

Re-enables a VIO.

Prototype int INKVIONTodoGet (INKVIO viop)

Description Gets the number of bytes left to do on the IO operation described by viop. The number of bytes
left to do is equal to the total number of bytes to perform on the IO operation minus the number
that have been done.

INKVIONTodoGet is a convenience function.

Returns The number of bytes left that are associated with the specified IO operation.

INK_ERROR if an error occurs.

Example INKVIONTodoGet (viop) == INKVIONBytesGet (viop) - INKVIONDoneGet
(viop);

First release Traffic Server 3.0

Prototype INKIOBufferReader INKVIOReaderGet (INKVIO viop)

Description Gets a buffer reader for the IO operation described by viop. INKVIOReaderGet is used by
vconnections performing write operations. Write operations read from their buffers.

Returns The buffer reader for the specified IO operation.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKVIOReenable (INKVIO viop)

Description Re-enables the vconnection associated with viop. Re-enabling the vconnection means that the
vconnection will wake up and be able to determine that the buffer being used in its IO operation
has changed.

Returns INK_SUCCESS if the vconnection successfully re-enables.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
224 VIO functions

IO buffer interface
INKIOBufferBlockNext

Gets next IO buffer block.

INKIOBufferBlockReadAvail

Indicates the number of IO buffer bytes available for reading.

INKIOBufferBlockReadStart

Starts reading IO buffer block.

Prototype INKIOBufferBlock INKIOBufferBlockNext (INKIOBufferBlock blockp)

Description Gets the next block in the buffer block chain.

Returns The next IO buffer block.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype int INKIOBufferBlockReadAvail (INKIOBufferBlock blockp,
INKIOBufferReader readerp)

Description Obtains the number of bytes available for reading in the IO buffer block blockp. The readerp
parameter is needed since each IO buffer reader maintains its own current offset.

Returns The number of bytes available for reading in the IO buffer block.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype const char* INKIOBufferBlockReadStart (INKIOBufferBlock blockp,
INKIOBufferReader readerp, int *avail)

Description Gets the start point for reading from the IO buffer block blockp. The readerp parameter is
needed since each IO buffer reader maintains its own current offset.
INKIOBufferBlockReadStart stores the amount of data available for reading in the
parameter avail. This is the same value that INKIOBufferBlockReadAvail returns. If
avail is NULL then no attempt is made to de-reference it.

Note: The avail parameter stores the amount of data available for reading on the specified
INKIOBufferBlock. If you need to read all available data in an INKIOBuffer, make sure that
your code keeps checking INKIOBufferBlocks until all the available data is read.

Returns A pointer to the starting point for reading from the specified IO buffer block.

INK_ERROR_PTR in case of an error.
Function Reference 225

Example Here is a sample routine, transform_read_status_event (modified from server-
transform.c). It attempts to read a certain number of bytes. It calls
INKIOBufferBlockReadStart to determine the number of bytes available to read (and get
the start point within the INKIOBufferBlock to start reading). However,
INKIOBufferBlockReadStart returns the available bytes within the current block only. The
INKIOBuffer data structure contains a linked list of INKIOBufferBlocks, and so the
available data within the INKIOBuffer could span more than one INKIOBufferBlock. The
correct way to code this subroutine is to keep checking INKIOBufferBlocks for available data
until all of the available INKIOBuffer data is read.

static int

transform_read_status_event (INKCont contp, TransformData *data,

 INKEvent event, void *edata)

{

 switch (event) {

 case INK_EVENT_ERROR:

 case INK_EVENT_VCONN_EOS:

 return transform_bypass (contp, data);

 case INK_EVENT_VCONN_READ_COMPLETE:

 if (INKIOBufferReaderAvail (data->output_reader) ==

 sizeof (int)) {

 INKIOBufferBlock blk;

 char *buf;

 void *buf_ptr;

 int avail;

 int read_nbytes = sizeof (int);

 int read_ndone = 0;

 buf_ptr = &data->content_length;

 while (read_nbytes > 0) {

blk = INKIOBufferReaderStart (data->output_reader);

buf = (char *)INKIOBufferBlockReadStart (blk,

 data->output_reader,

 &avail);

read_ndone = (avail >= read_nbytes)? read_nbytes : avail;

memcpy (buf_ptr, buf, read_ndone);

if (read_ndone > 0) {

 INKIOBufferReaderConsume (data->output_reader,

 read_ndone);

 read_nbytes -= read_ndone;

 /* move ptr frwd by read_ndone bytes */

 buf_ptr = (char*)buf_ptr + read_ndone;

}

 }
226 IO buffer interface

 data->content_length = ntohl (data->content_length);

 return transform_read (contp, data);

 }

 return transform_bypass (contp, data);

 default:

 break;

INKIOBufferBlockWriteAvail

Indicates the number of IO buffer bytes available for writing.

INKIOBufferBlockWriteStart

Starts to write IO buffer block.

INKIOBufferCopy

Copies an IO buffer.

INKIOBufferCreate

Creates an IO buffer.

First release Traffic Server 3.0

Prototype int INKIOBufferBlockWriteAvail (INKIOBufferBlock blockp)

Description Returns the number of bytes available for writing in the IO buffer block blockp.

Returns The number of bytes available for writing.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype char* INKIOBufferBlockWriteStart (INKIOBufferBlock blockp, int *avail)

Description Gets the start point for writing into the IO buffer block blockp. The amount of data available for
writing is stored in the parameter avail. This is the same value as would be returned by. If
avail is NULL then no attempt is made to de-reference it.

Returns A pointer to the starting point for writing to the specified IO buffer block.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype int INKIOBufferCopy (INKIOBuffer bufp, INKIOBufferReader readerp, int
length, int offset)

Description Copies length bytes of data from the IO buffer reader readerp to the IO buffer bufp. As
described above, INKIOBufferCopy does not actually copy the data but simply copies pointers
and adjusts reference counts appropriately. The parameter offset specifies the offset from
readerp's current position to start copying from.

Returns The number of bytes actually copied.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKIOBuffer INKIOBufferCreate (void)

Description Creates a new IO Buffer. The IO buffer is initially empty.
Function Reference 227

INKIOBufferDestroy

Destroys an IO buffer.

INKIOBufferProduce

Makes a specified number of bytes of data available for reading.

INKIOBufferReaderAlloc

Allocates an IO buffer reader.

INKIOBufferReaderAvail

Gets the number of bytes available for reading.

Returns A handle to the newly created IO buffer.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKIOBufferDestroy (INKIOBuffer bufp)

Description Destroys the IO buffer bufp. Since two IO buffers can share data this does not necessarily free
all of the data associated with the IO buffer but simply decrements the appropriate reference
counts.

Returns INK_SUCCESS if the IO buffer is successfully destroyed.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKIOBufferProduce (INKIObuffer bufp, int nbytes)

Description Makes nbytes of data available for reading in the buffer bufp. A common paradigm for writing
to a buffer is to copy data into a buffer block and then call INKIOBufferProduce to make the
new data visible to any readers.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKIOBufferReader INKIOBufferReaderAlloc (INKIOBuffer bufp)

Description Allocates an IO buffer reader for the IO buffer bufp.

Returns A handle to the newly allocated IO buffer.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype int INKIOBufferReaderAvail (INKIOBufferReader readerp)

Description Gets the total number of bytes available for reading by the IO buffer reader readerp.
228 IO buffer interface

INKIOBufferReaderClone

Clones an IO buffer reader.

INKIOBufferReaderConsume

Consumes an IO buffer reader.

INKIOBufferReaderFree

Frees an IO buffer reader.

Returns The number of bytes available for reading.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKIOBufferReader INKIOBufferReaderClone (INKIOBufferReader readerp)

Description Makes a clone of the IO buffer reader readerp. The cloned reader will point to the same IO
buffer and initially have the same read offset as readerp.

Returns A handle to the cloned IO buffer.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKIOBufferReaderConsume (INKIOBufferReader readerp,

int nbytes)

Description Moves the read offset for the IO buffer reader readerp ahead by nbytes. Caution: once a
reader moves its offset ahead it can never move it back. When a reader moves its offset the data
it has moved passed is potentially freed at that moment.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.0

Prototype INKReturnCode INKIOBufferReaderFree (INKIOBufferReader readerp)

Description Frees an IO buffer reader. The IO buffer maintains a reference to each reader accessing it and
will free those references when the buffer gets destroyed making it unnecessary to call
INKIOBufferReaderFree. It is sometimes useful to free an IO buffer reader if the reader is no
longer being used to allow the buffer data to automatically be de-allocated when other readers
have consumed it.

Returns INK_SUCCESS if the IO buffer is successfully freed.

INK_ERROR if an error occurs.

First release Traffic Server 3.0
Function Reference 229

INKIOBufferReaderStart

Starts an IO buffer reader.

INKIOBufferSizedCreate

Creates an INKIOBuffer with specified size index.

INKIOBufferStart

Starts an IO buffer.

Prototype INKIOBufferBlock INKIOBufferReaderStart (INKIOBufferReader readerp)

Description Gets the read start block for the IO buffer reader. INKIOBufferReaderStart may return NULL
if there is no data available for reading. It may also return an IO buffer block with no data
available for reading. Both conditions need to be checked for.

Returns The read start block for the IO buffer reader.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0

Prototype INKIOBuffer INKIOBufferSizedCreate (INKIOBufferSizeIndex index)

Arguments INKIOBufferSizeIndex index is the size of the new IOBuffer to create and should be
one of the following values:

INK_IOBUFFER_SIZE_INDEX_128

INK_IOBUFFER_SIZE_INDEX_256

INK_IOBUFFER_SIZE_INDEX_512

INK_IOBUFFER_SIZE_INDEX_1K

INK_IOBUFFER_SIZE_INDEX_2K

INK_IOBUFFER_SIZE_INDEX_4K

INK_IOBUFFER_SIZE_INDEX_8K

INK_IOBUFFER_SIZE_INDEX_16K

INK_IOBUFFER_SIZE_INDEX_32K

Description Creates an INKIOBuffer of the specifed size.

Returns An IOBuffer object if the API call is successful.

INK_ERROR_PTR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 5.2

Prototype INKIOBufferBlock INKIOBufferStart (INKIOBuffer bufp)

Description Gets the write start block for the IO buffer bufp. INKIOBufferStart will always return a block
with some non-zero amount of space available for writing. A new block will be added if necessary
to accomplish this.

Returns The write start block for the IO buffer writer.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.0
230 IO buffer interface

INKIOBufferWaterMarkGet

Gets the current watermark for the specified buffer.

INKIOBufferWaterMarkSet

Sets the current watermark for the specified buffer.

INKIOBufferWrite

Appends the specified number of bytes from a buffer to the IO buffer.

Prototype InkReturnCode INKIOBufferWaterMarkGet (INKIOBuffer bufp, int
*watermark)

Arguments INKIOBuffer bufp is the IOBuffer whose water_mark is to be obtained.

int *watermark is set to the watermark value.

Description Gets the current watermark for the specified buffer. A water mark applies only to a
NetVConnection and should be used only when reading data from a NetVC. Note that this is only
applicable for NetVC.

When water mark is set to N, and after having called INKVConnRead, the Net processor calls
back the reader (with an event INK_VCONN_READ_READY) only when at least N bytes of data
are available for reading.

Returns INK_SUCCESS if API call is successful.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 5.2

Prototype INKReturnCode INKIOBufferWaterMarkSet (INKIOBuffer bufp,int water_mark)

Arguments INKIOBuffer bufp is the IOBuffer whose watermark is to be set.

int water_mark is the watermark value to set for bufp.

Description Sets the current watermark of the specified buffer.

A water mark applies only to a NetVConnection and should be used only when reading data from
a NetVC. When water mark is set to N, and after having called INKVConnRead, the Net
processor calls back the reader (with an event INK_VCONN_READ_READY) only when at least
N bytes of data are available for reading.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 5.2

Prototype int INKIOBufferWrite (INKIOBuffer bufp, const char *buf, int len)

Arguments INKIOBuffer bufp is the target IOBuffer to receive the data.

const char *buf is the buffer which contains the data.

int len is the length of the data to write.

Description This function appends data from *buf to IOBuffer bufp, the length of data being appended is
given in len. The returned value is the actual length of data being appended.
Function Reference 231

Returns The length of data copied if API call is successful.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

Example INKIOBufferWrite offers the same functionality as the deprecated
functions INKIOBufferAppend, INKIOBufferDataCreate and
INKIOBufferBlockCreate. To append the content of a buffer buf of size
len into an IOBuffer, we recommend using INKIOBufferWrite which has the
following prototype:

int INKIOBufferWrite (INKIOBuffer bufp, const char *buf, int len);

The equivalent of this API in SDK2.0 is the following snippet of code:

 INKIOBufferBlock block;

 int avail, ndone, ntodo, towrite;

 char *ptr_block;

 ndone = 0;

 ntodo = len;

 while (ntodo > 0) {

 /* INKIOBufferStart allocates more blocks if required */

 block = INKIOBufferStart(bufp);

 ptr_block = INKIOBufferBlockWriteStart (block, &avail);

 towrite = min(ntodo, avail);

 memcpy (ptr_block, buf+ndone, towrite);

 INKIOBufferProduce(bufp, towrite);

 ntodo -= towrite;

 ndone += towrite;

}

First release Traffic Server 5.2
232 IO buffer interface

Management interface function
INKMgmtUpdateRegister

Sets up a plugin’s management interface.

Traffic Edge Configuration Read Functions

INKMgmtCounterGet

Get a records.config variable of type counter.

Prototype INKReturnCode INKMgmtUpdateRegister (INKCont contp,

const char *plugin_name, const char *path)

Arguments contp is the continuation to be called back if the plugin’s configuration is changed. The handler
function for this continutation must handle the event INK_EVENT_MGMT_UPDATE.

plugin_name is the name of the plugin. This name must match the name of the plugin specified
in your CGI form submission for INK_PLUGIN_NAME.

path is the location of the plugin's interface, relative to the Traffic Edge plugin directory (as
specified in the records.config variable proxy.config.plugin.plugin_dir). If your
plugin has a web user interface, then path must be located under the Traffic Edge config
directory. This is because Traffic Manager derives the root of all of its web interfaces from the
Traffic Edge config directory.

For example, path could be Blacklist/ui/index.html or Blacklist/ui/index.cgi.

The Traffic Edge administrator can view the interface at the following URL:

http://traffic_manager:8081/plugins/Blacklist/ui/index.html

Alternatively the administrator can access the interface in the Traffic Manager UI, through the
Plugin icon in the Configure tab.

Description Informs Traffic Manager about your plugin’s interface (in the path argument).

Sets up a callback to your plugin when configuration changes are submitted. Your CGI program
must set INK_PLUGIN_NAME to be the name of your plugin, so that Traffic Manager knows who
to tell Traffic Edge to call. Traffic Edge calls back the continuation with the event
INK_EVENT_MGMT_UPDATE. (The handler function for the continuation must handle the event
INK_EVENT_MGMT_UPDATE.) See the blacklist-1.c‚ on page 245 for an example.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype int INKMgmtCounterGet (const char *var_name, INKMgmtCounter *result)

Arguments var_name is the name of the variable you want from records.config.

result is a pointer to the value of the variable. This value is of type INKMgmtCounter.

Description INKMgmtCounterGet obtains the value of the specified records.config variable of type
counter, and stores the value in result.
Function Reference 233

INKMgmtFloatGet

Get a records.config variable of type float.

INKMgmtIntGet

Get a records.config variable of type int.

INKMgmtStringGet

Get a records.config variable of type String.

Returns If INKMgmtCounterGet could not get the variable, it returns zero. If successful, a nonzero
value is returned.

First release Traffic Server 3.5

Prototype int INKMgmtFloatGet (const char *var_name, INKMgmtFloat *result)

Arguments var_name is the name of the variable you want from records.config.

result is a pointer to the value of the variable. This value is of type INKMgmtFloat.

Description INKMgmtFloatGet obtains the value of the specified records.config variable of type
float, and stores the value in result.

Returns If INKMgmtFloatGet could not get the variable, it returns zero. If it was successful, a nonzero
value is returned.

First release Traffic Server 3.5

Prototype int INKMgmtIntGet (const char *var_name, INKMgmtInt *result)

Arguments var_name is the name of the variable you want from records.config.

result is a pointer to the value of the variable. This value is of type INKMgmtInt.

Description INKMgmtIntGet obtains the value of the specified records.config variable of type int, and
stores the value in result.

Returns If INKMgmtIntGet could not get the variable, it returns zero. If it was successful, a nonzero
value is returned.

Example The following code fragment does something if keepalive is enabled on Traffic Edge:
INKMgmtInt result;
if (INKMgmtIntGet(“proxy.config.http.keep_alive_enabled“, &result)) {

if (result){
// keepalive is enabled, do something
}

}
else INKError (“could not retrieve value\n”);

First release Traffic Server 3.5

Prototype int INKMgmtStringGet (const char *var_name, INKMgmtString *result)

Arguments var_name is the name of the variable you want from records.config.

result is a pointer to the value of the variable. This value is of type INKMgmtString.
234 Traffic Edge Configuration Read Functions

Customer installation and licensing functions

INKInstallDirGet

Gets Traffic Edge’s install directory.

INKPluginDirGet

Gets the plugin directory.

INKPluginLicenseRequired

Lets Traffic Edge know that a license key is required for the plugin.

Description INKMgmtStringGet obtains the value of the specified records.config variable of type
String, and stores the value in result.

When done with the result, your plugin must deallocate the result string with a call to INKfree.

Returns If INKMgmtStringGet could not get the variable, it returns zero. If it was successful, a nonzero
value is returned.

First release Traffic Server 3.5

Prototype const char * INKInstallDirGet(void)

Description Get Traffic Edge’s installation directory.

Returns A pointer to a string containing the Traffic Edge’s installation directory.

First release Traffic Server 3.5

Prototype const char * INKPluginDirGet(void)

Description Get the plugin directory relative to Traffic Edge’s install directory. This path (relative to the Traffic
Edge install directory) is stored in the records.config variable
proxy.config.plugin.plugin_dir

The default value is config/plugin.

Returns A pointer to a string containing the plugin directory.

Example To open the file Blacklist/ui/blacklist_config.txt, use

INKfopen (“INKInstallDirGet()/INKPluginDirGet()/Blacklist/ui/
blacklist_config.txt”);

First release Traffic Server 3.5

Prototype int INKPluginLicenseRequired(void)

Description Determines if a license is required and, if so, Traffic Edge looks at the plugin.db file for the
license key. If this function is not defined, a license is not required for the plugin.

Returns Returns zero if no license is required.

Returns 1 if a license is required.
Function Reference 235

Statistics functions

Uncoupled statistics

INKStatFloatGet

Obtains the value of a float stat.

INKStatIntGet

Obtains the value of an integer stat.

INKStatFloatAddTo

Adds a float value to a float statistic.

Example #include <stdio.h>
#include "InkAPI.h"

void INKPluginInit (int argc, const char *argv[])
{
 printf ("hello world\n");
}
int INKPluginLicenseRequired(void)
{
 return 1;
}

First release Traffic Server 3.5

Prototype INKReturnCode INKStatFloatGet(INKStat stat, float *value)

Returns INK_SUCCESS if the API is called successfully.
INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

Prototype INKReturnCode INKStatIntGet(INKStat stat, INK64 *value)

Returns INK_SUCCESS if the API is called successfully.
INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

Prototype INKReturnCode INKStatFloatAddTo (INKStat the_stat, float amount)

Description Adds a float value to a float statistic.
236 Statistics functions

INKStatIntAddTo

Adds an INK64 value to an integer statistic.

INKStatCreate

Creates a new INKStat.

INKStatDecrement

Decrements a stat.

INKStatIncrement

Increments a stat.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype INKReturnCode INKStatIntAddTo (INKStat the_stat, INK64 amount)

Description Adds an INK64 value to an integer statistic

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype INKStat INKStatCreate (const char * the_name, INKStatTypes the_type)

Description Creates a new INKStat. The value pointed to bythe_name is the name you use to view the
statistic using Traffic Line. See Viewing statistics using Traffic Line‚ on page 139. There are two
INKStatTypes: INKSTAT_TYPE_INT64, and INKSTAT_TYPE_FLOAT.

Returns A handle to the newly created INKStat.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.5

Prototype INKReturnCode INKStatDecrement(INKStat the_stat)

Description Decrements a stat.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype INKReturnCode INKStatIncrement(INKStat the_stat)

Description Increments a stat.
Function Reference 237

INKStatFloatSet

Sets the value of a float stat to a particular value.

INKStatIntSet

Sets the value of an integer stat to a particular value.

Coupled statistics

INKStatCoupledGlobalAdd

.Creates a global coupled stat.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype INKReturnCode INKStatFloatSet(INKStat the_stat , float the_value)

Description Sets the value of a float stat to the specified value.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype INKReturnCode INKStatIntSet(INKStat the_stat , INK64 the_value)

Description Sets the value of a integer stat to a particular value.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype INKStat INKStatCoupledGlobalAdd (INKCoupledStat global_copy ,

const char * the_name , INKStatTypes the_type)

Description global_copy is the name of the global coupled stat category to which your new coupled stat
belongs.

the_name is the name you use to view the statistic using Traffic Line. See Viewing statistics
using Traffic Line‚ on page 139. There are two INKStatTypes: INKSTAT_TYPE_INT64, and
INKSTAT_TYPE_FLOAT.

See To add coupled statistics:‚ on page 138.

Returns A handle to the newly created global coupled stat.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.5
238 Statistics functions

INKStatCoupledLocalAdd

Creates a local copy of a global coupled stat.

INKStatCoupledGlobalCategoryCreate

Creates a global coupled stat category.

INKStatCoupledLocalCopyCreate

.Creates a local copy of a global coupled stat category.

Prototype INKStat INKStatCoupledLocalAdd (INKCoupledStat local_copy ,

const char * the_name , INKStatTypes the_type)

Description lcoal_copy is the name of the local coupled stat category to which your new coupled stat
belongs.

the_name is the name you use to view the statistic using Traffic Line. See Viewing statistics
using Traffic Line‚ on page 139. There are two INKStatTypes: INKSTAT_TYPE_INT64, and
INKSTAT_TYPE_FLOAT.

See To add coupled statistics:‚ on page 138.

Returns A handle to a local copy of the global coupled stat.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.5

Prototype INKCoupledStat INKStatCoupledGlobalCategoryCreate (

const char * the_name)

Description Returns a new global coupled stat category. Use this function in INKPluginInit. The name
argument is the name you use to access this stat in Traffic Line. See Viewing statistics using
Traffic Line‚ on page 139.

See To add coupled statistics:‚ on page 138.

Returns A handle to a the newly created global coupled stat category.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.5

Prototype INKCoupledStat INKStatCoupledLocalCopyCreate (const char * the_name ,
INKCoupledStat global_copy)

Description Returns a new local coupled stat category. Use this function in any routine where you need to
modify local copies of global statistics. The name argument is the name you use to access this
stat in Traffic Line. See Viewing statistics using Traffic Line‚ on page 139.

See To add coupled statistics:‚ on page 138.

Returns A handle to the local copy of the global coupled stat category.

INK_ERROR_PTR if an error occurs.

First release Traffic Server 3.5
Function Reference 239

INKStatCoupledLocalCopyDestroy

.Destroys a local category of statistics.

INKStatsCoupledUpdate

Updates a category of coupled statistics.

Logging functions
INKTextLogObjectCreate

Creates a new custom log for your plugin.

Prototype INKReturnCode INKStatCoupledLocalCopyDestroy (

INKCoupledStat local_copy)

Description Destroys a local statistics category. Always destroy the local category when you are done with it.
See To add coupled statistics:‚ on page 138.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype INKReturnCode INKStatsCoupledUpdate (INKCoupledStat local_copy)

Description Updates all of the coupled stats belonging to the category local_copy. See To add coupled
statistics:‚ on page 138.

Returns INK_SUCCESS if the operation completes successfully.

INK_ERROR if an error occurs.

First release Traffic Server 3.5

Prototype INKReturnCode INKTextLogObjectCreate (const char *filename, int mode,
INKTextLogObject *new_logobj)

Arguments Const char *filename is the name of the new log file. The new log file is created in the log
directory. You can specify a path to a subdirectory within the log directory (e.g. subdir/
filename) but make sure you create the subdirectory first. If you do not specify a file name
extension, the extension .log is automatically added.

The logs you create are treated like ordinary logs; they are rolled if log rolling is enabled. (Log
collation is not supported though).

int mode is one (or both) of the following (can be 0):

INK_LOG_MODE_ADD_TIMESTAMP

Whenever the plugin makes a log entry using INKTextLogObjectWrite (see below), it
prepends the entry with a timestamp.

INK_LOG_MODE_DO_NOT_RENAME

This means that if there is a filename conflict, Traffic Edge should not attempt to rename the
custom log. The consequence of a name conflict is that the custom log is not created.

INKTextLogObject *new_logobj is set to the newly created log object.
240 Logging functions

INKTextLogObjectHeaderSet

Sets a log file header.

Description Creates a custom log for your plugin. Once log object is created, APIs
INKTextLogObjectRollingEnabledSet,
INKTextLogObjectRollingIntervalSecSet,
INKTExtLogObjectRollingOffsetHrSet can be used on it to set properties.

If the value of mode is not a valid value, then the behavior of the API cannot be predicted.

Returns INK_SUCCESS if API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

Example Example: suppose you call

INKTextLogObjectCreate ("squid" , mode, NULL, &log);

If mode is INK_LOG_MODE_DO_NOT_RENAME, you will NOT get a new log (you'll get an error) if
squid.log already exists.

If mode is not INK_LOG_MODE_DO_NOT_RENAME, Traffic Edge tries to rename the log to a new
name (it will try squid_1.log).

If a log object is created with INK_LOG_MODE_DO_NOT_RENAME mode and a log with the same
file name pre-exists, then the signature (type of log file) is compared. If the signature log files
match, the pre-existing file is opened and logging is resumed at the end of the file. IF the
signatures do not match, an error is returned.

If a log object is created without INK_LOG_MODE_DO_NOT_RENAME mode and a log with the
same file name pre-exists, then the signature (type of log file) is compared. If the signatures of
the log files match, the pre-existing file is opened and logging is resumed at the end of the file. If
the signature does not match, another file with filename_1.log is tried and so on.

Signature of log file is a type of log file. Log files can be structured/fixed format log files or
unstructured/free format log files. All free format log files have the same signature, while structure
log files have the structure/fixed format of the log file as its signature.

First Release Traffic Server 5.2

Prototype INKReturnCode INKTextLogObjectHeaderSet (INKTextLogObject the_object,
const char *header)

Arguments INKTextLogObject the_object is the log object you want to set the header.

const char *header is a log file header.

Description A header for a log object is the banner (a text line) which is printed at the top of the log file. This
API must be used once the object is created (using INKTextLogObjectCreate) and before
writing into logs (using INKTextLogObjectWrite). By default a null header (empty line) is
used.

Returns INK_SUCCESS if API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First Release Traffic Server 5.2
Function Reference 241

INKTextLogObjectRollingEnabledSet

Enable/disable rolling for a log object..

INKTextLogObjectRollingIntervalSecSet

Sets the rolling interval for a log object.

Prototype INKReturnCode INKTextLogObjectRollingEnabledSet (INKTextLogObject
the_object, int *rolling_enabled)

Arguments INKTextLogObject the_object is the log object you want to enable/disable rolling.

int rolling_enabled 1 to enable rolling, 0 to disable.

Description This API must be used once the object is created (using INKTextLogObjectCreate) and
before writing into logs (using INKTextLogObjectWrite). If
INKTextLogObjectRollingEnabledSet is not called, the default value as specified in
records.config by parameter proxy.config.log2.rolling_enabled is used.

The rolling interval and offset can be specified using the APIs
INKTextLogObjectRollingIntervalSecSet and
INKTextLogObjectRollingOffsetHrSet.

Returns INK_SUCCESS if API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

Example Rolling example:

If rolling is enabled, the rolling interval set to 21600 sec (6 hours) and the offset hour set to 0
(midnight). Then the logs will be rolled at 0:00am, 06:00am, 12:00pm and 18:00pm each day.

Note: If the maximum amount of disk space reserved for logs is exhausted and if parameter
proxy.config.log2.auto_delete_rolled_files is enabled in records.config, rolled
files are automatically deleted by Traffic Edge to free up some space.

First Release Traffic Server 5.2

Prototype INKReturnCode INKTextLogObjectRollingIntervalSecSet (INKTextLogObject
the_object, int rolling_interval_sec)

Arguments INKTextLogObject the_object is the log object you want to set the rolling interval.

int rolling_interval_sec is the rolling interval, in seconds.

Description This API must be used once the object is created (using INKTextLogObjectCreate) and
before writing into logs (using INKTextLogObjectWrite). By default a null header is used.

If INKTextLogObjectRollingIntervalSecSet is not called, the defaut value as specified in
records.config by parameter proxy.config.log2.rolling_interval_sec is used.

The rolling offset can be specified using the API INKTextLogObjectRollingOffsetHrSet.

Returns INK_SUCCESS if API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First Release Traffic Server 5.2
242 Logging functions

INKTextLogObjectRollingOffsetHrSet

Sets Set the rolling offset for a log object.

INKTextLogObjectWrite

Writes a text entry to a custom log file.

INKTextLogObjectFlush

Flushes the contents of a specified log file’s log write buffer to disk.

Prototype INKReturnCode INKTextLogObjectRollingOffsetHrSet (INKTextLogObject
the_object, int rolling_offset_hr)

Arguments INKTextLogObject the_object is the log object you want to set the rolling offset.

int rolling_offset_hr is the rolling interval, in seconds.

Description This API must be used once the object is created (using INKTextLogObjectCreate) and
before writing into logs (using INKTextLogObjectWrite). By default a null header is used.

If INKTextLogObjectRollingOffsetHrSet is not called, the defaut value as specified in
records.config by parameter proxy.config.log2.rolling_offset_hr is used.

The rolling interval can be specified using the API
INKTextLogObjectRollingIntervalSecSet.

Returns INK_SUCCESS if API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First Release Traffic Server 5.2

Prototype InkReturnCode INKTextLogObjectWrite (INKTextLogObject the_object, char
*format, ...)

Arguments the_object is the log object to write to. You must first create this log file with
INKTextLogObjectCreate.

char *format is a printf-style formatted statement to be printed.

... are the parameters in the formatted statement. A newline is automatically added to the end.

Description Writes a text entry to a custom log file.

Returns INK_SUCCESS if API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

Example Suppose you call:

int my_value = 2001;

INKTextLogObjectWrite (log, “my value: %d”, my_value);

If mode is set to ADD_TIMESTAMP, the log should look like:

<timestamp> my value: 2001

First Release Traffic Server 5.2

Prototype INKReturnCode INKTextLogObjectFlush (INKTextLogObject the_object)

Arguments INKTextLogObject the_object is the log file whose write buffer you want to flush. You have
to first create this object with INKTextLogObjectCreate.
Function Reference 243

INKTextLogObjectDestroy

Destroys a custom log file created by INKTextLogObjectCreate.

Description This immediately flushes the contents of the log write buffer for the_object to disk. Use this call
only if you want to make sure that log entries are flushed immediately. This call has a
performance cost. Traffic Edge flushes the log buffer automatically about every 1 second.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First Release Traffic Server 5.2

Prototype INKReturnCode INKTextLogObjectDestroy (INKTextLogObject the_object)

Arguments INKTextLogObject the_object is the custom log file you want to destroy. You have to first
create this object with INKTextLogObjectCreate.

Description Destroys a log object (a plugin’s custom log file) and releases the memory allocated to it. Use this
call if done with the log.

Returns INK_SUCCESS if the API is called successfully.

INK_ERROR if an error occurs while calling the API or if an argument is invalid.

First Release Traffic Server 5.2
244 Logging functions

APPENDIX A Sample Source Code
This appendix provides several source code examples. In the PDF and HTML formats of
this book, function calls are linked to their references in the previous chapters. The
following sample plugins are provided:

■ blacklist-1.c‚ on page 245

blacklist-1.c
The sample blacklisting plugin included in the Traffic Edge SDK is blacklist-1.c. This
plugin checks every incoming HTTP client request against a list of blacklisted web sites. If
the client requests a blacklisted site, the plugin returns an “access forbidden” message to
the client.

This plugin illustrates:

■ An HTTP transaction extension

■ How to examine HTTP request headers

■ How to use the logging interface

■ How to use the plugin configuration management interface

/* blacklist-1.c: an example program that denies client access

 * to blacklisted sites. This plugin illustrates

 * how to use configuration information from a

 * configuration file (blacklist.txt) that can be

 * updated through the Traffic Manager UI.

 *

 * Copyright (c) 1999/2000 Inktomi Corporation. All Rights Reserved.

 * Authorized possession and use of this software is only pursuant

 * to the terms of a written license agreement.

 *

 * Usage:

 * (NT) : BlackList.dll

 * (Solaris) : blacklist-1.so

 *

 *

 */

#include <stdio.h>

#include <string.h>

#include "InkAPI.h"

#define MAX_NSITES 500

static char* sites[MAX_NSITES];

static int nsites;

static INKMutex sites_mutex;

static INKTextLogObject log;

static void

handle_dns (INKHttpTxn txnp, INKCont contp)

{

 INKMBuffer bufp;

 INKMLoc hdr_loc;

 INKMLoc url_loc;

 const char *host;

 int i;

 int host_length;

 if (!INKHttpTxnClientReqGet (txnp, &bufp, &hdr_loc)) {

 INKError ("couldn't retrieve client request header\n");

 goto done;

 }

 url_loc = INKHttpHdrUrlGet (bufp, hdr_loc);

 if (!url_loc) {

 INKError ("couldn't retrieve request url\n");

 INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 goto done;

 }

 host = INKUrlHostGet (bufp, url_loc, &host_length);

 if (!host) {

 INKError ("couldn't retrieve request hostname\n");

 INKHandleMLocRelease (bufp, hdr_loc, url_loc);

 INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 goto done;

 }

 INKMutexLock(sites_mutex);

 for (i = 0; i < nsites; i++) {

 if (strncmp (host, sites[i], host_length) == 0) {

 if (log) {

INKTextLogObjectWrite(log, "blacklisting site: %s", sites[i]);
246 blacklist-1.c

 } else {

printf ("blacklisting site: %s\n", sites[i]);

 }

 INKHttpTxnHookAdd (txnp,

 INK_HTTP_SEND_RESPONSE_HDR_HOOK,

 contp);

 INKHandleStringRelease (bufp, url_loc, host);

 INKHandleMLocRelease (bufp, hdr_loc, url_loc);

 INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 INKHttpTxnReenable (txnp, INK_EVENT_HTTP_ERROR);

 INKMutexUnlock(sites_mutex);

 return;

 }

 }

 INKMutexUnlock(sites_mutex);

 INKHandleStringRelease (bufp, url_loc, host);

 INKHandleMLocRelease (bufp, hdr_loc, url_loc);

 INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 done:

 INKHttpTxnReenable (txnp, INK_EVENT_HTTP_CONTINUE);

}

static void

handle_response (INKHttpTxn txnp)

{

 INKMBuffer bufp;

 INKMLoc hdr_loc;

 INKMLoc url_loc;

 char *url_str;

 char *buf;

 int url_length;

 if (!INKHttpTxnClientRespGet (txnp, &bufp, &hdr_loc)) {

 INKError ("couldn't retrieve client response header\n");

 goto done;

 }

 INKHttpHdrStatusSet (bufp, hdr_loc, INK_HTTP_STATUS_FORBIDDEN);

 INKHttpHdrReasonSet (bufp, hdr_loc,

 INKHttpHdrReasonLookup (INK_HTTP_STATUS_FORBIDDEN),

 strlen (INKHttpHdrReasonLookup (INK_HTTP_STATUS_FORBIDDEN)));

 if (!INKHttpTxnClientReqGet (txnp, &bufp, &hdr_loc)) {

 INKError ("couldn't retrieve client request header\n");
Sample Source Code 247

 INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 goto done;

 }

 url_loc = INKHttpHdrUrlGet (bufp, hdr_loc);

 if (!url_loc) {

 INKError ("couldn't retrieve request url\n");

 INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 goto done;

 }

 buf = (char *)INKmalloc (4096);

 url_str = INKUrlStringGet (bufp, url_loc, &url_length);

 sprintf (buf, "You are forbidden from accessing \"%s\"\n", url_str);

 INKfree (url_str);

 INKHandleMLocRelease (bufp, hdr_loc, url_loc);

 INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 INKHttpTxnErrorBodySet (txnp, buf, strlen (buf), NULL);

 done:

 INKHttpTxnReenable (txnp, INK_EVENT_HTTP_CONTINUE);

}

static void

read_blacklist (void)

{

 char blacklist_file[1024];

 INKFile file;

 sprintf (blacklist_file, "%s/blacklist.txt", INKPluginDirGet());

 file = INKfopen(blacklist_file, "r");

 INKMutexLock (sites_mutex);

 nsites = 0;

 if (file != NULL) {

char buffer[1024];

while (INKfgets (file, buffer, sizeof(buffer)-1) != NULL &&

 nsites < MAX_NSITES) {

 char* eol;

 if ((eol = strstr(buffer, "\r\n")) != NULL) {

/* To handle newlines on Windows */
248 blacklist-1.c

*eol = '\0';

 } else if ((eol = strchr(buffer, '\n')) != NULL) {

*eol = '\0';

 } else {

/* Not a valid line, skip it */

continue;

 }

 if (sites[nsites] != NULL) {

INKfree (sites[nsites]);

 }

 sites[nsites] = INKstrdup (buffer);

 nsites++;

}

INKfclose (file);

 } else {

INKError ("unable to open %s\n", blacklist_file);

INKError ("all sites will be allowed\n", blacklist_file);

 }

 INKMutexUnlock (sites_mutex);

}

static int

blacklist_plugin (INKCont contp, INKEvent event, void *edata)

{

 INKHttpTxn txnp = (INKHttpTxn) edata;

 switch (event) {

 case INK_EVENT_HTTP_OS_DNS:

 handle_dns (txnp, contp);

 return 0;

 case INK_EVENT_HTTP_SEND_RESPONSE_HDR:

 handle_response (txnp);

 return 0;

 case INK_EVENT_MGMT_UPDATE:

read_blacklist ();

return 0;

 default:

 break;

 }

 return 0;

}

int
Sample Source Code 249

check_ts_version() {

 const char* ts_version = INKTrafficServerVersionGet();

 int result = 0;

 if (ts_version) {

 int major_ts_version = 0;

 int minor_ts_version = 0;

 int patch_ts_version = 0;

 if (sscanf(ts_version, "%d.%d.%d", &major_ts_version,

 &minor_ts_version, &patch_ts_version) != 3) {

 return 0;

 }

 /* Since this is an TS-SDK 2.0 plugin, we need at

 least Traffic Server 3.5.2 to run */

 if (major_ts_version > 3) {

 result = 1;

 } else if (major_ts_version == 3) {

 if (minor_ts_version > 5) {

 result = 1;

 } else if (minor_ts_version == 5) {

 if (patch_ts_version >= 2) {

 result = 1;

 }

 }

 }

 }

 return result;

}

void

INKPluginInit (int argc, const char *argv[])

{

 int i;

 INKCont contp;

 INKPluginRegistrationInfo info;

 int error;

 info.plugin_name = "blacklist-1";

 info.vendor_name = "MyCompany";

 info.support_email = "ts-api-support@MyCompany.com";
250 blacklist-1.c

 if (!INKPluginRegister (INK_SDK_VERSION_2_0 , &info)) {

 INKError ("Plugin registration failed.\n");

 }

 if (!check_ts_version()) {

INKError ("Plugin requires Traffic Server 3.5.2 or later\n");

return;

 }

 /* create an INKTextLogObject to log blacklisted requests to */

 log = INKTextLogObjectCreate("blacklist", INK_LOG_MODE_ADD_TIMESTAMP,

 NULL, &error);

 if (!log) {

printf("Blacklist plugin: error %d while creating log\n", error);

 }

 sites_mutex = INKMutexCreate ();

 nsites = 0;

 for (i = 0; i < MAX_NSITES; i++) {

sites[i] = NULL;

 }

 read_blacklist ();

 contp = INKContCreate (blacklist_plugin, NULL);

 INKHttpHookAdd (INK_HTTP_OS_DNS_HOOK, contp);

 INKMgmtUpdateRegister (contp, "Inktomi Blacklist Plugin", "blacklist.cgi");

}

Sample Source Code 251

252 blacklist-1.c

APPENDIX B Deprecated Functions
This appendix lists the functions that are deprecated in SDK 5.2 and newer.

Deprecated MIME header functions
The following MIME field functions are deprecated in SDK 3.0.

INKMimeFieldCopy
Copies a MIME field from one location to another.

INKMimeFieldCopyValues
Copies MIME field values from one location to another.

INKMimeFieldCreate
Creates a new MIME field within a specified marshal buffer.

Prototype void INKMimeFieldCopy (INKMBuffer dest_bufp,INKMLoc
dest_offset,INKMBuffer src_bufp,INKMLoc src_offset)

Description Copies the contents of the MIME field located at src_offset within the marshal buffer src_bufp to the MIME
field located at dest_offset within the marshal buffer dest_bufp. INKMimeFieldCopy works
correctly even if src_bufp and dest_bufp point to different marshal buffers. Note: you must first create the
destination MIME field before copying into it.

First release Traffic Server 3.0

Prototype void INKMimeFieldCopyValues (INKMBuffer dest_bufp,INKMLoc
dest_offset,INKMBuffer src_bufp,INKMLoc src_offset)

Description Copies the values contained within the MIME field located at src_offset within the marshal buffer src_bufp
to the MIME field located at dest_offset within the marshal buffer dest_bufp.
INKMimeFieldCopyValues works correctly even if src_bufp and dest_bufp point to different
marshal buffers. INKMIMEFieldCopyValues does not copy the field’s name.

First release Traffic Server 3.0

Prototype INKMLoc INKMimeFieldCreate (INKMBuffer bufp)

Description Creates a new MIME field with the marshal buffer bufp. Returns the offset location of the new MIME field.

Release the created INKMLoc with a call to INKHandleMLocRelease.

First release Traffic Server 3.0

INKMimeFieldDestroy
Deletes a specified MIME field from a marshal buffer.

INKMimeFieldLengthGet
Calculates the length of a string representation of a specified MIME field.

INKMimeFieldNameGet
Gets the name and length of a specified MIME field.

INKMimeFieldNameSet
Sets a specified MIME field’s name.

Prototype void INKMimeFieldDestroy (INKMBuffer bufp,INKMLoc offset)

Description Destroys the MIME field located at offset within the marshal buffer bufp.

Release the handle with a call to INKHandleMLocRelease.

First release Traffic Server 3.0

Prototype int INKMimeFieldLengthGet (INKMBuffer bufp,INKMLoc offset)

Description Calculates the length of the MIME field located at offset within the marshal buffer bufp if it were returned as a
string. This is the length of the MIME field in its unparsed form.

First release Traffic Server 3.0

Prototype const char* INKMimeFieldNameGet (INKMBuffer bufp,INKMLoc offset, int
*length)

Description Returns the name of the field located at offset within the marshal buffer bufp.
INKMimeFieldNameGet places the length of the returned string in the length argument. If
length is NULL then no attempt is made to de-reference it.

Release the returned string with a call to INKHandleStringRelease.

First release Traffic Server 3.0

Prototype void INKMimeFieldNameSet (INKMBuffer bufp,INKMLoc offset, const char
*name, int length)

Description Sets the name of the field located at offset within the marshal buffer bufp to the string name. If length is -
1 then INKMimeFieldNameSet assumes thatname is null-terminated. Otherwise, the length of the string
name is taken to be length. INKMimeFieldNameSet copies the string to within bufp, so it is okay to
modify or delete name after calling INKMimeFieldNameSet.

First release Traffic Server 3.0
254 Deprecated MIME header functions

INKMimeFieldNext
Returns the next MIME field after a specified MIME field in a MIME header.

INKMimeFieldValueAppend
Appends a string to a specified value in a MIME field.

INKMimeFieldValueDelete
Deletes a specified value from a MIME field.

Prototype INKMLoc INKMimeFieldNext (INKMBuffer bufp,INKMLoc offset)

Description Conceptually, there are a list of MIME fields in a MIME header (see “About HTTP headers” on page 83).
INKMimeFieldNext returns the location of the next field in the list after the field located at offset within
the marshal buffer bufp.

Release the returned INKMLoc with a call to INKHandleMLocRelease.

First release Traffic Server 3.0

Prototype void INKMimeFieldValueAppend (INKMBuffer bufp, INKMLoc offset, int idx,
const char *value, int length)

Arguments bufp is the marshal buffer containing the MIME field.

offset is the location of the MIME field within the marshal buffer bufp.

idx is the index of the field value to be appended. For example, in the MIME field
Foo: bar, car the index of the value bar is 0, and the index of car is 1.

value is the string to be appended to the MIME field value at idx.

length is the length of the string value to be appended.

Description Appends the string stored in value to a specific value in the MIME field located at offset within the marshal
buffer bufp. The effect of INKMimeFieldValueAppend is as if the previous value were retrieved, the string
value were appended to it and this new string were stored back in the MIME field at the same position. The idx
parameter specifies which value in the field to append to. If idx is not between 0 and
INKMimeFieldValuesCount (bufp, offset) - 1 then no operation will be performed.

First release Traffic Server 3.0

Prototype void INKMimeFieldValueDelete (INKMBuffer bufp,INKMLoc offset, int idx)

Description Removes and deletes a value from the MIME field located at offset within the marshal buffer bufp. The idx
parameter specifies which value should be deleted. If idx is not between 0 and
INKMimeFieldValuesCount (bufp, offset) - 1 then no operation will be performed.

Release the handle offset with a call to INKHandleMLocRelease.

First release Traffic Server 3.0
Deprecated Functions 255

INKMimeFieldValueGet
Gets a specified field value from a MIME header.

INKMimeFieldValueGetDate
Gets date value from a MIME field.

INKMimeFieldValueGetInt
Gets an integer field value in a MIME field.

INKMimeFieldValueGetUint
Gets unsigned integer field value in a MIME field.

Prototype const char* INKMimeFieldValueGet (INKMBuffer bufp,
INKMLoc offset, int idx, int *length)

Description Retrieves a string value from within the MIME field located at offset within the marshal buffer bufp. The idx
parameter specifies which field to retrieve. The fields are numbered from 0 to INKMimeFieldValuesCount
(bufp, offset) - 1. If idx does not lie within that range then NULL will be returned. The length of the returned
string is placed in the length argument. If length is NULL then no attempt is made to dereference it.

Release the returned string with a call to INKHandleStringRelease.

First release Traffic Server 3.0

Prototype time_t INKMimeFieldValueGetDate (INKMBuffer bufp, INKMLoc offset, int
idx)

Description Retrieves a date value from within the MIME field located at offset within the marshal buffer bufp. The idx
parameter specifies which field to retrieve. The fields are numbered from 0 to INKMimeFieldValuesCount
(bufp, offset) - 1. If idx does not lie within that range, INKMimeFieldValueGetDate returns
(time_t) 0. All values are stored as strings within the MIME field. INKMimeFieldValueGetDate
parses the string value to return an integer date representation.

First release Traffic Server 3.0

Prototype int INKMimeFieldValueGetInt (INKMBuffer bufp, INKMLoc offset, int idx)

Description Retrieves an integer value from within the MIME field located at offset within the marshal buffer bufp. The idx
parameter specifies which value within the field to retrieve. The fields are numbered from 0 to
INKMimeFieldValuesCount (bufp, offset) - 1. If idx does not lie within that range,
INKMimeFieldValueGetInt returns (int) 0. All values are stored as strings within the MIME field.
INKMimeFieldValueGetInt parses the string value to return an integer.

First release Traffic Server 3.0

Prototype unsigned int INKMimeFieldValueGetUint (INKMBuffer bufp, INKMLoc offset,
int idx)
256 Deprecated MIME header functions

INKMimeFieldValueInsert
Inserts a value into a specified location within a MIME field.

INKMimeFieldValueInsertDate
Inserts a date value into a MIME field.

Description Retrieves an unsigned integer value from within the MIME field located at offset within the marshal buffer bufp.
The idx parameter specifies which field to retrieve. The fields are numbered from 0 to
INKMimeFieldValuesCount (bufp, offset) - 1. If idx does not lie within that range,
INKMimeFieldValueGetUnit returns (unsigned int) 0. All values are stored as strings within the
MIME field. INKMimeFieldValueGetUint parses the string value to return an unsigned integer.

First release Traffic Server 3.0

Prototype INKMLoc INKMimeFieldValueInsert (INKMBuffer bufp,INKMLoc offset, const
char *value, int length, int idx)

Description Inserts the string value into the MIME field located at offset within the marshal buffer bufp. If length is -
1 then INKMimeFieldValueInsert assumes that value is null-terminated. Otherwise, the length of the
string value is taken to be length. INKMimeFieldValueInsert copies the string to within bufp, so it
is okay to modify or delete value after calling INKMimeFieldValueSet. The idx parameter specifies
where the inserted value should be put with respect to the other values already in the MIME field. If idx is 0 then
INKMimeFieldValueInsert prepends the value to the list of values in the field. Increasing values of idx
place the value further down the list of values. If idx is -1, INKMimeFieldValueInsert appends the value
to the list of values. Normal usage is to specify -1 for idx so that the value is appended to the list of values.

Release the returned INKMLoc with a call to INKHandleMLocRelease.

First release Traffic Server 3.0

Prototype INKMLoc INKMimeFieldValueInsertDate (INKMBuffer bufp,INKMLoc offset,
time_t value, int idx)

Description Inserts the date value into the MIME field located at offset within the marshal buffer bufp. The idx
parameter specifies where the inserted value should be put with respect to the other values already in the MIME field.
If idx is 0 then the value is prepended to the list of values in the field. Increasing values of idx places the value
further down the list of values. If idx is -1 then the value is appended to the list of values. Normal usage is to
specify -1 for idx so that the value is appended to the list of values. All values are stored as strings within the MIME
field. INKMimeFieldValueInsertDate simply formats the date into a string and then calls
INKMimeFieldValueInsert.

Release the returned INKMLoc with a call to INKHandleMLocRelease.

First release Traffic Server 3.0
Deprecated Functions 257

INKMimeFieldValueInsertInt
Inserts an integer value into a MIME field.

INKMimeFieldValueInsertUint
Inserts an unsigned integer value into a MIME field.

INKMimeFieldValuesClear
Clears all values in a MIME field.

INKMimeFieldValuesCount
Counts the values in a MIME field.

Prototype INKMLoc INKMimeFieldValueInsertInt (INKMBuffer bufp,INKMLoc offset, int
value, int idx)

Description Inserts the integer value into the MIME field located at offset within the marshal buffer bufp.
The idx parameter specifies where the inserted value should be put with respect to the other
values already in the MIME field. If idx is 0 then the value is prepended to the list of values in the
field. Increasing values of idx places the value further down the list of values. If idx is -1 then
the value is appended to the list of values. Normal usage is to specify -1 for idx so that the value
is appended to the list of values. All values are stored as strings within the MIME field.
INKMimeFieldValueInsertInt simply formats the integer into a string and then calls
INKMimeFieldValueInsert.

Release the returned INKMLoc with a call to INKHandleMLocRelease.

First release Traffic Server 3.0

Prototype INKMLoc INKMimeFieldValueInsertUint (INKMBuffer bufp,INKMLoc offset,
unsigned int value, int idx)

Description Inserts the unsigned integer value into the MIME field located at offset within the marshal
buffer bufp. The idx parameter specifies where the inserted value should be put with respect to
the other values already in the MIME field. If idx is 0 then the value will be prepended to the list
of values in the field. Increasing values of idx will place the value further down the list of values.
If idx is -1 then the value will be appended to the list of values. Normal usage is to specify -1 for
idx so that the value will be appended to the list of values. All values are stored as strings within
the MIME field. INKMimeFieldValueInsertUint simply formats the unsigned integer into a
string and then calls INKMimeFieldValueInsert.

Release the returned INKMLoc with a call to INKHandleMLocRelease.

First release Traffic Server 3.0

Prototype void INKMimeFieldValuesClear (INKMBuffer bufp, INKMLoc offset)

Description Removes and destroys all of the values within the MIME field located at offset within the marshal buffer bufp.

First release Traffic Server 3.0

Prototype int INKMimeFieldValuesCount (INKMBuffer bufp, INKMLoc offset)
258 Deprecated MIME header functions

INKMimeFieldValueSet
Sets a value in a MIME field.

INKMimeFieldValueSetDate
Sets a date value in a MIME field.

INKMimeFieldValueSetInt
Sets an integer value in a MIME field.

Description Returns a count of the number of values in the MIME field located at offset within the marshal buffer bufp.

First release Traffic Server 3.0

Prototype void INKMimeFieldValueSet (INKMBuffer bufp, INKMLoc offset, int idx,
const char *value, int length)

Description Sets a value in the MIME field located at offset within the marshal buffer bufp to the string value. If
length is -1 then it is assumed that value is null-terminated. Otherwise, the length of the string value is
taken to be length. The string is copied to within bufp, so it is okay to modify or delete value after calling
INKMimeFieldValueSet. The idx parameter specifies which value in the field to change. If idx is not
between 0 and INKMimeFieldValuesCount (bufp, offset) - 1 then no operation will be performed.

First release Traffic Server 3.0

Prototype void INKMimeFieldValueSetDate (INKMBuffer bufp,INKMLoc offset, int idx,
time_t value)

Description Sets a value in the MIME field located at offset within the marshal buffer bufp to the data value. The idx
parameter specifies which value in the field to change. If idx is not between 0 and
INKMimeFieldValuesCount (bufp, offset) - 1 then no operation will be performed. All values are
stored as strings within the MIME field. INKMimeFieldValueSetDate simply formats the date into a string
and then calls INKMimeFieldValueSet.

First release Traffic Server 3.0

Prototype void INKMimeFieldValueSetInt (INKMBuffer bufp,INKMLoc offset, int idx,
int value)

Description Sets a value in the MIME field located at offset within the marshal buffer bufp to the integer value. The idx
parameter specifies which value in the field to change. If idx is not between 0 and
INKMimeFieldValuesCount (bufp, offset) - 1 then no operation will be performed. All values are
stored as strings within the MIME field. INKMimeFieldValueSetInt simply formats the integer into a string
and then calls INKMimeFieldValueSet.

First release Traffic Server 3.0
Deprecated Functions 259

INKMimeFieldValueSetUint
Sets an unsigned integer value in a MIME field.

INKMimeHdrFieldValueGet
Gets a specified field value from a MIME header.

INKMimeHdrFieldValueGetDate
Gets date value from a MIME field.

Prototype void INKMimeFieldValueSetUint (INKMBuffer bufp,INKMLoc offset, int idx,
unsigned int value)

Description Sets a value in the MIME field located at offset within the marshal buffer bufp to the unsigned integer value.
The idx parameter specifies which value in the field to change. If idx is not between 0 and
INKMimeFieldValuesCount (bufp, offset) - 1 then no operation will be performed. All values are
stored as strings within the MIME field. INKMimeFieldValueSetUint simply formats the unsigned integer
into a string and then calls INKMimeFieldValueSet.

First release Traffic Server 3.0

Prototype const char* INKMimeHdrFieldValueGet (INKMBuffer bufp, INKMLoc hdr_loc,
INKMLoc field, int idx, int *value_len_ptr)

Description Retrieves a string value from within the MIME field located at field within the marshal buffer bufp. The idx
parameter specifies which field to retrieve. The fields are numbered from 0 to
INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1. If idx does not lie within that range then
NULL will be returned. The length of the returned string is placed in the value_len_ptr argument. If
value_len_ptr is NULL then no attempt is made to dereference it.

This API has been deprecated by INKMimeHdrFieldValueStringGet.

Returns A pointer to the specified field value in the MIME header. Release with a call to INKHandleStringRelease.

First release Traffic Server 3.5

Prototype time_t INKMimeHdrFieldValueGetDate (INKMBuffer bufp, INKMLoc hdr,
INKMLoc field, int idx)

Description Retrieves a date value from within the MIME field located at field within the marshal buffer bufp. The idx
parameter specifies which field to retrieve. The fields are numbered from 0 to
INKMimeHdrFieldValuesCount (bufp, hdr, field) -1. If idx does not lie within that range,
INKMimeHdrFieldValueGetDate returns (time_t) 0. All values are stored as strings within the MIME
field. INKMimeHdrFieldValueGetDate parses the string value to return an integer date representation.

This API has been deprecated by INKMimeHdrFieldValueDateGet.

Returns The date value from the specified MIME header.

First release Traffic Server 3.5
260 Deprecated MIME header functions

INKMimeHdrFieldValueGetInt
Gets an integer field value in a MIME field.

INKMimeHdrFieldValueGetUInt
Gets unsigned integer field value in a MIME field.

Prototype int INKMimeHdrFieldValueGetInt (INKMBuffer bufp, INKMLoc hdr, INKMLoc
field, int idx, int *value_len-ptr)

Description Retrieves an integer value from within the MIME field located at field within the marshal buffer bufp. The idx
parameter specifies which value within the field to retrieve. The fields are numbered from 0 to
INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1. If idx does not lie within that range,
INKMimeHdrFieldValueGetInt returns (int) 0. All values are stored as strings within the MIME field.
INKMimeHdrFieldValueGetInt parses the string value to return an integer.

This API has been deprecated by INKMimeHdrFieldValueIntGet.

Returns The interger value from the specified MIME field.

First release Traffic Server 3.5

Prototype unsigned int INKMimeHdrFieldValueGetUInt (INKMBuffer bufp, INKMLoc hdr,
INKMLoc field, int idx)

Description Retrieves an unsigned integer value from within the MIME field located at field within the marshal buffer bufp.
The idx parameter specifies which field to retrieve. The fields are numbered from 0 to
INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1. If idx does not lie within that range,
INKMimeHdrFieldValueGetUnit returns (unsigned int) 0. All values are stored as strings within
the MIME field. INKMimeHdrFieldValueGetUInt parses the string value to return an unsigned integer.

It is not possible to determine if INKMimeHdrFieldValueGetUInt is returning an unsigned int value in
error. If you need to check for errors in MIME header field values, you can fetch the header as a string and examine it.
Here is some sample code that fetches MIME headers from marshal buffers into strings using
INKMimeHdrFieldValueGet instead. The context of this example is that the plugin is processing an HTTP
transaction and has access to a transaction.

This API has been deprecated by INKMimeHdrFieldValueUIntGet.

Returns The unsigned integer value from the specified MIME field.
Deprecated Functions 261

Example static void

handle_string (INKHttpTxn txnp, INKCont contp) {

 INKMBuffer bufp;

 INKMLoc hdr_loc;

 INKMLoc field;

 int len;

 char* output_string;

 const char* value;

/* Fetch the transaction's client request header into a marshal buffer.
*/

 if (!INKHttpTxnClientReqGet (txnp, &bufp, &hdr_loc)) {

 INKError ("couldn't retrieve client request header\n");

 goto done;

 }

 field=INKMimeHdrFieldRetrieve(bufp, hdr_loc,

 INK_MIME_FIELD_CONTENT_LENGTH);

 if (!field) {

 INKError ("Content-Length field not found.\n");

 INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 goto done;

 }

 /* Obtain the value of the content length (normally an

* unsigned int) as a string. */

 value=INKMimeHdrFieldValueGet (bufp, hdr_loc, field, 0, &len);

 if ((!value) || (len<=0))}

 INKHandleMLocRelease (bufp, hdr_loc, field);

 INKHandleMLocRelease (bufp, INK_NULL_MLOC, hdr_loc);

 goto done;

 }

 /* Allocate the string with an extra byte for the string terminator.
*/

 output_string = (char*) INKmalloc(len + 1);

 /* Copy the value. */

 strncpy (output_string, value, len);

 /* Terminate the string */

 output_string[len] = '\0';

/* Now that you have the MIME fields as a string, you can do

 whatever you want to do with it, for example, print it, or

 make sure it's an unsigned integer: either by using the
262 Deprecated MIME header functions

 atol C function or by scanning each ASCII character. */

 INKDebug("my-plugin", "%s", output_string);

 /* Release handles and allocated memory. */

 INKHandleStringRelease (bufp, field, value);

INKf (t t t i)

INKMimeHdrFieldValueInsert
Inserts a value into a specified location within a MIME field.

INKMimeHdrFieldValueInsertDate
Inserts a date value into a MIME field.

First release Traffic Server 3.5

Prototype INKMLoc INKMimeHdrFieldValueInsert (INKMBuffer bufp, INKMLoc hdr,
INKMLoc field, const char *value, int length, int idx)

Description Inserts the string value into the MIME field located at field within the marshal buffer bufp. If length is -1
then INKMimeHdrFieldValueInsert assumes that value is null-terminated. Otherwise, the length of the
string value is taken to be length. INKMimeHdrFieldValueInsert copies the string to within bufp,
so it is okay to modify or delete value after calling INKMimeHdrFieldValueSet. The idx parameter
specifies where the inserted value should be put with respect to the other values already in the MIME field. If idx is
0 then INKMimeHdrFieldValueInsert prepends the value to the list of values in the field. Increasing
values of idx place the value further down the list of values. If idx is -1,
INKMimeHdrFieldValueInsert appends the value to the list of values. Normal usage is to specify -1 for
idx so that the value is appended to the list of values.

This API has been deprecated by INKMimeHdrFieldValueStringInsert.

First release Traffic Server 3.5

Prototype INKMLoc INKMimeHdrFieldValueInsertDate (INKMBuffer bufp, INKMLoc hdr,
INKMLoc field, time_t value, int idx)

Description Inserts the data value into the MIME field located at field within the marshal buffer bufp. The idx parameter
specifies where the inserted value should be put with respect to teh other values already in the MIME field. If idx is
0 then the value is prepended to the list of values in the field. Increasing values of idx places the value further down
the list of values. If idx is -1 then the value is appended to the list of values. Normal usage is to specify -1 for idx
so that the value is appended to the list of values. All values are stored as strings within the MIME field.
INKMimeHdrFieldValueInsertDate simply formats the date into a string and then calls
INKMimeHdrFieldValueInsert.

Note: do not use the return value (INKMLoc) of this function. Future versions will be changed to void.

This API has been deprecated by INKMimeHdrFieldValueDateInsert.

First release Traffic Server 3.5
Deprecated Functions 263

INKMimeHdrFieldValueInsertInt
Inserts an integer value into a MIME field.

INKMimeHdrFieldValueInsertUInt
Inserts an unsigned integer value into a MIME field.

INKMimeHdrFieldValueSet
Sets a value in a MIME field.

Prototype INKMLoc INKMimeHdrFieldValueInsertInt (INKMBuffer bufp, INKMLoc hdr,
INKMLoc field, int value, int idx)

Description Inserts the integer value into the MIME field located at field within the marshal buffer bufp.
The idx parameter specifies where the inserted value should be put with respect to the other
values already in the MIME field. If idx is 0 then the value is prepended to the list of values in the
field. Increasing values of idx places the value further down the list of values. If idx is -1 then
the value is appended to the list of values. Normal usage is to specify -1 for idx so that the value
is appended to the list of values. All values are stored as strings within the MIME field.
INKMimeHdrFieldValueInsertInt simply formats the integer into a string and then calls
INKMimeHdrFieldValueInsert.

This API has been deprecated by INKMimeHdrFieldValueIntInsert.

First release Traffic Server 3.5

Prototype INKMLoc INKMimeHdrFieldValueInsertUInt (INKMBuffer bufp, INKMLoc hdr,
INKMLoc field, unsigned int value, int idx)

Description Inserts the unsigned integer value into the MIME field located at field within the marshal
buffer bufp. The idx parameter specifies where the inserted value should be put with respect to
the other values already in the MIME field. If idx is 0 then the value will be prepended to the list
of values in the field. Increasing values of idx will place the value further down the list of values.
If idx is -1 then the value will be appended to the list of values. Normal usage is to specify -1 for
idx so that the value will be appended to the list of values. All values are stored as strings within
the MIME field. INKMimeHdrFieldValueInsertUInt simply formats the unsigned integer
into a string and then calls INKMimeHdrFieldValueInsert.

This API has been deprecated by INKMimeHdrFieldValueUIntInsert.

First release Traffic Server 3.5

Prototype void INKMimeHdrFieldValueSet (INKMBuffer bufp, INKMLoc hdr, INKMLoc
field, int idx, const char *value, int length)

Description Sets a value in the MIME field located at field within the marshal buffer bufp to the string value. If
length is -1 then it is assumed that value is null-terminated. Otherwise, the length of the string value is
taken to be length. The string is copied to within bufp, so it is okay to modify or delete value after calling
INKMimeHdrFieldValueSet. The idx parameter specifies which value in the field to change. If idx is not
between 0 and INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1 then no operation will be
performed.

This API has been deprecated by INKMimeHdrFieldValueStringSet.

First release Traffic Server 3.5
264 Deprecated MIME header functions

INKMimeHdrFieldValueSetDate
Sets a date value in a MIME field.

INKMimeHdrFieldValueSetInt
Sets an integer value within a MIME field.

INKMimeHdrFieldValueSetUInt
Sets a value in a MIME field to a specified unsigned integer.

Prototype void INKMimeHdrFieldValueSetDate (INKMBuffer bufp, INKMLoc hdr, INKMLoc
field, int idx, time_t value)

Description Sets a value in the MIME field located at field within the marshal buffer bufp to the date value. The idx
parameter specifies which value in the field to change. If the idx is not between 0 and
INKMimeHdrFieldValuesCount (bufp, hdr, field) -1 then no operation will be performed. All
values are stored as strings within the MIME field. INKMimeHdrFieldValueSetDate simply formats the
date into a string and then calls INKMimeHdrFieldValueSet.

This API has been deprecated by .

First release Traffic Server 3.5

Prototype void INKMimeHdrFieldValueSetInt (INKMBuffer bufp, INKMLoc hdr, INKMLoc
field, int idx, int value)

Description Sets a value in the MIME field located at field within the marshal buffer bufp to the integer value. The idx
parameter specifies which value in the field to change. If idx is not between 0 and
INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1 then no operation will be performed. All
values are stored as strings within the MIME field. INKMimeHdrFieldValueSetInt simply formats the
integer into a string and then calls INKMimeHdrFieldValueSet.

This API has been deprecated by INKMimeHdrFieldValueIntSet.

First release Traffic Server 3.5

Prototype void INKMimeHdrFieldValueSetUInt (INKMBuffer bufp, INKMLoc hdr, INKMLoc
field, int idx, unsigned int value)

Description Sets a value in the MIME field located at field within the marshal buffer bufp to the unsigned integer value.
The idx parameter specifies which value in the field to change. If idx is not between 0 and
INKMimeHdrFieldValuesCount (bufp, hdr, field) - 1 then no operation will be performed. All
values are stored as strings within the MIME field. INKMimeHdrFieldValueSetUInt simply formats the
unsigned integer into a string and then calls INKMimeHdrFieldValueSet.

This API has been deprecated by INKMimeHdrFieldValueUIntSet.

First release Traffic Server 3.5
Deprecated Functions 265

INKMimeHdrFieldDelete
Destroys a MIME header field.

INKMimeHdrFieldInsert
Appends a field in a MIME header.

INKMimeHdrFieldRetrieve
Retrieves a MIME header field.

Prototype void INKMimeHdrFieldDelete (INKMBuffer bufp, INKMLoc hdr_loc, INKMLoc
field)

Description Deletes the MIME field located at field within the MIME header located at hdr_loc in the marshal buffer
bufp.

Make sure you release the INKMLoc handle field with a call to INKHandleMLocRelease.

This API has been deprecated by INKMimeHdrFieldDestroy.

First release Traffic Server 3.0

Prototype void INKMimeHdrFieldInsert (INKMBuffer bufp, INKMLoc hdr_loc, INKMLoc
field, int idx)

Description Appends the MIME field located at field within the marshal buffer bufp into the MIME header located at
hdr_loc within the marshal buffer bufp. The idx parameter specifies where the inserted field should be put
with respect to the other fields already in the MIME header.

This API has been deprecated by INKMimeHdrFieldAppend

First release Traffic Server 3.0

Prototype INKMLoc INKMimeHdrFieldRetrieve (INKMBuffer bufp, INKMLoc hdr_loc,
const char* *retrieved_str)

Description Retrieves a MIME field from within the MIME header located at hdr_loc within the marshal buffer bufp. The
retrieved_str parameter specifies which field to retrieve. For each MIME field in the MIME header, a pointer
comparison is done between the field name and retrieved_str. This is a much quicker retrieval function than
INKMimeHdrFieldFind since it obviates the need for a string comparision. However, retrieved_str
must be one of the pre-defined field names listed above of the form INK_MIME_FIELD_XXX for the call to
succeed. If the requested field cannot be found then 0 is returned.

Release with a call to INKHandleMLocRelease.

This API has been deprecated by INKMimeHdrFieldFind.

First release Traffic Server 3.0
266 Deprecated MIME header functions

Other Deprecated Functions

Statistic Functions

INKStatFloatRead
Obtains the value of a float stat.

INKStatIntRead
Obtains the value of an integer stat.

IO Buffer Interface

INKIOBufferAppend
Appends to an IO buffer.

Prototype float INKStatFloat(INKStat the_stat)

This API has been deprecated by INKStatFloatGet.

First release Traffic Server 3.5

Prototype INK64 INKStatIntRead(INKStat the_stat)

This API has been deprecated by INKStatIntGet.

First release Traffic Server 3.5

Prototype INKReturnCode INKIOBufferAppend (INKIOBuffer bufp,

INKIOBufferBlock blockp)

Description Appends a block to the IO buffer bufp. The data in the appended block is made available for
reading.

Returns INK_SUCCESS if the block was successfully appended to the specified IO buffer.

INK_ERROR if an error occurred.

First release Traffic Server 3.0
Deprecated Functions 267

INKIOBufferBlockCreate
Creates an IO buffer block.

INKIOBufferDataCreate
Creates IO buffer data.

Mutex function

InkMutexTryLock
Tries to lock an INKMutex.

Prototype INKIOBufferBlock INKIOBufferBlockCreate (INKIOBufferData datap, int
size, int offset)

Description Creates a new IO buffer block and initializes it with the IO buffer data datap. The size
parameter is the amount of data that is initially available for reading in this new buffer block. The
offset parameter is the offset into datap at which will be used as the start for the block. The
two common uses for INKIOBufferBlockCreate are to create an empty block by specifying
size as 0 and to create a full block by specifying size as the total size of datap. The newly
created block should be added almost immediately to an IO buffer by a call to
INKIOBufferAppend since there is no function for destroying a buffer block other than relying
on it automatically being destroyed by an IO buffer.

Returns The newly created IO buffer block.

First release Traffic Server 3.0

Prototype INKIOBufferData INKIOBufferDataCreate (void* data, int size,
INKIOBufferDataFlags flags)

Description Creates a new IO buffer data and initialize it with data, size. The flags parameter specifies
how to interpret data.

INK_DATA_ALLOCATE

The data pointer is NULL and the data associated with the INKIOBufferData should be
allocated. INKIOBufferDataCreate rounds size to a power of 2 less than or equal to 32K.

INK_DATA_MALLOCED

The data pointer was allocated by INKmalloc and will be freed when the last reference to the
new INKIOBufferData is released by a call to INKfree.

INK_DATA_CONSTANT

The data pointer is data that should not be freed when the last reference to the new
INKIOBufferData is released.

Returns A handle to the newly created IO buffer.

First release Traffic Server 3.0

Prototype INKReturnCode InkMutexTryLock (INKMutex mutex, int *is_mutex_lock)

Description Tries to lock the INKMutex mutex.

In general, use InkMutexTryLock to obtain a mutex. See the example below.

This API has been deprecated by INKMutexLockTry.
268 Other Deprecated Functions

Returns If the mutex was successfully locked, 1 will be returned.

If mutex is already locked then 0 will be returned.

Example int handler (INKCont contp, INKEvent event, void *edata)

{

//this continuation tries to grab a mutex

int lock = InkMutexTryLock (mutex);

if (!lock)

{

/* Schedule a retry; RETRY_TIME should be 10 ms or longer. */

INKContSchedule (contp, RETRY_TIME);

return INK_EVENT_IMMEDIATE;

}

// Now the mutex is grabbed

do_some_job ...

INKMutexUnlock (mutexp);

}

First release Traffic Server 3.0
Deprecated Functions 269

270 Other Deprecated Functions

APPENDIX C Troubleshooting Tips
This appendix lists the following troubleshooting tips.

■ Unable to Compile Plugins‚ on page 271

■ Unable to Load Plugins‚ on page 272

■ Using Debug Tags‚ on page 272

■ Using a Debugger‚ on page 273

■ Debugging Memory Leaks‚ on page 273

Unable to Compile Plugins
The process you use to compile a shared library will vary from platform to platform, so
the Traffic Edge API includes makefile templates you can use to create shared libraries on
all the supported Traffic Edge platforms.

 Unix
example

Assuming the sample program is stored in the file hello-world.c, you could use the
following commands to building a shared library on Solaris using the GNU C compiler.

gcc -g -Wall -fPIC -o hello-world.o -c hello-world.c

gcc -g -Wall -shared -o hello-world.so hello-world.o

The first command compiles hello-world.c as Position Independent Code (PIC) and the
second command links the single hello-world.o object file into the hello-world.so
shared library.

 Caution Make sure that your plugin is not statically linked with system libraries.

 HPUX
example

Assuming the sample program is stored in the file hello_world.c, you could use the
following commands to build a shared library on HPUX:

cc +z -o hello_world.o -c hello_world.c

ld -b -o hello_world.so hello_world.o

 Compiling
for Windows

NT

Your PC must have the following software installed:

■ Windows NT 4.0 SP4

■ Microsoft Developer Studio 6.0

▼ To compile a plugin for the Windows NT version of Traffic Edge:

1 Open PlugIn.dsw with Microsoft Visual C++ (MSVC++). The dsw file should be
included in the SDK CD. Inside VC++, the sample plugins are listed as separate
projects.

2 For each of the projects that need to be built, you need to tell VC++ where it can find
the Traffic Edge library: traffic_server.lib. This library is in your NT Traffic Edge
distribution.

You might need to update the library lookup path. Use the following procedure:

▼ To update the library lookup path

1 Right-mouse-click on a project.

2 Select the Settings... option.

3 Click the Link tab on the dialog box.

4 Select Input in the combo-box.

5 Enter the library path in the Additional library path: text field

Now you can build your plugin.

Unable to Load Plugins
To load plugins, follow the steps below.

1 Make sure that your plugin source code contains an INKPluginInit initialization
function.

2 Compile your plugin source code, creating a shared library.

3 Add an entry to the plugin.config file for your plugin.

4 Add the path to your plugin shared library to the records.config file.

5 Restart Traffic Edge.

For detailed information on each step, refer to the section “A simple plugin” in Chapter 1.

Using Debug Tags
Use the API void INKDebug (const char *tag, const char *format_str,
...) to add traces in your plugin, where:

■ tag is the Traffic Edge parameter that enables Traffic Edge to print out format_str.

■ ... is a variable for format_str.

INKDebug prints out the statement format_str if debugging is enabled. There are two
ways to enable debugging:
272 Unable to Load Plugins

■ On UNIX systems, run Traffic Edge with the -Ttag option. For example, if the tag is
my-plugin:
traffic_server -T”my-plugin”

In this case, the debug output goes to traffic.out.

■ On either UNIX or Windows NT systems, set the following variables in
records.config (in the Traffic Edge config directory):
proxy.config.diags.debug.enabled INT 1

proxy.config.diags.debug.tags STRING debug-tag-name
In this case, debug output goes to traffic.out on UNIX systems, and to diags.log
on Windows NT systems.

Example:

INKDebug ("my-plugin", “Starting my-plugin at %d\n”, the_time);

The statement “Starting my-plugin at <time>” appears whenever you run Traffic Edge
with the my-plugin tag:

traffic_server -T”my-plugin”

Other useful internal debug tags

Traffic Edge provides many debug tags for internal debugging purposes. Some of the
useful HTTP debug tags are:

■ http_hdrs - traces all incoming and outgoing HTTP headers.

■ http.* - traces all the STTP SM debug statements.

■ sdk - gives some warning concerning API usage.

Using a Debugger
A debugger can set breakpoints in a plugin. Use a Traffic Edge debug build and compile
the plugin with the -g option. A debugger can also be used to analyze a core dump. To
generate core, set the size limit of the core files in the records.config file to -1 as
follows:

CONFIG proxy.config.core_limit INT -1

Debugging Tips:

■ Use a Traffic Edge debug version.

■ Use assertions in your plugin (INKAssert/INKReleaseAssert).

Debugging Memory Leaks
Memory leaks in a plugin can be detected using a TS MRTG graph related to memory. You
can use memory dump information. Enable mem dump in records.config as follows:

CONFIG proxy.config.dump_mem_info_frequency INT <value>
Troubleshooting Tips 273

This causes Traffic Edge to dump mem info in traffic.out at <value> intervals will be
in secs. A zero value means disabled.
274 Debugging Memory Leaks

Concept Index
A
allocating memory 80, 148

C
code sample

see sample code 115
compiling

on HPUX 18, 271
on UNIX 18, 271
on Windows NT 19, 271

compiling plugins, examples 18
configuration

of plugins, INKConfig 115
of plugins, web UI 131
reading Traffic Server’s 132

continuation 23, 109
mutex 110

conventions
typographic 11

D
debugging 143, 273

on NT 143, 273
deprecated functions 89
duplicate MIME fields 87

E
event system 23

F
fopen 79, 145
freeing memory 80, 148

G
gen_key 134
global hook 27, 33
global HTTP hooks 67

H
hello-world example 17
hooks 26
HTTP header 83, 95
HTTP session 69
HTTP transaction 25, 69

I
INK 240, 241

INK_EVENT_NET_ACCEPT 59, 62, 164, 165,
214
INK_HTTP_MAJOR 175
INK_HTTP_MINOR 175
INK_HTTP_VERSION 176
INK_LOG_MODE_ADD_TIMESTAMP 251
INKHttpTxnIntercept 163
INKHttpTxnServerIntercept 164
INKMimeHdrFieldLengthGet 189
INT_MAX 121

L
licensing

generating key 134
lock 101

M
memory

freeing 80, 148
tracking leaks 80, 148

memory leak
in transformation plugins 126

method (HTTP) 83
MIME field 83, 96

name 96
value 96

MIME fields 88
new functions 88

MIME header 83, 95
Backus-Naur form 96

multiple plugins 19
mutexes 101

N
NT

compiling plugins 19, 271
null-terminated strings 87

P
parent

INKMLoc 88
MIME header 88

parent continuation 32
plugin.config 16
plugin.db 134

R
read VIO 42
releasing mbuffer handles 88

S
sample code

continuation handler 111
INKAction 117
INKActionCancel 119
INKConfig interface 115
INKDebug 143, 273
INKfopen 147
INKHandleMLocRelease 190
INKIOBuffer read 226
INKMgmt interface 234
INKMimeHdrCopy 199
INKMimeHdrFieldNext 190
INKMutexLock 204
INKMutexLockTry 205
INKPluginDirGet 235
INKPluginRegister 21
license API 236
session hook 153
version check 20

session hook example 153
state machine 60
statistics

viewing 139

T
thread

locking 101
Traffic Edge 20
Traffic Line 139
Traffic Server 20
transaction 25, 33

getting a handle to 33
transaction hook 27, 34
transformation 41
typographic conventions 11

V
vconnection 41
version checking 20
VIO 41
void * data

in continuation handlers 111

W
write VIO 41
276

Constant Index
I
INK 221
INK_ERROR 150, 151, 152, 153, 154, 156,
157, 158, 159, 161, 162, 163, 164, 165, 166,
167, 169, 170, 171, 172, 174, 175, 176, 177,
178, 179, 180, 181, 182, 184, 185, 186, 187,
188, 190, 191, 193, 194, 195, 197, 198, 200,
201, 202, 203, 204, 205, 206, 207, 209, 210,
211, 212, 213, 215, 216, 217, 218, 220, 222,
223, 224, 225, 227, 228, 229, 231, 232, 233,
236, 237, 238, 240, 241, 242, 243, 244
INK_ERROR_PTR 169, 206, 207, 211, 212,
213, 214, 217, 219, 221, 222, 224, 225, 227,
228, 229, 230, 237, 238, 239
INK_EVENT_CACHE_OPEN_READ 217
INK_EVENT_CACHE_OPEN_READ_FAILED 217
INK_EVENT_CACHE_OPEN_WRITE 218
INK_EVENT_CACHE_OPEN_WRITE_FAILED 218
INK_EVENT_CACHE_REMOVE 219
INK_EVENT_CACHE_REMOVE_FAILED 219
INK_EVENT_DNS_LOOKUP 210
INK_EVENT_ERROR 122
INK_EVENT_HTTP_OS_DNS 67
INK_EVENT_HTTP_READ_CACHE_HDR 68
INK_EVENT_HTTP_READ_REQUEST_HDR 67
INK_EVENT_HTTP_READ_RESPONSE_HDR 68
INK_EVENT_HTTP_SEND_RESPONSE_HDR 68
INK_EVENT_NET_ACCEPT 164, 165, 214
INK_EVENT_NET_ACCEPT_FAILED 214
INK_EVENT_NET_CONNECT 214
INK_EVENT_NET_CONNECT_FAILED 214
INK_EVENT_VCONN_EOS 123
INK_EVENT_VCONN_READ_COMPLETE 123
INK_EVENT_VCONN_READ_READY 122
INK_EVENT_VCONN_WRITE_COMPLETE 123
INK_EVENT_VCONN_WRITE_READY 123
INK_HTTP_METHOD_CONNECT 92
INK_HTTP_METHOD_DELETE 92
INK_HTTP_METHOD_GET 92
INK_HTTP_METHOD_HEAD 92
INK_HTTP_METHOD_ICP_QUERY 92
INK_HTTP_METHOD_OPTIONS 92
INK_HTTP_METHOD_POST 92
INK_HTTP_METHOD_PURGE 92
INK_HTTP_METHOD_PUT 92
INK_HTTP_METHOD_TRACE 92
INK_HTTP_OS_DNS_HOOK 67, 111
INK_HTTP_READ_CACHE_HDR_HOOK 68, 112
INK_HTTP_READ_REQUEST_HDR_HOOK 67,

111
INK_HTTP_READ_RESPONSE_HDR_HOOK 68,
112
INK_HTTP_REQUEST_TRANSFORM_HOOK 68,
126
INK_HTTP_RESPONSE_TRANSFORM_HOOK 48,
68, 126
INK_HTTP_SELECT_ALT_HOOK 68, 112
INK_HTTP_SEND_REQUEST_HDR_HOOK 67,
112
INK_HTTP_SEND_RESPONSE_HDR_HOOK 68,
112
INK_HTTP_SSN_CLOSE_HOOK 68, 69, 112
INK_HTTP_SSN_START_HOOK 68, 69, 112
INK_HTTP_STATUS_ACCEPTED 173
INK_HTTP_STATUS_BAD_GATEWAY 173
INK_HTTP_STATUS_BAD_REQUEST 173
INK_HTTP_STATUS_CONFLICT 173
INK_HTTP_STATUS_CONTINUE 173
INK_HTTP_STATUS_CREATED 173
INK_HTTP_STATUS_FORBIDDEN 173
INK_HTTP_STATUS_GATEWAY_TIMEOUT 173
INK_HTTP_STATUS_GONE 173
INK_HTTP_STATUS_HTTPVER_NOT_SUPPORTED
173
INK_HTTP_STATUS_INTERNAL_SERVER_ERROR
173
INK_HTTP_STATUS_LENGTH_REQUIRED 173
INK_HTTP_STATUS_METHOD_NOT_ALLOWED
173
INK_HTTP_STATUS_MOVED_PERMANENTLY
173
INK_HTTP_STATUS_MOVED_TEMPORARILY
173
INK_HTTP_STATUS_MULTIPLE_CHOICES 173
INK_HTTP_STATUS_NO_CONTENT 173
INK_HTTP_STATUS_NON_AUTHORITATIVE_INF
ORMATION 173
INK_HTTP_STATUS_NONE 173
INK_HTTP_STATUS_NOT_ACCEPTABLE 173
INK_HTTP_STATUS_NOT_FOUND 173
INK_HTTP_STATUS_NOT_IMPLEMENTED 173
INK_HTTP_STATUS_NOT_MODIFIED 173
INK_HTTP_STATUS_OK 173
INK_HTTP_STATUS_PARTIAL_CONTENT 173
INK_HTTP_STATUS_PAYMENT_REQUIRED 173
INK_HTTP_STATUS_PRECONDITION_FAILED
173
INK_HTTP_STATUS_PROXY_AUTHENTICATION_

REQUIRED 173
INK_HTTP_STATUS_REQUEST_ENTITY_TOO_LARGE
173
INK_HTTP_STATUS_REQUEST_TIMEOUT 173
INK_HTTP_STATUS_REQUEST_URI_TOO_LONG 173
INK_HTTP_STATUS_RESET_CONTENT 173
INK_HTTP_STATUS_SEE_OTHER 173
INK_HTTP_STATUS_SERVICE_UNAVAILABLE 173
INK_HTTP_STATUS_SWITCHING_PROTOCOL 173
INK_HTTP_STATUS_UNAUTHORIZED 173
INK_HTTP_STATUS_UNSUPPORTED_MEDIA_TYPE
173
INK_HTTP_STATUS_USE_PROXY 173
INK_HTTP_TXN_CLOSE_HOOK 68, 112
INK_HTTP_TXN_START_HOOK 68, 112
INK_HTTP_VALUE_BYTES 92
INK_HTTP_VALUE_CHUNKED 92
INK_HTTP_VALUE_CLOSE 92
INK_HTTP_VALUE_COMPRESS 92
INK_HTTP_VALUE_DEFLATE 92
INK_HTTP_VALUE_GZIP 92
INK_HTTP_VALUE_IDENTITY 92
INK_HTTP_VALUE_KEEP_ALIVE 92
INK_HTTP_VALUE_MAX_AGE 92
INK_HTTP_VALUE_MAX_STALE 92
INK_HTTP_VALUE_MIN_FRESH 92
INK_HTTP_VALUE_MUST_REVALIDATE 92
INK_HTTP_VALUE_NO_CACHE 92
INK_HTTP_VALUE_NO_STORE 92
INK_HTTP_VALUE_NO_TRANSFORM 92
INK_HTTP_VALUE_NONE 92
INK_HTTP_VALUE_ONLY_IF_CACHED 92
INK_HTTP_VALUE_PRIVATE 92
INK_HTTP_VALUE_PROXY_REVALIDATE 92
INK_HTTP_VALUE_PUBLIC 93
INK_HTTP_VALUE_S_MAX_AGE 93
INK_IOBUFFER_SIZE_INDEX_128 230
INK_IOBUFFER_SIZE_INDEX_16K 230
INK_IOBUFFER_SIZE_INDEX_1K 230
INK_IOBUFFER_SIZE_INDEX_256 230
INK_IOBUFFER_SIZE_INDEX_2K 230
INK_IOBUFFER_SIZE_INDEX_32K 230
INK_IOBUFFER_SIZE_INDEX_4K 230
INK_IOBUFFER_SIZE_INDEX_512 230
INK_IOBUFFER_SIZE_INDEX_8K 230
INK_LOG_MODE_ADD_TIMESTAMP 240
INK_LOG_MODE_DO_NOT_RENAME 240
INK_MIME_FIELD_ACCEPT 97
INK_MIME_FIELD_ACCEPT_CHARSET 97
INK_MIME_FIELD_ACCEPT_ENCODING 97
INK_MIME_FIELD_ACCEPT_LANGUAGE 97
INK_MIME_FIELD_ACCEPT_RANGES 97
INK_MIME_FIELD_AGE 97
INK_MIME_FIELD_ALLOW 97
INK_MIME_FIELD_APPROVED 97
INK_MIME_FIELD_AUTHORIZATION 97
INK_MIME_FIELD_BYTES 97
INK_MIME_FIELD_CACHE_CONTROL 97

INK_MIME_FIELD_CLIENT_IP 97
INK_MIME_FIELD_CONNECTION 97
INK_MIME_FIELD_CONTENT_BASE 97
INK_MIME_FIELD_CONTENT_ENCODING 97
INK_MIME_FIELD_CONTENT_LANGUAGE 97
INK_MIME_FIELD_CONTENT_LENGTH 97
INK_MIME_FIELD_CONTENT_LOCATION 97
INK_MIME_FIELD_CONTENT_MD5 97
INK_MIME_FIELD_CONTENT_RANGE 97
INK_MIME_FIELD_CONTENT_TYPE 97
INK_MIME_FIELD_CONTROL 97
INK_MIME_FIELD_COOKIE 97
INK_MIME_FIELD_DATE 97
INK_MIME_FIELD_DISTRIBUTION 97
INK_MIME_FIELD_ETAG 97
INK_MIME_FIELD_EXPECT 97
INK_MIME_FIELD_EXPIRES 97
INK_MIME_FIELD_FOLLOWUP_TO 97
INK_MIME_FIELD_FROM 97
INK_MIME_FIELD_HOST 97
INK_MIME_FIELD_IF_MATCH 97
INK_MIME_FIELD_IF_MODIFIED_SINCE 98
INK_MIME_FIELD_IF_NONE_MATCH 98
INK_MIME_FIELD_IF_RANGE 98
INK_MIME_FIELD_IF_UNMODIFIED_SINCE 98
INK_MIME_FIELD_KEEP_ALIVE 98
INK_MIME_FIELD_KEYWORDS 98
INK_MIME_FIELD_LAST_MODIFIED 98
INK_MIME_FIELD_LINES 98
INK_MIME_FIELD_LOCATION 98
INK_MIME_FIELD_MAX_FORWARDS 98
INK_MIME_FIELD_MESSAGE_ID 98
INK_MIME_FIELD_NEWSGROUPS 98
INK_MIME_FIELD_ORGANIZATION 98
INK_MIME_FIELD_PATH 98
INK_MIME_FIELD_PRAGMA 98
INK_MIME_FIELD_PROXY_AUTHENTICATE 98
INK_MIME_FIELD_PROXY_AUTHORIZATION 98
INK_MIME_FIELD_PROXY_CONNECTION 98
INK_MIME_FIELD_PUBLIC 98
INK_MIME_FIELD_RANGE 98
INK_MIME_FIELD_REFERENCES 98
INK_MIME_FIELD_REFERER 98
INK_MIME_FIELD_REPLY_TO 98
INK_MIME_FIELD_RETRY_AFTER 98
INK_MIME_FIELD_SENDER 98
INK_MIME_FIELD_SERVER 98
INK_MIME_FIELD_SET_COOKIE 98
INK_MIME_FIELD_SUBJECT 98
INK_MIME_FIELD_SUMMARY 98
INK_MIME_FIELD_TE 98
INK_MIME_FIELD_TRANSFER_ENCODING 98
INK_MIME_FIELD_UPGRADE 98
INK_MIME_FIELD_USER_AGENT 98
INK_MIME_FIELD_VARY 98
INK_MIME_FIELD_VIA 99
INK_MIME_FIELD_WARNING 99
INK_MIME_FIELD_WWW_AUTHENTICATE 99
278

INK_MIME_FIELD_XREF 99
INK_NULL_MLOC 89
INK_PARSE_CONT 202
INK_PARSE_DONE 183, 202
INK_PARSE_ERROR 183, 202
INK_SUCCESS 150, 151, 152, 153, 154, 156, 157,
158, 159, 161, 162, 163, 164, 165, 166, 167,
169, 170, 171, 172, 174, 175, 176, 177, 178,
179, 180, 181, 182, 184, 185, 186, 187, 188,
190, 191, 193, 194, 195, 197, 198, 200, 201,
202, 203, 204, 205, 206, 207, 209, 211, 212,
213, 215, 216, 217, 218, 220, 223, 224, 228,
229, 231, 233, 236, 237, 238, 240, 241, 242,
243, 244
INK_URL_SCHEME_FILE 94
INK_URL_SCHEME_FTP 94
INK_URL_SCHEME_GOPHER 94
INK_URL_SCHEME_HTTP 94
INK_URL_SCHEME_HTTPS 94
INK_URL_SCHEME_MAILTO 94
INK_URL_SCHEME_NEWS 94
INK_URL_SCHEME_NNTP 94
INK_URL_SCHEME_PROSPERO 94
INK_URL_SCHEME_TELNET 94
INK_URL_SCHEME_WAIS 94
INKMimeHdrFieldValueDelete 193
INKSTAT_TYPE_FLOAT 137
INKSTAT_TYPE_INT64 137
INT_MAX 122
279

280

Function Index
I
INKActionCancel 209
INKActionDone 210
INKAssert 144
INKCacheKeyCreate 215
INKCacheKeyDestroy 216
INKCacheKeyDigestSet 216
INKCacheKeyHostNameSet 216
INKCacheKeyPinnedSet 219
INKCacheRead 217, 218
INKCacheReady 218
INKCacheRemove 219, 220
INKCacheWrite 218
INKConfigDataGet 207
INKConfigGet 208
INKConfigRelease 208
INKConfigSet 116, 117, 208
INKContCall 205
INKContCreate 206
INKContDataGet 206
INKContDataSet 206
INKContDestroy 206
INKContMutexGet 207
INKContSchedule 207
INKDebug 143
INKError 144
INKfclose 146
INKfflush 146
INKfgets 146
INKfopen 146
INKfread 147
INKfree 148
INKfwrite 148
INKHandleMLocRelease 167
INKHandleStringRelease 167
INKHostLookupResult 210
INKHostLookupResultIPGet 211
INKHttpAltInfoCachedReqGet 165
INKHttpAltInfoCachedRespGet 166
INKHttpAltInfoClientReqGet 166
INKHttpAltInfoQualitySet 166
INKHttpHdrClone 93, 168
INKHttpHdrCopy 169
INKHttpHdrCreate 93, 169
INKHttpHdrDestroy 169

INKHttpHdrLengthGet 170
INKHttpHdrMethodGet 93, 170
INKHttpHdrMethodSet 93, 170
INKHttpHdrParseReq 177
INKHttpHdrParseResp 93, 177
INKHttpHdrPrint 171
INKHttpHdrReasonGet 171
INKHttpHdrReasonLookup 171
INKHttpHdrReasonSet 172
INKHttpHdrStatusGet 172
INKHttpHdrStatusSet 93, 174
INKHttpHdrTypeGet 93, 174
INKHttpHdrTypeSet 174
INKHttpHdrUrlGet 175
INKHttpHdrUrlSet 93, 175
INKHttpHdrVersionGet 175
INKHttpHdrVersionSet 176
INKHttpHookAdd 151
INKHttpParserClear 176
INKHttpParserCreate 93, 176
INKHttpParserDestroy 177
INKHttpSsnHookAdd 152
INKHttpSsnReenable 153
INKHttpTxnCachedLookupStatusGet 154
INKHttpTxnCachedReqGet 154
INKHttpTxnCachedRespGet 155
INKHttpTxnClientIncomingPortGet 155
INKHttpTxnClientIPGet 155
INKHttpTxnClientRemotePortGet 156
INKHttpTxnClientRespGet 156
INKHttpTxnErrorBodySet 157
INKHttpTxnHookAdd 157
INKHttpTxnIntercept 163
INKHttpTxnParentProxyGet 158
INKHttpTxnParentProxySet 158
INKHttpTxnReenable 159
INKHttpTxnServerIntercept 164
INKHttpTxnServerReqGet 160
INKHttpTxnServerRespGet 160
INKHttpTxnSsnGet 160
INKHttpTxnTransformedRespCache 161
INKHttpTxnTransformRespGet 161
INKHttpTxnUntransformedRespCache 162
INKInstallDirGet 235
INKIOBufferAppend//DEPR 267

INKIOBufferBlockCreate//DEPR 268
INKIOBufferBlockNext 225
INKIOBufferBlockReadAvail 225
INKIOBufferBlockReadStart 225
INKIOBufferBlockWriteAvail 227
INKIOBufferBlockWriteStart 227
INKIOBufferCopy 227
INKIOBufferCreate 227
INKIOBufferDataCreate//DEPR 268
INKIOBufferDestroy 228
INKIOBufferProduce 228
INKIOBufferReaderAlloc 228
INKIOBufferReaderAvail 228
INKIOBufferReaderClone 229
INKIOBufferReaderConsume 229
INKIOBufferReaderFree 229
INKIOBufferReaderStart 230
INKIOBufferSizedCreate 221, 230
INKIOBufferStart 230
INKIOBufferWaterMarkGet 231
INKIOBufferWaterMarkSet 231
INKIOBufferWrite 231
INKIsDebugTagSet 144
INKmalloc 148
INKMBufferCompress//DEPR 89
INKMBufferCreate 91, 168
INKMBufferDataGet//DEPR 89
INKMBufferDataSet//DEPR 89
INKMBufferDestroy 168
INKMBufferLengthGet//DEPR 89
INKMBufferRef//DEPR 89
INKMBufferUnref//DEPR 89
INKMgmtCounterGet 132, 233
INKMgmtFloatGet 132, 234
INKMgmtIntGet 234
INKMgmtStringGet 132, 234
INKMgmtUpdateRegister 132, 233
INKMimeFieldCopy//DEPR 253
INKMimeFieldCopyValues//DEPR 253
INKMimeFieldCreate//DEPR 253
INKMimeFieldDestroy//DEPR 254
INKMimeFieldNameGet//DEPR 254
INKMimeFieldNameSet//DEPR 254
INKMimeFieldNext//DEPR 255
INKMimeFieldValueAppend//DEPR 255
INKMimeFieldValueDelete//DEPR 255
INKMimeFieldValueGet//DEPR 256
INKMimeFieldValueGetDate//DEPR 256
INKMimeFieldValueGetInt//DEPR 256
INKMimeFieldValueGetUint//DEPR 256
INKMimeFieldValueInsert//DEPR 257
INKMimeFieldValueInsertDate//DEPR 257
INKMimeFieldValueInsertInt//DEPR 258

INKMimeFieldValueInsertUint//DEPR 258
INKMimeFieldValuesClear//DEPR 258
INKMimeFieldValuesCount//DEPR 258
INKMimeFieldValueSet//DEPR 259
INKMimeFieldValueSetDate//DEPR 259
INKMimeFieldValueSetInt//DEPR 259
INKMimeFieldValueSetUint//DEPR 260
INKMimeHdrClone 198
INKMimeHdrCopy 198
INKMimeHdrCreate 199
INKMimeHdrDestroy 200
INKMimeHdrFieldAppend 187
INKMimeHdrFieldClone 187
INKMimeHdrFieldCopy 188
INKMimeHdrFieldCopyValues 188
INKMimeHdrFieldCreate 188
INKMimeHdrFieldDelete//DEPR 266
INKMimeHdrFieldDestroy 189
INKMimeHdrFieldFind 200
INKMimeHdrFieldGet 200
INKMimeHdrFieldInsert//DEPR 266
INKMimeHdrFieldLengthGet 189
INKMimeHdrFieldNameGet 189
INKMimeHdrFieldNameSet 190
INKMimeHdrFieldNext 190
INKMimeHdrFieldNextDup 88, 96, 191
INKMimeHdrFieldRemove 201
INKMimeHdrFieldRetrieve//DEPR 266
INKMimeHdrFieldsClear 201
INKMimeHdrFieldsCount 201
INKMimeHdrFieldValueAppend 191
INKMimeHdrFieldValueDateGet 192
INKMimeHdrFieldValueDateInsert 192
INKMimeHdrFieldValueDateSet 192
INKMimeHdrFieldValueGet//DEPR 260
INKMimeHdrFieldValueGetDate//DEPR 260
INKMimeHdrFieldValueGetInt//DEPR 261
INKMimeHdrFieldValueGetUInt//DEPR 261
INKMimeHdrFieldValueInsert//DEPR 263
INKMimeHdrFieldValueInsertDate//DEPR 263
INKMimeHdrFieldValueInsertInt//DEPR 264
INKMimeHdrFieldValueInsertUInt//DEPR 264
INKMimeHdrFieldValueIntGet 193
INKMimeHdrFieldValueIntInsert 193
INKMimeHdrFieldValueIntSet 194
INKMimeHdrFieldValuesClear 197
INKMimeHdrFieldValuesCount 198
INKMimeHdrFieldValueSet//DEPR 264
INKMimeHdrFieldValueSetDate//DEPR 265
INKMimeHdrFieldValueSetInt//DEPR 265
INKMimeHdrFieldValueSetUInt//DEPR 265
INKMimeHdrFieldValueStringGet 194
INKMimeHdrFieldValueStringInsert 194
282

INKMimeHdrFieldValueStringSet 195
INKMimeHdrFieldValueUintGet 195
INKMimeHdrFieldValueUIntInsert 197
INKMimeHdrFieldValueUintSet 197
INKMimeHdrLengthGet 201, 202
INKMimeHdrParse 202
INKMimeHdrPrint 203
INKMimeParserClear 202
INKMimeParserCreate 203
INKMimeParserDestroy 203
INKMutexCreate 203
INKMutexLock 204
INKMutexLockTry 204
InkMutexLockTry 204
InkMutexTryLock//DEPR 268
INKNetAccept 214
INKNetConnect 214
INKNetVConnRemoteIPGet 215
INKNetVConnRemotePortGet 215
INKPluginDirGet 235
INKPluginInit 142
INKPluginLicenseRequired 235
INKPluginRegister 142
INKrealloc 149
INKStatCoupledGlobalAdd 238
INKStatCoupledGlobalCategoryCreate 239
INKStatCoupledLocalAdd 239
INKStatCoupledLocalCopyCreate 239
INKStatCoupledLocalCopyDestroy 240
INKStatCreate 237
INKStatDecrement 237
INKStatFloatAddTo 236
INKStatFloatGet 236
INKStatFloatRead//DEPR 267
INKStatFloatSet 238
INKStatIncrement 237
INKStatIntAddTo 237
INKStatIntGet 236
INKStatIntRead//DEPR 267
INKStatIntSet 238
INKStatsCoupledUpdate 240
INKstrdup 149
INKstrndup 149
INKTextLogObjectCreate 240
INKTextLogObjectDestroy 244
INKTextLogObjectFlush 243
INKTextLogObjectHeaderSet 241
INKTextLogObjectRollingEnabledSet 242
INKTextLogObjectRollingIntervalSecSet 242
INKTextLogObjectRollingOffsetHrSet 243
INKTextLogObjectWrite 243
INKThreadCreate 150
INKThreadDestroy 150

INKThreadInit 151
INKThreadSelf 151
INKTrafficServerVersionGet 143
INKTransformCreate 220
INKTransformOutputVConnGet 221
INKUrlClone 95, 178
INKUrlCopy 178
INKURLCreate 178
INKUrlDestroy 179
INKUrlFtpTypeGet 179
INKUrlFtpTypeSet 180
INKUrlHostGet 180
INKUrlHostSet 180
INKUrlHttpFragmentGet 181
INKUrlHttpFragmentSet 95, 181
INKUrlHttpParamsGet 181
INKUrlHttpParamsSet 182
INKUrlHttpQueryGet 182
INKUrlHttpQuerySet 182
INKUrlLengthGet 183
INKUrlParse 95, 183
INKUrlPasswordGet 95, 183
INKUrlPasswordSet 184
INKUrlPathGet 95, 184
INKUrlPathSet 184
INKUrlPortGet 95, 185
INKUrlPortSet 185
INKUrlPrint 95, 179
INKUrlSchemeGet 185
INKUrlSchemeSet 186
INKUrlStringGet 186
INKUrlUserGet 186
INKUrlUserSet 187
INKVConnAbort 211
INKVConnCachedObjectSizeGet 211
INKVConnClose 211
INKVConnClosedGet 212
INKVConnRead 212
INKVConnReadVIOGet 212
INKVConnShutdown 124, 213
INKVConnWrite 124, 213
INKVConnWriteVIOGet 124, 213
INKVIOBufferGet 221
INKVIOContGet 222
INKVIOMutexGet 222
INKVIONBytesGet 222
INKVIONBytesSet 223
INKVIONDoneGet 223
INKVIONDoneSet 223
INKVIONTodoGet 224
INKVIOReaderGet 224
INKVIOReenable 128, 224
INKVIOVConnGet 221
283

284

285

286

Type Index
I
INKAction 117
INKCacheKey 215
INKConfig 115, 207, 208
INKCont 109, 206
INKEvent 153, 205
INKEventFunc 33, 206
INKFile 147
INKHttpAltInfo 74, 165
INKHttpHookID 67
INKHttpParser 176
INKHttpSsn 152, 153
INKHttpStatus 172
INKHttpTxn 33, 69
INKHttpType 174
INKIOBuffer 128
INKIOBufferBlock 128
INKIOBufferData 128
INKIOBufferReader 128
INKMBuffer 85, 178
INKMgmtCounter 233
INKMgmtFloat 234
INKMgmtInt 234
INKMgmtString 234
INKMimeParser 202
INKMLoc 85, 178
INKMutex 101, 206
INKPluginRegistrationInfo 142
INKSDKVersion 142
INKStat 137
INKStatType 137
INKTextLogObjectCreate 240
INKTextLogObjectHeaderSet 241
INKTextLogObjectRollingEnabledSet 242
INKTextLogObjectRollingIntervalSecSet 242
INKTextLogObjectRollingOffsetHrSet 243
INKThreadFunc 150
INKVIO 42, 127
V
vconnection 41

288

COPYRIGHT NOTICES

Portions of Traffic Server include third party technology used under license. One or more of the following notices
may apply in connection with the license and use of Traffic Server.

tcl-7.4 license. This software is copyrighted by the Regents of the University of California, Sun Microsystems, Inc.,
and other parties. The following terms apply to all files associated with the software unless explicitly disclaimed in
individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its documentation
for any purpose, provided that existing copyright notices are retained in all copies and that this notice is included
verbatim in any distributions. No written agreement, license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and need not follow the licensing terms described
here, provided that the new terms are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN “AS-IS”
BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause as DFARS 252.227-7013
and FAR 52.227-19.

SSLeay-0.6.6 License. Copyright © 1995-1997 Eric Young (eay@mincm.oz.au). All rights reserved.

Redistribution and use in source code and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1.Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2.Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3.All advertising materials mentioning features or use of this software must display the following acknowledgement:
“This product incorporates cryptographic software written by Eric Young (eay@mincom.oz.au).” The word
‘cryptographic’ can be left out if the routines from the library being used are not cryptographic related.

4.If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you
must include an acknowledgement “This product includes software written by Tim Hudson (tjh@mincom.oz.au)”

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

RSAREF (for MD5). Copyright © 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.License to
copy and use this software is granted provided that it is identified as the “RSA Data Security, Inc. MD5 Message-
Digest Algorithm” in all material mentioning or referencing this software or this function.

License to copy and use this software is granted provided that it is identified as the “RSA Data Security, Inc. MD5
Message-Digest Algorithm” in all material mentioning or referencing this software or this function.

License is also granted to make and use derivative works provided that such works are identified as “derived from the
RSA Data Security, Inc. MD5 Message-Digest Algorithm” in all material mentioning or referencing the derived
work.

RSA Data Security, Inc. makes no representations concerning either the merchantability of this software or the
suitability of this software for any particular purpose. It is provided “as is” without express or implied warranty of any
kind.

These notices must be retained in any copies of any part of this documentation and/or software.

Portions of Traffic Server include technology used under license from RSA Data Security, Inc.

libdb-1.85 License. Copyright © 1990, 1993, 1994 The Regents of the University of California. All rights reserved.

Redistribution and use in source code and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1.Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2.Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3.All advertising materials mentioning features or use of this software must display the following acknowledgement:
This product includes software developed by the University of California, Berkeley and its contributors.

 4.Neither the name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Gateway Daemon, Release 4 license. © The Regents of the University of Michigan all rights reserved. Gate
Daemon was originated and developed through release 3.0 by Cornell University and its collaborators.

Copyright notices and other restrictions as they currently appear in the GateD source files include one or more of
the following:

Copyright © 1995 The Regents of the University of Michigan. All rights reserved. Gate Daemon was originated
and developed through release 3.0 by Cornell University and its collaborators.

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Royalty-free licenses to redistribute GateD Release 2 in whole or in part may be obtained by writing to: Gate
Daemon Project, The University of Michigan, Merit, 4251 Plymouth Road, Suite C, Ann Arbor, MI 48105-2785,
(313) 936-9430

GateD is based on Kirton’s EGP, UC Berkeley's routing daemon (routed), and DCN’s HELLO routing Protocol.
Development of GateD has been supported in part by the National Science Foundation.

Please forward bug fixes, enhancements and questions to the GateD mailing list: gated-bug@gated.merit.edu.

Cornell Authors: Jeffrey C. Honig, Scott W. Brim

Portions of this software may fall under the following copyrights: Copyright © 1988 Regents of the University of
California. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that the above copyright notice and this
paragraph are duplicated in all such forms and that any documentation, advertising materials, and other materials
related to such distribution and use acknowledge that the software was developed by the University of California,
Berkeley. The name of the University may not be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Copyright 1991 D.L.S. Associates

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby
granted without fee, provided that the above copyright notice appear in all copies and that both the copyright notice
and this permission notice appear in supporting documentation, and that the name of D.L.S. not be used in
advertising or publicity pertaining to distribution of the software without specific, written permission. D.L.S. makes
no representation about the suitability of this software for any purpose. It is provided “as is” without express or
implied warranty.

D.L.S. DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL D.L.S. BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Authors: Robert Hagens and Dan Schuh

Copyright 1989, 1990, 1991. The University of Maryland, College Park, Maryland. All rights reserved.

The University of Maryland College Park (“UMCP”) is the owner of all right, title and interest in and to UMD
OSPF (the “Software”). Permission to use, copy and modify the Software and its documentation solely for non-
commercial purposes is granted subject to the following terms and conditions:

1.This copyright notice and these terms shall appear in all copies of the Software and its supporting documentation.

2.The Software shall not be distributed, sold or used in any way in a commercial product, without UMCP's prior
written consent.

3.The origin of this Software may not be misrepresented, either by explicit claim or by omission

4.Modified or altered versions must be plainly marked as such, and must not be misrepresented as being the original
software.

5.The Software is provided “AS IS.” User acknowledges that the Software has been developed for research purposes
only. User agrees that use of the Software is at user's own risk. UMCP disclaims all warranties, express and implied,
including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Royalty-free licenses to redistribute UMD OSPF are available from the University of Maryland, College Park. For
details contact: Office of Technology Liaison, 4312 Knox Road, University of Maryland, College Park, Maryland
20742, (301) 405-4209, (301) 314-9871 fax

This software was written by Rob Coltun. rcoltun@ni.umd.edu

gd 1.3 graphics library.

Portions copyright 1994, 1995, 1996, 1997, 1998, by Cold Spring Harbor Laboratory. Funded under Grant P41-
RR02188 by the National Institutes of Health.

Portions copyright 1996, 1997, 1998, by Boutell.Com, Inc.

GIF decompression code copyright 1990, 1991, 1993, by David Koblas (koblas@netcom.com).

Non-LZW-based GIF compression code copyright 1998, by Hutchison Avenue Software Corporation (http://
www.hasc.com/, info@hasc.com).

libregx package. Copyright 1992, 1993, 1994, 1997 Henry Spencer. All rights reserved. This software is not subject
to any license of the American Telephone and Telegraph Company or of the Regents of the University of California.

Permission is granted to anyone to use this software for any purpose on any computer system, and to alter it and
distribute it, subject to the following restrictions:

1. The author is not responsible for the consequences or use of this software, no matter how awful, even if they arise
from flaws in it.

2. The origin of this software must not be misrepresented, either by explicit claim or by omission. Since few users
ever read sources, credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be misrepresented as being the original software.
Since few users ever read sources, credits must appear in the documentation.

4. This notice may not be removed or altered.

Emanate. Licensee agrees to preserve and reproduce the copyright notices contained in the Program Source and
Software in the same form and location as any legend appearing on or in the original from which copies are made.

Portions of Traffic Server include Emanate software developed by SNMP Research International, Incorporated.
Copying and distribution is by permission of SNMP Research International, Incorporated, and relevant third parties.

INN. Portions of Traffic Server include software developed by Rich Salz. Copyright 1991 Rich Salz. All rights
reserved. Revision: 1.4

Redistribution and use in any form are permitted provided that the following restrictions are met:

1. Source distributions must retain this entire copyright notice and comment.

2. Binary distributions must include the acknowledgement “This product includes software developed by Rich Salz.”
in the documentation or other materials provided with the distribution. This must not be represented as an
endorsement or promotion without specific prior written permission.

3. The origin of this software must not be misrepresented, either by explicit claim or by omission. Credits must
appear in the source and documentation.

4. Altered versions must be plainly marked as such in the source and documentation and must not be misrepresented
as being the original software.

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

NetFactory, Inc. Portions of Traffic Server include technology used under license from NetFactory, Inc.

IP-Filter package. Portions of Traffic Server include technology used under license from Darren Reed.

	Preface
	Who should read this book
	How to use this book
	Conventions used in this manual

	Chapter 1 Getting Started
	Understanding Traffic Edge plugins
	The role of plugins
	Possible uses for plugins
	Plugin loading
	Plugin configuration
	Configuration file rules
	Plugin initialization

	A simple plugin
	hello world source
	Compiling your plugin
	Updating the plugin.config file
	Specifying the plugin’s location
	Restarting Traffic Edge

	Plugin Registration and Version Checking
	Naming conventions

	Chapter 2 Creating Traffic Edge Plugins
	The Asynchronous Event Model
	Traffic Edge HTTP State Machine
	Roadmap for creating plugins

	Chapter 3 Header-Based Plugin Examples
	Overview
	The Blacklist plugin
	Creating the parent continuation
	Setting a Global Hook
	Setting Up UI Update Callbacks
	Accessing the Transaction Being Processed
	Setting up a transaction hook
	Working with HTTP header functions

	The Basic Authorization Plugin
	Creating the plugin’s parent continuation and global hook
	Implementing the handler and getting a handle to the transaction
	Working with HTTP headers
	Setting a transaction hook

	Chapter 4 HTTP Transformation Plugins
	Writing content transform plugins
	Transformations
	VIOs
	IO buffers

	The sample null transform plugin
	The append-transform plugin
	The sample buffered null transform plugin

	Chapter 5 New Protocol Plugins
	About the sample protocol
	Protocol plugin structure
	Continuations in the Protocol plugin
	Event flow
	One way to implement a transaction state machine
	Processing a typical transaction

	Chapter 6 HTTP Hooks and Transactions
	The set of hooks
	Adding hooks
	HTTP sessions
	HTTP transactions
	Intercepting HTTP Transactions
	Initiate HTTP Connection
	HTTP alternate selection

	Chapter 7 Miscellaneous Interface Guide
	Debugging functions
	The INKfopen family
	Memory allocation
	Thread functions

	Chapter 8 HTTP Headers
	About HTTP headers
	Guide to Traffic Edge HTTP header system
	No null-terminated strings
	Duplicate MIME fields are not coalesced
	MIME fields always belong to an associated MIME header
	Release marshal buffer handles
	Deprecated functions

	Marshal buffers
	HTTP headers
	URLs
	MIME headers

	Chapter 9 Mutex Guide
	Mutexes
	Locking global data
	Protecting a continuation’s data
	How to associate a continuation to every HTTP transaction
	How to add the new continuation
	How to store data specific to each HTTP transaction
	Using locks
	Special case: continuations created for HTTP transactions

	Chapter 10 Continuations
	Mutexes and data
	How to activate continuations
	Writing handler functions

	Chapter 11 Plugin Configurations
	Plugin configurations

	Chapter 12 Actions Guide
	Actions
	Hosts Lookup API

	Chapter 13 IO Guide
	Vconnections
	The vconnection user’s view

	Net VConnections
	Transformations
	The vconnection implementor’s view
	Transformation VConnection

	VIOs
	IO buffers
	Guide to the cache API
	How to do a cache read
	How to do a cache write
	How to do a cache remove
	Errors
	Example

	Chapter 14 Plugin Management
	Setting up a plugin management interface
	Reading Traffic Edge settings and statistics
	Accessing installed plugin files
	Licensing your plugin
	Format of plugin.db
	Setting up licensing
	Example

	Generating a license key
	Guide to the logging API

	Chapter 15 Adding Statistics
	Uncoupled statistics
	Coupled statistics
	Example using the redirect-1.c sample plugin

	Viewing statistics using Traffic Line

	Chapter 16 Function Reference
	List of function groups
	Initialization functions
	Debugging functions
	The INKfopen family
	Memory allocation
	Thread functions
	HTTP functions
	Hook functions
	Session functions
	HTTP transaction functions

	Initiate Connection
	Intercepting HTTP transaction functions
	Alternate selection functions
	Handle release functions
	Marshal buffers
	HTTP header functions
	URL functions
	MIME headers

	Mutex functions
	Continuation functions
	Plugin configuration functions
	Action functions
	Host Lookup Functions
	Vconnection functions
	Netvconnection functions
	Cache interface functions
	Transformation functions
	VIO functions
	IO buffer interface
	Management interface function
	Traffic Edge Configuration Read Functions
	Customer installation and licensing functions
	Statistics functions
	Uncoupled statistics
	Coupled statistics

	Logging functions

	Appendix A Sample Source Code
	blacklist-1.c

	Appendix B Deprecated Functions
	Deprecated MIME header functions
	Other Deprecated Functions
	Statistic Functions
	IO Buffer Interface
	Mutex function

	Appendix C Troubleshooting Tips
	Unable to Compile Plugins
	Unable to Load Plugins
	Using Debug Tags
	Other useful internal debug tags

	Using a Debugger
	Debugging Tips:

	Debugging Memory Leaks

	Concept Index
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	V
	W

	Constant Index
	Function Index
	Type Index

