= ®

Il n k t o mi

Traffic Edge Software Developer’s Kit
Programmer’s Guide

Release 1.5

June 2002

© 2002 Inktomi Corporation. All rights reserved.

Inktomi, Traffic Server, Traffic Edge, Traffic Edge Media Edition, Media-IXT, Traffic
Edge Security Edition, and the tri-colored cube design are trademarks or registered
trademarks of Inktomi Corporation in the United States and other countries.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States and in other countries.

Apple, Macintosh, and QuickTime are trademarks or registered trademarks of
Apple Computer, Inc. in the United States and in other countries.

Java, Solaris, Sun, Sun Microsystems, and Ultra are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and in other countries.
SPARC is a trademark or registered trademark of SPARC International, Inc. in the
United States and in other countries.

Linux is a trademark of Linus Torvalds in the United States and in other countries.

Microsoft, Windows, Windows NT, and Windows Media are trademarks or
registered trademarks of Microsoft Corporation in the United States and in other
countries.

Netscape and Netscape Navigator are registered trademarks of Netscape
Communications Corporation in the United States and in other countries.

Pentium is a registered trademark of Intel Corporation in the United States and in
other countries.

RealNetworks, RealPlayer, and RealServer are trademarks or registered trademarks
of RealNetworks, Inc. in the United States and in other countries.

Red Hat is a registered trademark of Red Hat, Inc. in the United States and in other
countries.

UNIX is a registered trademark in the United States and in other countries,
exclusively licensed through X/Open Company, Ltd.

Other product and brand names are trademarks of their respective owners.

Content Networking Solutions Group
4100 East Third Avenue
Foster City, CA 94404

Phone: (650) 653-2800
Fax: (650) 653-2801
Web: http://www.inktomi.com

Contents

o €= 1= Uo7 TP PP 9
Who should read thiS DOOKcccciiiiiiiiiccc s 9

HOW t0 USe thiS DOOK ..o 9

Conventions used in this Manual ... 1

Chapter 1 GEtEING STAMTEA ... e e e e 13
Understanding Traffic Edge plugins ... 13

The role Of PIUGINS.....c.ooeccc e 13

Possible USES fOr PIUGINSc..cvoviiecc e 14

(] [WTe T g I [= o | o PSSR 16

Plugin configuIration ... 16

Configuration file rUleS.........ccoiiii 17

Plugin initialization ... 17

A SIMPIE PIUGIN oo 17

NEllO WOTIA SOUFCE ..o 18

Compiling YOUF PIUGIN ..o 18

Updating the plugin.config filecccocooeiiiii i, 19

Specifying the plugin’s 10Cation ...t 19

Restarting Traffic EAQE.......ccoe e 20

Plugin Registration and Version Checking...........ccccoooiiniiiiiiiicinince, 20

NaMING CONVENTIONS ...ttt ebe s 21

Chapter 2 Creating Traffic EAge PIUQINSccviiiiiiiee e 23
The Asynchronous EVent MOdEL..........ccocoeriiniiniieiniceee e 23

Traffic Edge HTTP State Machine ..o 25

Roadmap for creating PlUGINS ... s 28

Chapter 3 Header-Based Plugin EXampPles ... 31
OVEIVIBW ..ottt 31

The BIacklist PIUQIN.......ccooiiiie e 31

Creating the parent continUAtIoNc.ccocoviiiiiiiicie e 32

Setting @ Global HOOKcccoiiiiiiiiic e 33

Setting Up Ul Update Callbacks.............ccoviiriiniiniieeess 33

Accessing the Transaction Being Processed.........ccocovvevvviviiviivnivninseneneseenes 33

Setting up a transaction NOOKcccceieiiiiie i 34

Working with HTTP header functionscccccevvveviieic i 35

The Basic Authorization PIUQIN ... 36

Creating the plugin’s parent continuation and global hook..................... 36

Implementing the handler and getting a handle to the transaction........ 36

Working With HTTP headers. ..o 37

Setting a transaction NOOK............coiiiiiiiii e 39

Chapter 4 HTTP Transformation PIUGINSc...eiiiiiiiii e 41
Writing content transform plUugins...........ccocoeoiiininn e 41

TranSTOrMAatIONS ..o 42

VIO ettt bbbttt sttt er et et nbe e nnas 42

O BUFFRIS. . bbb e 43

The sample null transform plugin.........cccoooeeiii i 43

The append-transform plugin........c.ccoooeie i 47

The sample buffered null transform plugin..........cccccoviiiiiiinece, 49

Chapter 5 NEeW ProtoCol PIUQINSuuiiiiiiiiiiiae ettt 55
About the sample Protocol ... 55

Protocol plUuGQin SLFUCTUNEcccvviiiecece e ene 58

Continuations in the Protocol plugin........c.ccocevveiiicicini e 58

EVENE FIOW ..o e 59

One way to implement a transaction state machine..............ccccocvneene 60

Processing a typical tranSaction ..o 61

Chapter 6 HTTP HOOKS and TranSacClioNScooouiiiieiiiiiiiie e 65
The St OF NOOKS.....cviiiece e 65

AdAING NOOKS ...t 67

HTTP SESSIONS ..ottt sttt sttt st s ne s e ne e 68

HTTP LtranSaCtioNScceveiiicicese ettt 69

Intercepting HTTP TranSacCtionsSccooveiiiiinieiienseseseese e 73

Initiate HTTP CONNECLION.......coiciiiiicicece e 73

HTTP alternate SEleCtioN.........ccooviiiiiiie e 73

Chapter 7 Miscellaneous Interface GUIEccceeeeiiiiiiiiiicc i 79
Debugging fFUNCLIONSccviiicice s s 79

The INKFOPen family ... 79

MeMOrY @llOCALION ..o e 80

Thread fUNCLIONSc..oiiic s 80

Chapter 8 HTTP HEAAGIS ..ottt ettt a e e e e enaees 83
ADOUL HTTP hEATEKS. ...ttt 83

Guide to Traffic Edge HTTP header SYStemcocooeiiiiieiiniene e 87

No null-terminated StrNGSccoeiiiiiie e 87

Duplicate MIME fields are not coalescedccooviviivnivnieninncncreisennns 87

MIME fields always belong to an associated MIME header 88

Release marshal buffer handles ... 88

Deprecated fFUNCLIONS.........coiiiiiiie e 89

4 Contents

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

MaArsShal DUTTEISeeiieeee e 91

o I I (=T U0 1= TR 91
L] 3 U 94

Y LAY 1 1= T [=Y TR 95

[LR () 10 T (=TT 101
IMIUTEXES .ottt e e s e e e s s bbb e e e s e s bbb e e e e s sab b b e e e e s s bbbaes 101
Locking global data.........ccccccoviviinineieccce e 101
Protecting a continuation’s dataccccovvvevvienin s 102

How to associate a continuation to every HTTP transaction 102

How to add the new continUAatioN..........cccooeciiiiceiee e 102

How to store data specific to each HTTP transaction...........cccccccecvevnene 104

USING TOCKS ...ttt 106
Special case: continuations created for HTTP transactions 107

(O00]) A1 0 LU F=1 10 o -3 109
MULEXES AN AALA.......cccceiiciiiiie e re s 109
How to activate CONtINUALIONScocveiiiiiiccee e 110
Wrriting handler fUNCLIONS...........cooov i 111
Plugin ConfiguIatioNS........eeiiiiiii e 115
Plugin configUIatioNScooiiiiiie e e 115
YN (L0 A FTE 10 Lo [T 117
F o3 1 10 o 1T TR 117
HOSES LOOKUPD AP ...ttt 120

@ 2 7T o =, 121
Vo7 a1 01101 [0 o 13 121
The VCONNECTION USEI’S VIBWviiieeiei ettt sttt ettt saae s 121

N L=] AV Of0] a1 g 1ot Ao o F- TR 124
TranSfOrMALIONScocueieiiiee e rae e s sabe e ens 124
The vconnection implementor’s VIEW ... 124
Transformation VCONNECHIONcocveeiiiie ettt 125

V2 [1T 127

(@ 018 1 11 TSR 128
GUIAE tO the CACNE AP ...t 128

[[0)VLV (o Yo [JF- o= Tox o [N (= L [129

HOW t0 d0 @ CAChE WIITE ..o 129

HOW t0 d0 @ CAChe FEBMOVE ... 129

= (0] £ RO 129
EXAMPIE ..o 129

5 Contents

Chapter 14

Chapter 15

Chapter 16

Plugin Managementuuuiuiiiiiiiiisie e 131
Setting up a plugin management interface...........cccoccvivvicii v 131
Reading Traffic Edge settings and StatiStiCS............ccooevivvieiinii v 132
Accessing installed plugin files ... 132
Licensing YOUT PIUGINccvviiie it 133

Format of plugin.db.........ccoo oo 133
Setting UP HCENSING ..o s 134
ez 10 0] o S 134
Generating @ liCENSE KEYovcuiiiiiiiiinese e 134
Guide to the [0ggiNG APloco e 135

WX [o LYo TS = L1 4o 137
UNCcoupled STAtISTICScovivircecece e 137
(01011 o] [=To) r= 1 1) 1 o3 PSP 137
Viewing statistics using Traffic LiNe......cc.ccccvivviiicicieciecn e 139

FUNCLION REFEIENCE. ..o 141
List Of FUNCLION QrOUPScoiiieiiiie e 141
Initialization FUNCLIONSccooiiii s 142
Debugging fUNCLIONS ..o s 143
The INKFOPen family ... 145
MemMOry @llOCAIONciiiiiiie s 148
Thread fUNCLIONS ..o 150
HTTP FUNCLIONS ...ttt sttt 151

HOOK FUNCLIONS ..ottt e 151
SESSION FUNCLIONS ...t 152
HTTP transaction fUNCLIONS..........ocooiiiiiiiiece e 154
INItiate CONNECLIONc.iviiiiiiiiicie e 162
Intercepting HTTP transaction funCtions..........cc.ccocv v 163
Alternate selection FUNCHIONS ... 165
Handle release fUNCLIONS...........cccoviiiiic i 167
Marshal DUTTErS.oov e e 167
HTTP header fUNCLIONSccccoviiiiiiiece e e 168
URL FUNCHIONS ...ttt 178
MIME NEBAAEISoviiiiiiictiie et 187
MULEX FUNCLIONS ...t 203
ContinUAtioN FUNCLIONScooiiiieee e 205
Plugin configuration fuNCLIONSccccceiiiiicce e 207
ACHION FUNCLIONS ... 209
HOSt LOOKUP FUNCLIONS.oviiiiireie et 210

6 Contents

VCONNECTION TUNCLIONS ...ttt ettt s e s 211

NetveonNeCtion FUNCLIONS ..o 214

Cache interface fUNCLIONSccoiiiiii e 215

Transformation fFUNCLIONScoviiiiiii e 220

VIO FUNCTIONS ... 221

1O BUTTEr INTEITACE ... 225

Management interface fuNCLiONcccoov i, 233

Traffic Edge Configuration Read FUNCLIONSccooveiiii i 233

Customer installation and licensing functions.............cccoccove v, 235

SEALISTICS TUNCLIONS ... s 236

UNCOUPIEd STALISTICS ...c.veviveie e e 236

1010107 o] [=To) r= L 1) o3 SRS 238

LOgginNg FUNCLIONS.cuiiiiiiiiie e 240

Appendix A Sample SOUICE COUERcccoiii it e e r e e e e 245
DIACKIIST-1.C .. 245

Appendix B Deprecated FUNCLIONS ...cccoiiiiiiii s a e e 253
Deprecated MIME header fuNCLIONS..........ccccccveiv i 253

Other Deprecated FUNCLIONScciieivieiiiie e 267

STAtiISTIC FUNCLIONS ..ot e e 267

1O BUFfEr INTEITaCE ... 267

MUEEX FUNCHION ..ot 268

Appendix C Troubleshooting TIPS .o 271
Unable to Compile PIUGINSc.ooiieieecrcece e 271

Unable to Load PIUGINScoeiiicicece e 272

USING DeBUQG TagS. .. ee e 272

Other useful internal debug tags.........cocooiiiiiiiiieieece e 273

USING @ DEDUQGUET ... 273

DebUGING THPS: ..ttt bbbt 273

Debugging Memory LeakKs.........cciiiiiiiiiiie e 273

(O7e] aTet=T o) A [Lo [GO PP PUPPPPTPPPPPRP 275
CONSTANT INAEX ...ttt e e s e e s et r e e e e s an e e e s s nnrr e e e e s snrreeaeaaas 277
FUNCHION INAEX......oiiiiiiiiiiii i 281
TYPE INAEX ..ttt e ettt e e ettt e s e bbb et e e s aabb et e e s ab b e e e e nnnne s 287

Contents

7

8

Contents

Preface

This manual is a reference for creating plugins, programs that add services such as
filtering or content transformation, or entire features such as new protocol support, to

Inktomi Traffic Edge. You create plugins using the Traffic Edge Software Development Kit
(SDK) which consists of:

m This manual, the Traffic Edge SDK Programmer’s Guide

m | nkAPI . h, the header file containing the Traffic Edge API

m Sample Traffic Edge plugin code

m SDKt est, a tool for testing plugins; SDKtest includes synthetic clients and servers
m Header files containing the SDKtest APlIs (client and server APIs)

m Sample Traffic Edge SDKt est _cl i ent and SDKt est _ser ver plugins

m The Traffic Edge SDKtest User’s Guide, the guide to using SDKtest and writing SDKtest
plugins

This preface contains the following information:

= Who should read this book, on page 9 tells you what background you need in order to
understand the material in this manual

m How to use this book, on page 9 outline the strucure of this manual and gives guidelines
on how to use it for various purposes (basic learning about plugins, how to write
specific kinds of plugins, how to find reference information)

= Conventions used in this manual, on page 11 lists the typographic conventions used in
this manual

Who should read this book

This manual is intended for programmers who want to write plugin programs that add
services to Traffic Edge.

This manual assumes a cursory knowledge of the C programming language, the Hyper-
Text Transfer Protocol (HTTP), and Multipurpose Internet Mail Extensions (MIME).

How to use this book

This book has four parts:

= Introduction and overview

m Tutorials on writing specific kinds of plugins: HTTP header-based plugins, content
transformation plugins, and protocol plugins

m Guides on specific interfaces
m Reference chapter and appendixes

If you are new to writing Traffic Edge plugins, read the first two chapters, Getting Started
and Creating Traffic Edge Plugins, and use the remaining chapters as needed. The third
chapter, Header-Based Plugin Examples, for details about plugins that work on HTTP
headers. Read the fourth chapter, HTTP Transformation Plugins, if you want to write a
plugin that transforms or scans the body of an HTTP response. Read “New Protocol
Plugins” on page 55 if you want to support your own protocol on Traffic Edge.

Look up information in the following indexes:

= “Concept Index” on page 275, listing information by subject

= “Function Index” on page 281, listing all Traffic Edge API calls
= “Constant Index” on page 277

m “Type Index” on page 287

In the PDF and HTML formats of this book, cross references are active links. Click on links
to access the cross reference.

Following is a chapter-by-chapter breakdown of chapter contents:
m “Getting Started” on page 13

How to compile and load plugins. Walks through a simple hel | o wor | d example.
Explains how to initialize and register plugins.

m “Creating Traffic Edge Plugins” on page 23

Basic structures that all plugins use. Events, continuations, and how to hook on to
Traffic Edge processes. Detailed explication of the sample blacklisting plugin.

m “Header-Based Plugin Examples” on page 31

Detailed explication of writing plugins that work on HTTP headers. Discusses the
sample blacklisting and basic authorization plugins.

m “HTTP Transformation Plugins” on page 41

Detailed explication of the null-transform example. Discusses vconnections, VIOs,
and 10 buffers.

= “New Protocol Plugins” on page 55

Detailed explanation of sample protocol plugin that supports a synthetic protocol.
Discusses vconnections, mutexes, and the new net connection, DNS lookup, logging,
and cache APIs.

The remaining chapters are the API function reference, organized according to function
type.

m “Miscellaneous Interface Guide” on page 79

Functions include error writing and tracing functions, thread functions, and Traffic
Edge API versions of the mal | oc and f open families. The Traffic Edge API versions
overcome various C library limitations (such as portability to all Traffic Edge-
supported platforms).

10

“HTTP Hooks and Transactions” on page 65
Use the functions in this chapter to hook your plugin to Traffic Edge HTTP processes.
“HTTP Headers” on page 83

These functions examine and modify HTTP headers, MIME headers, URLSs, and the
marshal buffers that contain header information. This chapter contains instructions
for implementing performance enhancements for all plugins that manipulate HTTP
headers. Be sure to read this chapter if you are working with headers.

“Mutex Guide” on page 101
“Continuations” on page 109

Continuations provide the basic call back mechanism and data abstractions used in
Traffic Edge.

“Plugin Configurations™ on page 115

“Actions Guide” on page 117

How to use | NKAct i ons and the | NKDNSLookup API.
“1O Guide” on page 121

How to use the Traffic Edge 10 interfaces: | NKVConnect i on, | NKVI O, | NKI OBuf f er,
I NKNet VConnect i on, the Cache API.

= “Plugin Management” on page 131

These functions allow you to set up a configuration interface for plugins, access
installed plugin files, and set up plugin licensing.

m “Adding Statistics” on page 137

Use these functions to add statistics to your plugin.

m “Function Reference” on page 141

A listing of all of the functions in the Traffic Edge API, grouped according to their

functionality.

The following two appendixes are provided for reference:

m “Sample Source Code” on page 245

m “Deprecated Functions” on page 253

Conventions used in this manual

This manual uses the following typographic conventions:

Convention Purpose

italics Italics introduce terms.

nmonospaced Represents C language statements, commands, file content and computer
face output.

nonospaced Represents commands that you should enter literally, as in the example, type
bol d si npl equery.

Preface 11

Convention

Purpose

nmonospaced Represents variables for which you should substitute a value, as in the
italic example,

“enterafil ename’”
ellipsis . . . Indicates the omission of inconsequential information.

12

CHAPTER 1

Getting Started

The Inktomi Traffic Edge API lets you create plugins, using the C programming language,
that customize the behavior of your Traffic Edge. This chapter contains the following
sections:

m “Understanding Traffic Edge plugins” on page 13

This section is a brief introduction to plugins. For more details, see “Creating Traffic
Edge Plugins” on page 23.

m “Asimple plugin” on page 17
This section walks through compiling and loading a hel | o wor | d plugin.

m “Plugin Registration and Version Checking” on page 20

You need to make sure that the Traffic Edge version you are running supports the
SDK version for your plugin. This section shows you how to register your plugin’s
SDK version and have it check the Traffic Edge version.

= “Naming conventions” on page 21

For guidelines on creating plugin source code, see “Creating Traffic Edge Plugins” on page
23.

Understanding Traffic Edge plugins

Traffic Edge provides sophisticated caching and processing of web-related traffic, such as
DNS and HTTP requests and responses.

Traffic Edge itself consists of an event-driven loop that might be simplified as follows:

for (5;) {
event = get_next_event();
handl e_event (event);

}

The role of plugins

You compile your plugin source code to create a shared library that Traffic Edge loads
when it is started. Your plugin contains callback functions that are registered for particular
Traffic Edge events.

When Traffic Edge needs to process an event, it invokes any and all call-back functions
you have registered for that event type.

CAUTION

Since plugins add object code to Traffic Edge, programming errors in a plugin can have
serious implications. Bugs in your plugin, such as an out-of-range pointer, might cause
Traffic Edge processes to crash or result in undefined and unpredictable behavior.

Plugin
source Compile
code r and

Linker

Plugin
shared plugin.conf
library

Traffic
Server

Possible uses for plugins

Traffic Edge is a high-performance proxy cache. Plugins are applications built on top of
Traffic Edge that extend Traffic Edge’s capabilities in:

m HTTP processing (plugins can filter, blacklist, authorize users, transform content)

m Protocol support (plugins can enable Traffic Edge to proxy-cache new protocol
content)

Some examples of plugins include:

m A blacklisting plugin, that denies attempts to access web sites that are off-limits.
m An append transform plugin, that adds text to HTTP response content.
= An image conversion plugin, that transforms JPEG images to GIF images.

m A compression plugin, that sends response content to a compression server that
compresses the data (alternatively the compression could be done by a compression
library local to the Traffic Edge host machine).

= An authorization plugin, that checks user’s permissions to access particular web sites.

The plugin could consult a local authorization program or send queries to an
authorization server.

= A plugin that gathers client information from request headers and enters this
information in a database.

14

A protocol plugin, that listens for specific protocol requests on a designated port, and
uses Traffic Edge’s proxy server and cache to serve client requests.

The following figure illustrates various types of plugins:

Internet

.,
“,
e,
.,

compression
server

g,
1

append
transform o
plugin

client response

generating
//

---------------------- content
e b
Ell Traffic Server filtering
M

plugin
request

~»—__ | processing

blacklist
plugin

gather
client
info

plugin

authorization

L

Traffic Server host machine

client

information

database

server ~V
authorization

server
Figure 1 Possible Traffic Edge plugins

You can find basic examples of several of these plugins in the sample code provided with
the SDK:

append- tr ansf or m ¢ adds text from a specified file to HTTP/text responses. This
plugin is explained in detail in “The append-transform plugin® on page 47.

Getting Started 15

Note

limit on
plugin.config
entry lengths

m The compression plugin in the figure communicates with a server that actually does
the compression. The ser ver - t r ansf or m ¢ plugin shows how to open a connection
to a transformation server, have the server do the transformation, and send
transformed data back to the client. In ser ver - t r ansf or m c, the transformation is
null, but a compression or image translation plugin could be implemented in a similar
way.

m basi c- aut h. ¢ performs basic HTTP proxy authorization.

m bl ackl i st-1. c reads blacklisted servers from a configuration file and denies client
access to these servers. The plugin has a configuration interface where the Traffic
Edge administrator can modify the list of blacklisted servers through the Traffic
Manager GUI. This plugin is explained in detail in “The Blacklist plugin” on page 31.

Plugin loading

When Traffic Edge is first started, it consults the pl ugi n. confi g file to determine the
names of all the plugin shared libraries that need to be loaded. The pl ugi n. confi g file
also defines any arguments that are to be passed to each plugin’s initialization function,
INKPIluginlnit. The recor ds. confi g file is used to define the path to each plugin shared
library, described in “Specifying the plugin’s location” on page 19.

The path for each of these files is <r oot _di r >/ confi g/, where <r oot _di r > is the location
where you installed Traffic Edge.

Plugin configuration

This sample pl ugi n. confi g file contains a comment line, a blank line, and two plugin
configurations:

This is a conmment line.

ny-pl ugi n. so www. j unk. com ww. t r ash. com www. gar bage. com
some- pl ugi n. so argl arg2 $proxy.config. http.cache.on

Each plugin configuration in the pl ugi n. confi g file resembles a UNIX or DOS shell
command.

Each line in pl ugi n. conf i g cannot exceed 1023 characters.

The first plugin configuration is for a plugin hamed ny- pl ugi n. so and contains three
arguments that are to be passed to that plugin’s initialization routine.

The second configuration is for a plugin named somne- pl ugi n. so and contains three
arguments. The last argument, $pr oxy. confi g. htt p. cache. on, is actually a
configuration variable. Traffic Edge will look up the specified configuration variable and
substitute its value.

On the Windows NT version of Traffic Edge, the plugin shared library fileisa. dl | file.
An example line in plugin.config would be the following:

nt _pl ugi n.dl |

16

multiple
entries for
the same

plugin

Plugins with global variables should not appear more than once in pl ugi n. confi g. For
example, if you enter:

add- header . so header1

add- header.so header2

The second global variable, header 2, would be used for both instances. A simple
workaround is to give different instances of the same plugin different names, for example:

cp add- header.so add- header1. so
cp add- header.so add- header 2. so

The following entries would have the desired result:
add- header 1. so header1
add- header 2. so header 2

Configuration file rules

m Comment lines begin with a # and continue to the end of the line.
m Blank lines are ignored.

m Plugins are loaded and initialized by Traffic Edge in the order in which they appear in
the pl ugi n. confi g file.

Plugin initialization

Each plugin must define an initialization function named | NKPI ugi nl ni t that Traffic
Edge invokes at the time the plugin is loaded. The I NKPI ugi nl ni t function is commonly
used to read configuration information and register hooks for event notification.

The I NKPI ugi nl ni t function has two arguments:

m the argc argument represents the number of arguments defined in the
pl ugi n. confi g file for that particular plugin

m The ar gv argument is an array of pointers to the actual arguments defined in the
pl ugi n. confi g file for that plugin

See “INKPIluginlnit” on page 142 for details about | NKPI ugi nl ni t .

A simple plugin

This section describes how you can write, compile, configure, and run a simple Traffic
Edge plugin. Here are the steps you’ll follow:

Getting Started 17

Unix
example

Caution

HPUX
example

1 Make sure that your plugin source code contains an | NKPI ugi nl ni t initialization
function.

Compile your plugin source code, creating a shared library.

Add an entry to the pl ugi n. confi g file for your plugin.

Add the path to your plugin shared library to the r ecor ds. confi g file.
Restart Traffic Edge.

B W N

hello world source

Shown below is the classic hello-world program implemented as a plugin using the Traffic
Edge API.

#i ncl ude <stdi o. h>
#i ncl ude "I nkAPI . h"

voi d
I NKPluginlnit (int argc, const char *argv[])

{

}

In our simple hello-world example, | NKPI ugi nl ni t is the only function defined. This
plugin does not use the ar gc or ar gv arguments. You can see more complex examples of
I NKPI ugi nl ni t in the sample code provided with the SDK.

| NKDebug ("debug-hello", "Hello World!\n");

You need to make sure that the functions in your plugin are supported in your version of
Traffic Edge. See “Modified hello-world that checks Traffic Edge version” on page 20.

Compiling your plugin

The process you use to compile a shared library will vary from platform to platform, so
the Traffic Edge API includes makefile templates you can use to create shared libraries on
all the supported Traffic Edge platforms.

Assuming the sample program is stored in the file hel | o- wor | d. c, you could use the
following commands to building a shared library on Solaris using the GNU C compiler.

gcc -g -Wall -fPIC -0 hello-world.o -c hello-world.c
gcc -g -Wall -shared -0 hello-world.so hello-world.o

The first command compiles hel | o-wor | d. ¢ as Position Independent Code (PIC) and the
second command links the single hel | o-wor | d. o object file into the hel | o-wor | d. so
shared library.

Make sure that your plugin is not statically linked with system libraries.

Assuming the sample program is stored in the file hel I o_wor | d. ¢, you could use the
following commands to build a shared library on HPUX:

cc +z -0 hello world.o -c hello world.c
Id -b -0 hello world.so hello world.o

Compiling
for Windows
NT

multiple

plugins

Your PC must have the following software installed:
= Windows NT 4.0 SP4
= Microsoft Developer Studio 6.0

To compile a plugin for the Windows NT version of Traffic Edge

1 Open Pl ugl n. dswwith Microsoft Visual C++ (MSVC++). The dswfile should be
included in the SDK CD. Inside VC++, the sample plugins are listed as separate
projects.

2 For each of the projects that need to be built, you need to tell VC++ where it can find
the Traffic Edge library: traffi c_server.lib. This library is in your NT Traffic Edge
distribution.

You might need to update the library lookup path. Use the following procedure:

To update the library lookup path

[y

Right-mouse-click on a project.

2 Select the Settings... option.

3 Click the Link tab on the dialog box.

4 Select Input in the combo-box.

5 Enter the library path in the Additional library path: text field

Now you can build your plugin.

Updating the plugin.config file

Your next step is to tell Traffic Edge about the plugin by adding the following line to the
pl ugi n. confi g file. Since our simple plugin does not require any arguments, the
following pl ugi n. confi g will do nicely.

a sinple plugin.config for hello-world
hel | o-worl d. so

Traffic Edge can accommodate multiple plugins. If several plugin functions are triggered
by the same event, Traffic Edge will invoke each plugin’s function in the order in which
they were defined in the pl ugi n. confi g file.

Specifying the plugin’s location

All plugins must be located in the directory specified by the configuration variable
proxy. confi g. pl ugi n. pl ugi n_di r, which is located in the r ecor ds. confi g file. The
directory can be specified as either an absolute or relative path.

If a relative path is used, the starting directory will be the Traffic Edge installation directory
as specifiedin/etc/traffic_server. The default value is confi g/ pl ugi ns, which tells
Traffic Edge to use the directory pl ugi ns located in the same configuration directory as
records. confi g. It is common to use the default directory.

Be sure to place your shared library hel | o- wor | d. so inside the directory you have
configured.

Getting Started 19

IMPORTANT

Modified
hello-world

that checks
Traffic Edge

version

Restarting Traffic Edge

The last step is to start, or restart, Traffic Edge. Shown below is the output you would see
after creating and loading your hello-world plugin.

grep proxy.config.plugin.plugin_dir config/records.config
CONFI G proxy. config. plugin.plugin_dir STRING config/plugins
|'s config/plugins

hel | o-wor| d. so*

bin/traffic_server

[Mar 27 19:06: 31. 669] NOTE: updated diags config

[Mar 27 19: 06: 31. 680] NOTE: |oadi ng plugin 'config/plugins/hello-world.so'
hello world

[Mar 27 19:06: 32. 046] NOTE: cache disabled (initializing)

[Mar 27 19:06:32.053] NOTE: cache enabl ed

[Mar 27 19:06:32.526] NOTE: Traffic Edge running

Note that in this example, the Traffic Edge notes are directed to the console by specifying E
for proxy. confi g. di ags. out put . not e inrecords. confi g. The second note shows the
Traffic Edge attempting to load our hello-world plugin. The third line of Traffic Edge
output is from your plugin.

Plugin Registration and Version Checking

You need to make sure that the functions in your plugin are supported in your version of
Traffic Edge.

Previous versions of Traffic Edge are named Traffic Server. Throughout this manual,
Traffic Server, Traffic Server 3.0, Traffic Server 3.5, and Traffic Server 5.2 refer to previous
versions of Traffic Edge. For version checking, Traffic Edge 1.5 is equivalent to Traffic
Server 5.5.

Use the following interfaces:
m INKPIluginRegister, on page 142
m INKTrafficServerVersionGet, on page 143

The following version of hello-world registers the plugin and makes sure it is running
with a compatible version of Traffic Edge.

#i ncl ude <stdio. h>
#i ncl ude "1 nkAPI. h"

int
check_ts_version() {

const char* ts_version = | NKTrafficServerVersionCet();
int result = 0;

if (ts_version) {

int major_ts_version = 0;
int mnor_ts_version = 0;
int patch_ts_version = 0;

if (sscanf(ts_version, "9%. %l. %", &ajor_ts_version,
&mi nor _ts_version, &patch_ts_version) != 3) {

20

return O;

}

/* Since this is an TS-SDK 2.0 plugin, we need at
least Traffic Server 3.5.2 to run */
if (mjor_ts_version > 3) {
result = 1;
} else if (major_ts_version == 3) {
if (mnor_ts version > 5) {
result = 1;

} else if (mnor_ts_version ==5) {
if (patch_ts_version >= 2) {
result = 1;
}
}
}
}
return result;
}
voi d
I NKPl uginlnit (int argc, const char *argv[])
{
I NKPI ugi nRegi strationlnfo info;
i nfo.plugin_nanme = "hel |l o-worl d";
i nfo. vendor _nane = "M/Conpany";
info.support_email = "ts-api-support @¥Conpany. cont;
if (!1INKPluginRegister (INK SDK VERSION 2_0 , & nfo)) {
INKError ("Plugin registration failed. \n");
}
if (!check_ts_version()) {
INKError ("Plugin requires Traffic Server 3.5.2 or later\n");
return;
}
| NKDebug ("debug-hello", "Hello Wrld!\n");
}

Naming conventions

The Traffic Edge API adheres to the following naming conventions:

The I NK prefix is used for all function and variable names defined in the Traffic Edge
API. For example: | NK_EVENT_NONE, | NKMut ex and | NKCont Cr eat e.

Enumerated values always appear in all uppercase letters. Examples:
I NK_EVENT_NONE and | NK_VC_CLOSE_ABORT.

Constant values are all upper case. Enumerated values can be seen as a subset of
constants. Examples: | NK_URL_SCHEME_FI LE and | NK_M NME_FI ELD_ACCEPT.

The names of defined types appear in mixed case. Examples: | NKHt t pSsn and
I NKHt t pTXn.

Function names are mixed case. Examples: | NKUr | Cr eat e and | NKCont Dest r oy.

Getting Started 21

22

= Function names use this subject-verb naming style: | NK- <subj ect >- <ver b>. The

<subj ect > goes from the general to the specific. For example, the function to retrieve
the password field (the specific subject) from a URL (the general subject) is

I NKUr | Passwor dGet . This makes it easier to determine what a function does by
reading its name.

= Common verbs like Cr eat e, Dest r oy, Get, Set, Copy, Fi nd, Retri eve, | nsert,

Renove and Del et e are used when appropriate.

CHAPTER 2

Creating Traffic Edge Plugins

This chapter provides a foundation for designing and writing plugins. Reading this
chapter will help you understand:

m Inktomi’s asynchronous event model, which is the design paradigm used throughout
Traffic Edge. Plugins must also follow this design. It includes the callback mechanism
for Traffic Edge to “wake up” your plugin and put it to work.

m Traffic Edge’s HTTP processing—an overview of the HTTP state machine.
m How plugins can hook onto and modify or extend Traffic Edge’s HTTP processing.

m A roadmap for writing plugins. An overview of the functionality provided by the
Traffic Edge API.

The Asynchronous Event Model

Traffic Edge is a multi-threaded process. There are two main reasons why a server might
use multiple threads:

m To take advantage of the concurrency available with multiple CPUs and multiple 170
devices.

m To manage concurrency from having many simultaneous client connections. For
example a server could create one thread for each connection, allowing the operating
system (OS) to control switching between threads.

Traffic Edge uses multiple threads for the first reason. But Traffic Edge does not use a
separate OS thread per transaction because it would not be efficient when handling
thousands of simultaneous connections.

Instead, Traffic Edge provides special event-driven mechanisms for efficiently scheduling
work: the event system, and continuations. The event system is used to schedule work to
be done on threads. A continuation is a passive, event-driven state machine that can do
some work until it reaches a waiting point, and then sleep until it receives notification that
conditions are right for doing more work. For instance, HTTP state machines (which
handle HTTP transactions) are implemented as continuations.

Continuation objects are used throughout Traffic Edge. Some might live for the duration
of the Traffic Edge process; others are created (perhaps by other continuations) for specific
needs and then destroyed. Figure 2 shows how the major components of Traffic Edge
interact. Traffic Edge has several processors, such as cache processor and net processor,
which consolidate cache or network 170 tasks. Processors talk to the event system to
schedule work on threads. An executing thread calls back a continuation by sending it an
event. When a continuation receives an event, it wakes up, does some work, and either
destroys itself or goes back to sleep waiting for the next event.

(. o N
sleeping continuations
net processor
A

cache cluster ° ©e
processor processor

°°
event system event

threads
\§

Figure 2 Traffic Edge internals

Plugins are typically implemented as continuations. All of the sample code plugins
(except hello-world) are continuations that are created when Traffic Edge starts up; they

wait for events that trigger them into activity.

4 . o)
sleeping continuations
\/ \./ \/ \/ \/ \/
net processor
cache cluster @ (O] plugin
rocessor 5
p processor o
]
o
<
event system event °
\// plugin
threads
. J

Figure 3 Traffic Edge with plugins

24

The Asynchronous Event Model

HTTP
transaction

A plugin may consist of just one static continuation that is called whenever certain events
happen. blacklist-1.c, basic-auth.c, and redirect-1.c are examples of such plugins. Or a
plugin could dynamically create other continuations as needed. Transform plugins are
built this way: a static parent continuation checks all transactions to see if any are
transformable; when a transaction is transformable, the static continuation creates a type
of continuation called a vconnection. The vconnection lives as long as it takes to complete
the transform, and then destroys itself. You can see this design in all of the sample
transform plugins. Plugins that support new protocols also have this architecture: a static
continuation listens for incoming client connections, and creates transaction state
machines to handle each protocol transaction.

When you write plugins, there are several ways to send events to continuations. For HTTP
plugins, there is a “hook” mechanism that enables the Traffic Edge HT TP state machine to
send your plugin wakeup calls when needed. Additionally, several Traffic Edge API
functions trigger Traffic Edge sub-processes to send events to plugins: | NKCont Cal |,

I NKVConnRead, | NKCacheW i t e, and | NKMynt Updat eRegi st er, to name a few.

Traffic Edge HTTP State Machine

Traffic Edge does sophisticated HTTP caching and proxying. Its features include checking
for alternates and document freshness, filtering, supporting cache hierarchies, and
hosting. Traffic Edge handles thousands of client requests at a time, and each request is
handled by an HTTP state machine. Traffic Edge’s HTTP state machines follow a complex
state diagram that includes all of the states required to support Traffic Edge’s features. The
Traffic Edge API provides hooks to a subset of these states, chosen for their relevance to
plugins. You can view the APl hooks and corresponding HTTP states in “HTTP transaction
state diagram” on page 66.

This section goes through an example of how a plugin typically intervenes and extends
Traffic Edge’s processing of an HTTP transaction. Complete details about hooking on to
Traffic Edge processes are provided in “HTTP Hooks and Transactions” on page 65.

An HTTP transaction consists of a client request for a web document and Traffic Edge’s
response. The response could be the requested web server content or it could be an error
message. The content could come from the Traffic Edge cache or Traffic Edge might fetch
it from the origin server. The following diagram shows some of the states of a typical
transaction, highlighting the case where the content is served from the cache:

Creating Traffic Edge Plugins 25

OS DNS
lookup rac‘?e hit
read o0KUp
request hdr
{ ! miss freshness
/;N check fresh
open conn tale S'l
to OS
send reply
ﬂ hdr
.. &vali d error
. response
% send resp
body
% transaction
close
OS = origin server

Figure 4 Simplified HTTP transaction

Traffic Edge accepts the client connection, reads the request headers, looks up the origin
server’s IP address, and looks for the requested content in the cache. If it’s not in the
cache, Traffic Edge opens a connection to the origin server and issues a request for the
content. If the content is in the cache, Traffic Edge checks it for freshness. If it’s fresh,
Traffic Edge sends a reply header to the client. What Figure 4 does not show is that if there
is an error at a any stage, the HTTP state machine jumps to the “send reply header” state
and sends an error message. If the reply is an error, the transaction closes. If the reply is
not an error, Traffic Edge sends the response content and then closes the transaction.

The Traffic Edge API supplies hooks that correspond to key stages in the HTTP state
diagram. Figure 5 shows the API hooks that correspond to some of the states shown in
Figure 4.

OS DNS
read request lookup hook
header hook alternate
N = select hook

F OS DNS
TXN start lookup cache ;
hook W looku hit
read P S send resp
request hdr hdr hook
(” miss freshness
/;m check fresh !’
open conn ﬁtale S'l
to OS
send reply
ﬁ har
. &vali q error
° . response
ﬁ send resp
body
% transaction
close
OS = origin server

Figure 5 APl hooks corresponding to states listed in Figure 4

26 Traffic Edge HTTP State Machine

types of
hooks

You use hooks as triggers to start your plugin. The name of a hook reflects the Traffic Edge
state that was just completed. So for example, the “OS DNS lookup” hook would wake up
a plugin right after the origin server DNS lookup. For a plugin that requires the IP address
of the requested origin server, this hook is the right one to use. The Blacklist plugin works

this way, as shown in Figure 6.
wake up blacklist
plugin / plugin
0S DNS %access
lookup hook
S

allowed,
proceed
OS DNS
lookup cache .
read lookup send resp
request hdr ﬁ‘ hdr hook
miss freshness
check

2 fresh g)
open conn tale ;'l
to OS
send reply
ﬁ hdr
.. &vali J error
response

.
% send resp
body
% transaction
close

if access
forbidden,
send error

wake up
plugin

OS = origin server

Figure 6 Blacklist plugin

Traffic Edge calls the Blacklist plugin right after the origin server DNS lookup. The plugin
checks the requested host against a list of blacklisted servers, and if the request is allowed,
the transaction proceeds. If the host is forbidden, the Blacklist plugin sends the transaction
into an error state, and when the HTTP state machine gets to the “send reply header”
state, it calls the Blacklist plugin to provide an error message to send to the client.

The Blacklist plugin’s hook to the “origin server DNS lookup” state is a global hook,
meaning that the plugin is called for every HTTP transaction for which there is a DNS
lookup event. The plugin’s hook to the “send reply header” state is a transaction hook,
meaning that this hook is only invoked for specified transactions (in the Blacklist example,
only for requests to blacklisted servers).

Several examples of setting up hooks are provided in the code example chapters, “Header-
Based Plugin Examples” on page 31, and “HTTP Transformation Plugins” on page 41.

Header manipulation plugins, such as filtering, basic authorization, or redirects, usually
have a global hook to the DNS lookup or the read request header states. Then if specific
things need to be done to the transaction further on, the plugin adds itself to a transaction
hook.

Transformation plugins require a global hook to check all transactions for
transformability. Then they require a transform hook, which is a type of transaction hook
specifically used for transforms.

Creating Traffic Edge Plugins 27

Roadmap for creating plugins

So far this chapter has provided an overview of Traffic Edge’s HTTP processing, API
hooks, and the asynchronous event model. The next step is to understand the capabilities
of the Traffic Edge API functions. These are very broad:

HTTP header manipulation functions
Obtain information about and manipulate HTTP headers, URLs, MIME headers.
HTTP transaction functions

Get information about and modify HTTP transactions (for example, get the client IP
associated to the transaction; get the server IP; get parent proxy information)

10 functions

Manipulate vconnections (virtual connections, used for network and disk 1/0).
Network connection functions

Open connections to remote servers.

Statistics functions

Define and compute statistics for your plugin’s activity.

Plugin management functions

Create a web interface for your plugin (accessible through the Traffic Edge web
interface). Control file installation. License your plugin.

Traffic Edge management functions

Obtain values of Traffic Edge configuration and statistics variables.

Here are some guidelines for creating a plugin:

1

Decide what you want your plugin to do, based on the capabilities of the APl and

Traffic Edge. The two main kinds of example plugins provided with SDK 5.2 are
HTTP-based which include header-based plugins and response transform plugins,

28

Roadmap for creating plugins

and non-HTTP-based which includes a protocol plugin. These examples are discussed
in the next three chapters.

Figure out where your plugin needs to hook on to Traffic Edge’s HTTP processing. View the
“HTTP transaction state diagram” on page 66.

Read “Header-Based Plugin Examples” on page 31 to learn the basics of writing plugins: creating
continuations, and setting up hooks. If you want to write a plugin that transforms data, read
“HTTP Transformation Plugins” on page 41.

Figure out what parts of the Traffic Edge API you need to use, and read about the details of
those APIs in the reference chapters in this manual.

Compile and load your plugin (see “Getting Started” on page 13).

Depending on your plugin’s functionality, you might start testing it by issuing requests by hand,
and checking for the desired behavior in Traffic Edge log files. See the Traffic Edge
Administrator’s Guide for information about Traffic Edge logs.

You can test the performance of Traffic Edge running with your plugin using SDKTest. You can
also customize SDKTest to perform functional testing on your plugin. See the Traffic Edge
SDKTest User’s Guide.

Creating Traffic Edge Plugins 29

30 Roadmap for creating plugins

CHAPTER 3

Header-Based Plugin Examples

Header-based plugins read or modify the headers of HTTP messages that Traffic Edge
sends and receives. Reading this chapter will help you understand:

m Creating continuations for your plugins
m Adding global hooks

m Adding transaction hooks

m Working with HTTP header functions

The two sample plugins discussed in this chapter are bl ackl i st- 1. ¢ and basi c- aut h. c.

Overview

Header-based plugins take actions based on the contents of HTTP request or response
headers. Examples include filtering (on the basis of requested URL, or source IP address,
or other request header), user authentication, or user redirection. These plugins have the
following common elements:

The plugin has a static parent continuation that scans all Traffic Edge headers (either
request headers, response headers, or both).

m The plugin has a global hook. This allows the plugin to check all transactions to
determine whether the plugin has to do something.

m Through the global hook, the plugin gets a handle to the transaction being processed.

m If the plugin needs to do something to transactions in specific cases, it sets up a
transaction hook for a particular event.

m The plugin obtains client header information and does something based on it.

In the remainder of this chapter, you’ll see how these components are implemented in
SDK sample code.

The Blacklist plugin

The sample blacklisting plugin included in the Traffic Edge SDK is bl ackl i st _1. c. This
plugin checks every incoming HTTP client request against a list of blacklisted web sites. If
the client requests a blacklisted site, the plugin returns an “access forbidden” message to
the client. The flow of HTTP processing with the Blacklist plugin is illustrated in Figure 6,
on page 27. This sample also contains a simple configuration management interface. It can
read a list of blacklisted sites from afile, bl ackl i st . t xt, that can be updated by a Traffic
Edge administrator. When the configuration file is updated, Traffic Edge sends an event to
the plugin, waking it up to do some work.

Creating the parent continuation

You create the static parent continuation in the mandatory | NKPI ugi nl ni t function. This
parent continuation effectively is the plugin: the plugin does work when this continuation
receives an event from Traffic Edge. Traffic Edge passes the event as an argument to the
continuation’s handler function. When you create continuations, you must create and
specify their handler functions.

You can specify an optional mutex lock when you create continuations. The mutex lock
protects data shared by asynchronous processes. Traffic Edge has a multi-threaded design;
if several threads try to access the same continuation’s data, race conditions can occur.

Here is how the static parent continuation is created in bl ackl i st-1. c:
voi d
I NKPl ugi nlnit (int argc, const char *argv[])
(...
I NKCont cont p;

contp = | NKCont Create (blacklist_plugin, NULL);

}

The handler function for the plugin is bl ackl i st _pl ugi n, and the mutex is null. The
continuation handler function’s job is to handle the events that are sent to it; accordingly,
the bl ackl i st _pl ugi n routine consists of a switch statement that covers each of the
events that might be sent to it:

static int

bl ackl i st _plugin (1 NKCont contp, |NKEvent event, void *edata)

{
I NKHt t pTxn txnp = (I NKHt t pTxn) edat a;
switch (event) {
case | NK_EVENT_HTTP_OS_DNS:
handl e_dns (txnp, contp);
return O;
case | NK_EVENT_HTTP_SEND RESPONSE_HDR:
handl e_r esponse (txnp);
return O;
case | NK_EVENT_MGMI_UPDATE:
read_bl acklist ();
return O;
defaul t:
br eak;
}
return O;
}

When you write handler functions, you have to anticipate any events that might be sent to
the handler by hooks or by other functions. In the Blacklist plugin, | NK_EVENT_OS_DNS is

32

The Blacklist plugin

sent because of the global hook established in | NKPI ugi nl ni t;

I NK_EVENT_HTTP_SEND RESPONSE_HDR is sent because the plugin contains a transaction
hook (see “Setting up a transaction hook” on page 34), and | NK_EVENT_MaMI_UPDATE is sent
by Traffic Manager whenever there is a configuration change. See “Setting Up Ul Update
Callbacks™ on page 33. It is good practice to have a default case in your switch statements.

Setting a Global Hook

Global hooks are always added in | NKPI ugi nl ni t using | NKHt t pHookAdd. The two
arguments of | NKHt t pHook Add are the hook ID and the continuation to call when
processing the event corresponding to the hook. In blacklist-1.c, the global hook is added
as follows:

| NKH t pHookAdd (1 NK_HTTP_OS_DNS_HOOK, contp);

Where | NK_HTTP_OS_DNS_HOXX is the ID for the origin server DNS lookup hook, and
cont p is the parent continuation created earlier.

This means that the Blacklist plugin is called at every origin server DNS lookup. When it
is called, the handler function bl ackl i st _pl ugi n receives | NK_EVENT_HTTP_OS DNS and
calls handl e_dns to see if the request is forbidden.

Setting Up Ul Update Callbacks

The Blacklist plugin must be called back whenever its configuration is changed by an
administrator through the Traffic Manager Ul. To get the interface working, you need an
interface program (such as a CGI form) to display an interface and obtain configuration
information, and a text file that the CGI program edits and the Blacklist plugin reads. The
callback to the plugin is established in | NKPI ugi nl ni t by:

I NKMgmt Updat eRegi ster (contp, "Inktom Blacklist Plugin", "blacklist.cgi");

Where cont p is the plugin’s static parent continuation, “ I nkt omi Bl ackl i st Pl ugin” is
the name of the plugin as specified by the CGI form’s | NK_PLUG N_NAME variable, and
"bl ackl i st.cgi" isthe path to the plugin’s interface program, relative to the Traffic Edge
pl ugi ns directory. For more details see “Setting up a plugin management interface” on page
131.

Accessing the Transaction Being Processed

A continuation’s handler function is of type | NKEvent Func, and the prototype is as
follows:

static int function_name (I NKCont contp, |NKEvent event, void *edata)

In general, the return value of the handler function is not used. The continuation
argument is the continuation being called back, the event is the event being sent to the
continuation, and the data pointed to by void *edata depends on the type of event. The
data types for each event type are listed in “Events and void * data” on page 111.

The key here is that if the event is an HTTP transaction event, then the data passed to the
continuation’s handler is of type | NKHt t pTxn (a data type that represents HTTP
transactions). Your plugin can then do things with the transaction. Here’s how it looks in
the Blacklist plugin’s handler’s code:

static int

bl ackli st_plugin (I NKCont contp, |NKEvent event, void *edata)

Header-Based Plugin Examples 33

I NKHt t pTxn txnp = (I NKH t pTxn) edat a;
switch (event) ({
case | NK_EVENT_HTTP_OS_DNS:
handl e_dns (txnp, contp);
return O;
case | NK_EVENT HTTP_SEND RESPONSE_HDR:
handl e_r esponse (txnp);
return O;
case | NK_EVENT_MGMI_UPDATE:
read_bl acklist ();

return O;
defaul t:
br eak;
}
return O,

}

When, for example, the origin server DNS lookup event is sent, bl ackl i st _pl ugi n can
call handl e_dns and pass t xnp as an argument.

Setting up a transaction hook

The Blacklist plugin sends “access forbidden” messages to clients if their requests are
directed to blacklisted hosts. Therefore the plugin needs a transaction hook, so that it is
called back when Traffic Edge’s HTTP state machine reaches the “send response header”
event. In the Blacklist plugin’s handl e_dns routine, the transaction hook is added as
follows:

I NKMut exLock (sites_nutex);
for (i =0; i <nsites; i++) {
if (strncmp (host, sites[i], host_length) == 0) {
printf ("blacklisting site: %\n", sites[i]);
I NKHt t pTxnHookAdd (t xnp,
I NK_HTTP_SEND_RESPONSE_HDR_HOCK,
contp);
I NKHandl eSt ri ngRel ease (bufp, url_loc, host);
| NKHandl eM_ocRel ease (bufp, hdr_loc, url_loc);
I NKHandl eM_ocRel ease (bufp, I NK_NULL_M.OC, hdr_loc);
I NKHt t pTxnReenabl e (txnp, | NK_EVENT_HTTP_ERRCR) ;
I NKMut exUnl ock (sites_mutex);
return;

}

I NKMut exUnl ock (sites_mutex);

34 The Blacklist plugin

Reenable!

but not
twice!

done:
I NKHt t pTxnReenabl e (txnp, | NK_EVENT_HTTP_CONTI NUE) ;

}

This code fragment shows some interesting features. What’s happening is that the plugin
is comparing the requested site to the list of blacklisted sites. While the plugin is using the
blacklist, it must acquire the mutex lock for the blacklist. This prevents configuration
changes in the middle of a blacklisting operation. If the requested site is blacklisted, two
things happen:

1 A transaction hook is added with | NKHt t pTxnHook Add, so that the plugin is called
back at the “send response header” event (the plugin sends an “access forbidden”
message to the client). You can see that in order to add a transaction hook, you need a
handle to the transaction being processed.

2 The transaction is reenabled using | NKHt t pTxnReenabl e with
| NK_EVENT_HTTP_ERRCR as its event argument. Reenabling with an error event tells
the HTTP state machine to stop the transaction and jump to the “send response
header” state. Notice that if the requested site is not blacklisted, the transaction is
reenabled with the | NK_EVENT_HTTP_CONTI NUE event.

3 The string and | NKMLoc data stored in the marshal buffer bufp is released by
I NKHandl eSt ri ngRel ease and | NKHandl eM_ocRel ease. See “Release marshal buffer
handles” on page 88. Release these handles before reenabling the transaction.

In general, whenever the plugin is doing something to a transaction, it must reenable the
transaction when it is finished. Put another way, every time your handler function
handles a transaction event, it must call | NKHt t pTxnReenabl e when it is finished.

Similarly, after your plugin handles session events (I NK_EVENT_HTTP_SSN_START and
| NK_EVENT_HTTP_SSN_CLOSE) it must reenable the session with | NKHt t pSsnReenabl e.

Reenabling the transaction twice in the same plugin routine is a bad error.

Working with HTTP header functions

The Blacklist plugin examines the host header in every client transaction. This is done in
the handl e_dns routine, using | NKHt t pTxnCl i ent | PGet , | NKHt t pHdr Ur | Get , and
| NKUr | Host Get .

static void
handl e_dns (I NKHtt pTxn txnp, |NKCont contp)
{

| NKMBuf f er buf p;

I NKM_oc hdr _I oc;

I NKM_oc url _| oc;

const char *host;

int i;
if (VI NKHtpTxnCientlPGet (txnp, &bufp, &hdr_loc)) {

INKError ("couldn't retrieve client request header\n");

got o done;

url _loc = INKHtt pHdr Url Get (bufp, hdr_loc);

Header-Based Plugin Examples 35

if (turl_loc) {
INKError (“"couldn't retrieve request url\n");
| NKHandl eM_ocRel ease (bufp, | NK_NULL_M.OC, hdr_|oc);
got o done;

host = I NKUrl Host Get (bufp, url_loc, NULL);
if ('host) {
INKError ("couldn't retrieve request hostname\n");
I NKHandl eM_ocRel ease (bufp, hdr_loc, url_loc);
| NKHandl eM_ocRel ease (bufp, I NK_NULL_M.OC, hdr_loc);
goto done;
}

To access the host header, the plugin first has to get the client request, then retrieve the
URL portion, and then obtain the host header. See “HTTP Headers” on page 83 for more
information about these calls.

See “Release marshal buffer handles” on page 88 for guidelines on using
I NKHandl eM_.ocRel ease and | NKHandl eSt ri ngRel ease.

The Basic Authorization Plugin

The sample basic authorization plugin, basi c- aut h. ¢, checks for basic HTTP proxy
authorization. In HTTP basic proxy authorization, client user names and passwords are
contained in the Pr oxy- Aut hori zat i on header. The password is encoded using base64
encoding. The plugin checks all incoming requests for the authorization header, user
name and password. If the plugin does not find all of the these, it reenables with an error
(effectively stopping the transaction) and adds a transaction hook to the send response
header event.

Creating the plugin’s parent continuation and global hook

The parent continuation and global hook are created as follows:
I NKHt t pHookAdd (1 NK_HTTP_OS DNS _HOOK, | NKCont Create (auth_plugin, NULL));

Implementing the handler and getting a handle to the
transaction

The handler function for the plugin’s parent continuation is implemented as follows:
static int
aut h_plugin (I NKCont contp, | NKEvent event, void *edata)

{
INKHt t pTxn txnp = (I NKHtt pTxn) edat a;

36

The Basic Authorization Plugin

switch (event) {
case | NK_EVENT_HTTP_OS_DNS:
handl e_dns (txnp, contp);
return O;
case | NK_EVENT_HTTP_SEND RESPONSE_HDR:
handl e_response (txnp);
return O;
defaul t:

br eak;

return O;

Working with HTTP headers

The plugin checks all client request headers for the Pr oxy- Aut hori zati on MIME field,
which should contain the user name and password.

The plugin’s continuation handler, aut h- pl ugi n, calls handl e_dns to check the Pr oxy-
Aut hori zat i on field.
The handl e_dns routine uses | NKHt t pTxnCl i ent ReqGet and | NKM meHdr Fi el dFi nd to
obtain the Pr oxy- Aut hori zat i on field:
static void
handl e_dns (I NKHt t pTxn txnp, | NKCont contp)
{
I NKMBuUf f er buf p;
I NKM_oc hdr _I oc;
I NKM_oc field_loc;
const char *val;

char *user, *password;

if (' NKH t pTxnd ient ReqGet (txnp, &bufp, &hdr_loc)) {
INKError ("couldn't retrieve client request header\n");

got o done;

field_loc = I NKM neHdr Fi el dFi nd (bufp, hdr_Ioc,
I NK_M ME_FI ELD_PROXY_AUTHORI ZATI ON) ;

If the Proxy-Authorization field is present, the plugin checks that the authentication type
is “Basic”, and the user name and password are present and valid:
val = | NKM nmeHdr Fi el dval ueStringGet (bufp, hdr_loc, field_|loc, 0, &uthval _| ength);
if (‘val) {

INKError ("no value in Proxy-Authorization field\n");

I NKHandl eM_ocRel ease (bufp, hdr_loc, field_loc);

| NKHandl eM_ocRel ease (bufp, I NK_NULL_M.OC, hdr_loc);

got o done;

Header-Based Plugin Examples 37

if (strncnp (val, "Basic", 5) I=0) {
I NKError ("no Basic auth type in Proxy-Authorization\n");
| NKHandl eStri ngRel ease (bufp, field_loc, val);
I NKHandl eM_ocRel ease (bufp, hdr_loc, field_loc);
| NKHandl eM_ocRel ease (bufp, I NK_NULL_M.QOC, hdr_loc);

got o done;

val += b5;
while ((*val ==" ") || (*val == "\t")) {

val += 1;

user = base64_decode (val);

password = strchr (user, ':');

if (!password) {
I NKError ("no password in authorization information\n");
I NKf ree (user);
I NKHandl eSt ri ngRel ease (bufp, field_loc, val);
I NKHandl eM_ocRel ease (bufp, hdr_loc, field_loc);
| NKHandl eM_ocRel ease (bufp, I NK_NULL_M.OC, hdr_loc);
got o done;

}

*password = '\0';

password += 1;

if (lauthorized (user, password)) {
INKError ("%:% not authorized\n", user, password);
I NKf ree (user);
| NKHandl eStri ngRel ease (bufp, field_loc, val);
I NKHandl eM_ocRel ease (bufp, hdr_loc, field_loc);
| NKHandl eM_ocRel ease (bufp, I NK_NULL_M.QOC, hdr_loc);

got o done;

I NKf ree (user);

I NKHandl eSt ri ngRel ease (bufp, field_loc, val);

I NKHandl eM_ocRel ease (bufp, hdr_loc, field_loc);

| NKHandl eM_ocRel ease (bufp, I NK_NULL_M.OC, hdr_loc);
I NKHt t pTxnReenabl e (txnp, | NK_EVENT_HTTP_CONTI NUE) ;

return;

38 The Basic Authorization Plugin

Setting a transaction hook

If the request does not have the Pr oxy- Aut hori zat i on field set to Basic authorization, or
a valid user name and password, the plugin sends the 407 Proxy aut hori zation

r equi r ed status code back to the client.The client should then prompt the user for a user
name and password, and resend the request.

In the handle_dns routine, the following lines handle the authorization error case:
done:
I NKHt t pTxnHookAdd (txnp, | NK_HTTP_SEND RESPONSE_HDR HOOK, contp);
I NKHt t pTxnReenabl e (txnp, | NK_EVENT_HTTP_ERRCR) ;
If handl e_dns does not find the Pr oxy- Aut hori zat i on field set to Basic authorization, or
a valid user name and password, it adds a SEND_RESPONSE_HDR_HOCOK to the transaction

being processed; this means that Traffic Edge will call the plugin back when sending the
client response.

handl e_dns reenables the transaction with | NK_EVENT_HTTP_ERROR, which means that
the plugin wants Traffic Edge to terminate the transaction.

When Traffic Edge terminates the transaction, it sends the client an error message. Because
of the SEND_RESPONSE_HDR HOK, Traffic Edge calls the plugin back. The aut h- pl ugi n
routine calls handl e_r esponse to send the client a 407 status code.

When the client resends the request with the Proxy- Aut hori zati on field, a new
transaction begins.

handl e_dns calls base64_decode to decode the user name and password.

handl e_dns calls aut hor i zed to validate the user name and password. In this plugin,
sample NT code is provided for password validation. Unix programmers can supply their
own validation mechanism.

Header-Based Plugin Examples 39

40 The Basic Authorization Plugin

CHAPTER 4

HTTP Transformation Plugins

Transform plugins examine or transform HTTP message body content. For example,
transform plugins can:

m Append text to HTML documents
m Compress images
m Do virus checking (on client POST data or server response data)

m Do content-based filtering (filter out HTML documents that contain certain terms or
expressions)

In this chapter you can learn how to write transform plugins. The following examples are
discussed in detail:

m “The sample null transform plugin” on page 43
m “The append-transform plugin” on page 47

m “The sample buffered null transform plugin’ on page 49

Writing content transform plugins

Content transformation plugins transform HTTP response content (such as images or
HTML documents), and HTTP request content such as client POST data. Because the data
stream to be transformed is of variable length, these plugins must use a mechanism that
passes data from buffer to buffer and checks to see if the end of the data stream is reached.

This mechanism is provided by virtual connections (vconnections) and virtual 10
descriptors (VIOs).

A vconnection is an abstraction for a data pipe that allows its users to perform
asynchronous reads and writes without knowing the underlying implementation. A
transformation is a specific type of vconnection. A transformation connects an input data
source and an output data sink; this feature enables it to view and modify all the data
passing through it.

Transformations can be chained together, one after the other, so that multiple
transformations can be performed on the same content. The vconnection type, | NKVConn,
is actually a subclass of | NKCont , which means that vconnections (and transformations)
are continuations. Vconnections and transformations can thus exchange events, informing
one another (for example) that data is available for reading or writing, or that the end of a
data stream is reached.

A VIO is a description of an in-progress 10 operation. Every vconnection has an
associated input VIO and an associated output VIO. When vconnections are transferring
data to one another, one vconnection’s input VIO is another vconnection’s output VIO. A
vconnection’s input VIO is also called its write VIO because the input VIO refers to a write
operation performed on the vconnection itself. Similarly, the outpt VIO is also called the

read VIO. For transformations, which are designed to pass data in one direction, you can
picture the relationship between the transformation vconnection and its VIOs as follows:

upstream vconnection transformation vconnection downstream vconnection
input VIO output VIO
(write VIO) (read VIO)
ndone ndone
nbytes L nbytes L

write read

write read
output buffer

Figure 7 A transformation and its VIOs

Because the Traffic Edge API places transformations directly in the response or request
data stream, the transformation vconnection is responsible only for reading the data from
the input buffer, transforming it, and writing it to the output buffer. The upstream
vconnection writes the incoming data to the transformation’s input buffer. In Figure 7, the
input VIO describes the progress of the upstream vconnection’s write operation on the
transformation, and the output VIO describes the progress of the transformation’s write
operation on the output (downstream) vconnection. The nbyt es value in the VIO is the
total number of bytes to be written. The ndone value is the current progress, the number of
bytes written.

When writing a transformation plugin, you need to understand both implementing and
using vconnections. The implementor’s side refers to how to implement a vconnection
that others can use. At minimum, a transform plugin creates a transformation that sits in
the data stream and must be able to handle the events that the upstream and downstream
vconnections send it. The user’s side refers to how to use a vconnection to read or write
data. Transformations output (write) data, at the very least.

Transformations

VIOs

A VIO or virtual 10 is a description of an in progress 10 operation. The VIO data structure
is used by vconnection users to determine how much progress has been made on a
particular 10 operation and to re-enable an 10 operation when it stalls due to buffer space.
VIOs are used by vconnection implementors to determine the buffer for an 10 operation,
to determine how much work to do on the 10 operation and to determine which
continuation to call back when progress on the 10 operation is made.

The | NKVI Odata structure itself is opaque, but it might have been defined as follows:
typedef struct {

| NKCont conti nuati on;

I NKVConn vconnecti on;

| NKI OBuf f er Reader reader;

I NKMut ex nut ex;

42

Writing content transform plugins

i nt nbytes;
i nt ndone;
} *INKVI O

IO buffers

The 10 buffer data structure is the building block of the vconnection abstraction. An 10
buffer is composed of a list of buffer blocks which in turn point to buffer data. Both the
buffer block (I NKI OBuf f er Bl ock) and buffer data (I NKI OBuf f er Dat a) data structures are
reference counted so that they can reside in multiple buffers at the same time. This makes
it extremely efficient to copy data from one 10 buffer to another using I NKI OBuf f er Copy
since Traffic Edge only needs to copy pointers and adjust reference counts appropriately
and not actually copy any data.

The 10 buffer abstraction provides for a single writer and multiple readers. In order for
the readers to have no knowledge of each other, they manipulate 10 buffers through the
I NKI OBuf f er Reader data structure. Since only a single writer is allowed, there is no
corresponding | NKI OBuf f er Wi t er data structure. The writer simply modifies the 10
buffer directly.

The sample null transform plugin

This section provides a step-by-step description of what the null transform plugin does,
along with sections of the code that apply. For context, you can find each code snippet in
the complete source code. Some of the error checking details are left out; to give the
description a step-by-step flow, only the highlights of the transform are included.

Here is an overview of the null transform plugin:
1 Gets a handle to HTTP transactions.

voi d
INKPluginlnit (int argc, const char *argv[]) {
I NKHt t pHookAdd (| NK_HTTP_READ_RESPONSE_HDR_ HOCK,
I NKCont Create (transform plugin, NULL)); }

With this | NKPI ugi nl ni t routine, the plugin is called back every time Traffic Edge
reads a response header.

2 Checks to see if the transaction response is transformable.

static int transformplugin (I NKCont contp, | NKEvent event, void *edata) {
INKHt t pTxn txnp = (I NKHtt pTxn) edata;
switch (event) {
case | NK_EVENT_HTTP_READ RESPONSE_HDR:
if (transformable (txnp)) {
transformadd (txnp);}

HTTP Transformation Plugins 43

The default behavior for transformations is to cache the transformed content. (You can
tell Traffic Edge to cache untransformed content, if you want). Therefore, only
responses received directly from an origin server need be transformed. Objects served
from the cache are already transformed. To determine whether the response is from
the origin server, the routine t r ansf or mabl e checks the response header for the “200
OK” server response.

static int transformable (I NKH tpTxn txnp)
{

I NKMBUf f er buf p;

I NKMLoc hdr _|I oc;

I NKHt t pSt at us resp_st at us;

I NKHt t pTxnSer ver RespGet (txnp, &bufp, &hdr_loc);

if (I NK_HTTP_STATUS K == (resp_status =
I NKHt t pHdr St at usGet (bufp, hdr_loc))) {
return 1;

} else {
return O;

}

3 If the response is transformable, the plugin creates a transformation vconnection that
gets called back when the response data is ready to be transformed (as it is streaming
from the origin server).

static void transformadd (I NKHttpTxn txnp)

{

I NKVConn connp;

connp = I NKTransfornCreate (null _transform txnp);

I NKHt t pTxnHookAdd (txnp, | NK_HTTP_RESPONSE TRANSFORM HOOK, connp);
}

The previous code fragment shows that the handler function for the transformation
veconnectionisnul | _transform

4 Get a handle to the output vconnection (that receives data from the tranformation).
out put _conn = | NKTr ansf or nQut put VConnGet (contp);

5 Getahandle to the input VIO. (See the handl e_t r ansf or mfunction.)

input_vio = | NKVConnWiteVl CGet (contp);

44 The sample null transform plugin

10

This is so that the transformation can get information about the upstream
vconnection’s write operation to the input buffer.

Initiate a write to the output vconnection of the specified number of bytes. When the
write is initiated, the transformation expects to receive WRI TE_READY,
WRI TE_COVPLETE, or ERROR events from the output vconnection.

See the handl e_t r ansf or mfunction for the following code fragment:

dat a- >out put _vi o = | NKVConnWite (output_conn, contp,
dat a- >out put _reader, | NKVI ONBytesGet (input_vio));

Copy data from the input buffer to the output buffer. See the handl e_t ransform
function for the following code fragment:

I NKI OBuf f er Copy (| NKVI OBuf f er Get (dat a- >out put _vi 0),
I NKVI OReader Get (input_vio), towite, 0);

Tell the input buffer that the transformation has read the data. See the
handl e_t r ansf or mfunction for the following code fragment:

I NKI OBuf f er Reader Consune (| NKVI CReader Get (i nput_vio), towite);

Modify the input VIO to tell it how much data has been read (increase the value of
ndone). See the handl e_t r ansf or mfunction for the following code fragment:

I NKVI ONDoneSet (i nput_vi o, | NKVI ONDoneGet (input_vio) + towite);

If there is more data left to read (if ndone < nbyt es), the handle_transform function
wakes up the downstream vconnection with a reenable and wakes up the upstream
vconnection by sending it WRI TE_READY:

if (1 NKVI ONTodoGet (input_vio) > 0) {
if (towite > 0) {

I NKVI OReenabl e (dat a- >out put _vi 0);

I NKCont Cal | (| NKVI OCont Get (i nput _vi 0),
I NK_EVENT_VCONN_WRI TE_READY, i nput_vi0);

} else {

HTTP Transformation Plugins 45

data

ndone L ndone
/\ nbytes nbytes L

The process of passing data through the transformation is illustrated in the following
diagram. The downstream vconnections send WRI TE_READY events when they need
more data, and when data is available the upstream vconnections reenable the
downstream vconnections. The | NKVI OReenabl e function, in this instance, sends

I NK_EVENT_| MVEDI ATE.

i transformation _ downstream
write_ready vconnection write_ready vconnection

e.g. INKContCall

upstream
vconnection

INKVIOReenable

event_immediate

input VIO transform output VIO

. : read write read

Figure 8 Passing data through a transformation

11 If the handl e_t r ansf or mfunction finds that there is no more data to read, it sets
nbyt es to ndone on the output (downstream) VIO, and wakes up the output
vconnection with a reenable. It then triggers the end of the write operation from the
upstream vconnection by sending the upstream vconnection a WRl TE_COVPLETE
event.

} else {

I NKVI ONByt esSet (dat a- >out put _vi o, | NKVI ONDoneGet (i nput_vio));
I NKVI OReenabl e (dat a- >out put _vi 0) ;
I NKCont Cal | (I NKVI OCont Get (i nput _vi 0),
I NK_EVENT_VCONN_WRI TE_COMPLETE, i nput_vi 0);
}

When the upstream vconnection receives the WRl TE_COMPLETE event, it will probably
shut down the write operation.

12 Similarly, when the downstream vconnection has consumed all of the data, it sends

the transformation a WRI TE_COVPLETE event. The transformation handles this event
with a shut down (the transformation shuts down the write operation to the
downstream vconnection). See the nul | _pl ugi n function for the following code
fragment:

case | NK_EVENT_VCONN VR TE_COMPLETE:

46

The sample null transform plugin

I NKVConnShut down (| NKTr ansf or nQut put VConnGet (contp), 0, 1);
br eak;

The following diagram illustrates the flow of events:

. o transformation
rite_complete - i
write_comp vconnection write_complete

upstream downstream
vconnection vconnection

[]

INKVConnShutdown

ndone ndone
nbytes nbytes =
input buffer output buffer

Figure 9 Ending the transformation

The append-transform plugin

The append-transform plugin appends text to the body of an HTTP response. It obtains

this text from a file. The name of the file containing the append text is a parameter you

specify in pl ugi n. confi g, as follows:

append-transformso path/to/file

The append-transform plugin is based on nul | -t r ansf or m c. The only difference is that
after the plugin feeds the document through the transformation, it adds text to the
response.

Here is a list of the functions in append- t r ansf or m c, in the order they appear in the

source code, with a description of what the function does:

ny_data_al |l oc

Allocates and initializes a MyDat a structure. The plugin defines a struct, MyDat a, as

follows:
typedef struct {
I NKVI O out put _vi o;
I NKI OBuf f er out put _buffer;
I NKI OBuf f er Reader out put _reader;
i nt append_needed,;

HTTP Transformation Plugins

a7

} MyDat a;

The MyDat a structure is used to represent data that the transformation (vconnection)
needs. The transformation’s data pointer is set to a MyDat a pointer using
| NKCont Dat aSet in the handl e_t r ansf or mroutine.

ny_dat a_dest r oy

Destroys objects of type MyDat a. The append_t r ansf or mroutine (see below) calls
my_dat a_dest r oy when th e transformation is complete, to deallocate the
transformation’s data.

handl e_transform

This function does the actual data transformation. The transformation is created in
t ransf or m add (see below). handle_transform is called by append_t ransform

append_transform

This is the handler function for the transformation vconnection created in
t ransf or m add. It is the implementation of the vconnection.

0 If the transformation vconnection has been closed, append_t r ansf or mcalls
ny_dat a_dest r oy to destroy the vonnection

O If append_t r ansf or mreceives an error event, it calls back the continuation to let it
know it has completed the write operation

O If it receives a WRI TE_COVPLETE event, it shuts down the write portion of its
vconnection

O If it receives a WRI TE_READY or any other event (such as
| NK_HTTP_RESPONSE_TRANSFORM _HOCK), it calls handl e_t r ansf or mto attempt to
transform more data

t ransfor mabl e

The plugin transforms only documents that have a content type of t ext / ht i . This
function examines the Cont ent - Type MIME header field in the response header; if the
value of the MIME field is t ext / ht m , the function returns 1. Otherwise, it returns
zero.

transform add

Creates the transformation for the current transaction, and sets up a transformation
hook. The handler function for the transformation is append_t r ansf or m

transform plugin

This is the handler function for the main continuation for the plugin. Traffic Edge calls
this function whenever it reads an HTTP response header. t r ansf or m pl ugi n does
the following:

0 Gets a handle to the HTTP transaction being processed

0 Callstransf or mabl e to determine whether the response document content is of
typetext/htm

0 If the content is transformable, calls t r ansf or m add to create the transformation

O Calls | NKHt t pTxnReenabl e to continue the transaction

48

The append-transform plugin

m | oad

Opens the file containing the text to be appended, and loads the contents of the file
into an | NKI OBuf f er called append_buffer.

m | NKPl uginlnit
Does the following:

0 Checks to make sure that the required configuration information (the append text
filename) is entered in pl ugi n. confi g correctly.

O If there is a filename, | NKP!I ugi nl ni t calls | oad to load the text.

O Creates a continuation for the plugin. The handler for this continuation is
transform pl ugi n.

O Adds the plugin’s continuation to | NK_HTTP_READ RESPONSE_HDR HOOK. In other
words, sets up a callback of the plugin’s continuation when Traffic Edge reads
HTTP response headers.

The sample buffered null transform plugin

The buffered null transform, bnul | -t r ansf or m ¢, reads the response content into a
buffer and then writes the full buffer out to the client. Many examples of transformations,
such as compression, require you to gather the full response content in order to perform
the transformation.

The buffered null transform uses a state variable to keep track of when it is (a) reading
data into the buffer and (b) writing the data from the buffer to the downstream
vconnection.

The following is a step-by-step walk through the buffered null transform:
1 Gets a handle to HTTP transactions.

voi d
I NKPluginlnit (int argc, const char *argv[]) {
I NKHt t pHookAdd (1 NK_HTTP_READ_RESPONSE_HDR_HOCK,
I NKCont Create (transformplugin, NULL)); }

With this | NKPI ugi nl ni t routine, the plugin is called back every time Traffic Edge
reads a response header.

2 Checks to see if the transaction response is transformable.

static int transformplugin (I NKCont contp, | NKEvent event, void *edata) {
INKHt t pTxn txnp = (I NKHtt pTxn) edata;
switch (event) {
case | NK_EVENT_HTTP_READ RESPONSE_HDR:
if (transfornable (txnp)) {

HTTP Transformation Plugins 49

transformadd (txnp);}

The default behavior for transformations is to cache the transformed content. (You can
tell Traffic Edge to cache untransformed content, if you want). Therefore, only
responses received directly from an origin server need be transformed. Objects served
from the cache are already transformed. To determine whether the response is from
the origin server, the routine t r ansf or mabl e checks the response header for the “200
OK” server response.

static int transformable (I NKH tpTxn txnp)
{

I NKMBUf f er buf p;

I NKMLoc hdr _|I oc;

I NKHt t pSt at us resp_st at us;

I NKHt t pTxnSer ver RespGet (txnp, &bufp, &hdr_loc);

i f (I NK_HTTP_STATUS K==
(resp_status=I NKHt t pHdr St at usGet (buf p, hdr _l oc)))
{
return 1;
}
el se {
return O;

}

3 If the response is transformable, the plugin creates a transformation vconnection that
gets called back when the response data is ready to be transformed (as it is streaming
from the origin server).

static void transformadd (INKHtpTxn txnp)

{

I NKVConn connp;

connp = | NKTransfornCreate (bnull _transform txnp);

I NKHt t pTxnHookAdd (txnp, | NK_HTTP_RESPONSE_TRANSFORM HOOK, connp);
}

The previous code fragment shows that the handler function for the transformation
vconnection is bnul | _transform

4 Thebnul | _transfor mfunction has to handle ERROR, WRI TE_COVPLETE, WRI TE_READY,
and | MVEDI ATE events. If the transform is just beginning, the event received is
probably | MVEDI ATE. The bnul | _t r ansf or mfunction calls handl e_t r ansf or mto
handle WRI TE_READY and | MVEDI ATE.

5 The handl e_t r ansf or mfunction examines the data parameter for the continuation
passed to it (the continuation passed to handle_transform is the transformation
vconnection). The data structure keeps track of two states: copying the data into the

50 The sample buffered null transform plugin

buffer (STATE_BUFFER_DATA) and writing the contents of the buffer to the output
vconnection (STATE_OUTPUT_DATA).

If the state is STATE_BUFFER _DATA, handl e_t r ansf or mcalls handl e_buf f eri ng to
copy data into the buffer.

6 Get ahandle to the input VIO. (See the handl e_buf f eri ng function.)

input_vio = I NKVConnWiteVl OGet (contp);

This is so that the transformation can get information about the upstream
vconnection’s write operation to the input buffer.

7 Copy data from the input buffer to the output buffer. See the handl e_buff eri ng
function for the following code fragment:

I NKI OBuf f er Copy (dat a->out put _buffer,
I NKVI OReader Get (wite_vio), towite, 0);

8 Tell the input buffer that the transformation has read the data. See the
handl e_buf f eri ng function for the following code fragment:

I NKI OBuf f er Reader Consune (| NKVI CReader Get (wite_vio), towite);

9 Modify the input VIO to tell it how much data has been read (increase the value of
ndone). See the handl e_buf f eri ng function for the following code fragment:

I NKVI ONDoneSet (write_vio, | NKVIONDoneGet (wite_vio) + towite); }

10 If there is more data left to read (if ndone < nbyt es), the handle_buffering function
wakes up the upstream vconnection by sending it WRI TE_READY:

if (1 NKVI ONTodoGet (wite_vio) > 0) {
if (towite > 0) {
I NKCont Cal | (1 NKVI OCont Get (write_vio),
I NK_EVENT_VCONN_WRI TE_READY, wite_vio);
}

} else {

The process of passing data through the transformation is illustrated in the following
diagram. The transformation sends WRI TE_READY events when it needs more data,
and when data is available the upstream vconnection reenables the transformation
with an | MVEDI ATE event.

Figure 10 Reading data into the buffer (the STATE_BUFFER_DATA state)

HTTP Transformation Plugins 51

. g transformation
rite_rea .
write_ready vconnection

upstream downstream
vconnection vconnection

INKVIOReenable

input VIO output VIO
data ndone ndone
/\ nbytes h nbytes L
. ; read write
write output buffer

11 When the data is read into the output buffer, the handle_buffering function sets the
state of the transformation’s data structure to STATE_OUTPUT_DATA. and calls the
upstream vconnection back with the WRI TE_COMPLETE event.

dat a- >st at e = STATE_COUTPUT_DATA;
I NKCont Cal | (I NKVI OCont Get (write_vio),
I NK_EVENT_VCONN_WRI TE_COWPLETE, write_vio);

12 The upstream vconnection will probably shut down the write operation when it
receives the WRI TE_COVPLETE event. The handler function of the transformation,
bnul | _t ransf or m will receive an | MVEDI ATE event, and call the handl e_transform
function. This time, the state is STATE_OUTPUT_DATA, so handl e_t r ansf or mcalls
handl e_out put .

13 The handl e_out put function gets a handle to the output vconnection:
out put _conn = | NKTr ansf or nQut put VConnGet (contp);

14 The handl e_out put function writes the buffer to the output vconnection:

dat a- >out put _vio =
I NKVConnW i te (output_conn, contp, data->output_reader,
I NKI OBuf f er Reader Avai | (dat a->out put _reader));

52

The sample buffered null transform plugin

The following diagram illustrates the write to the output vconnection:

transformation
vconnection
upstream downstream
vconnection vconnection
output VIO

ndone
nbytes

write

output buffer

data

Figure 11 Writing the buffered data to the output vconnection

HTTP Transformation Plugins 53

54 The sample buffered null transform plugin

CHAPTER 5

New Protocol Plugins

The new protocol APIs allow you to extend Traffic Edge to be a web proxy for any
protocol. This chapter describes the new protocol APIs and plugins that support new
protocols. It goes through sample Protocol plugin code in detail. The sample Protocol
plugin supports a very simple artificial HTTP-like protocol.

This chapter contains the following sections:
= “About the sample protocol” on page 55

Gives the state diagram and header structure of the artificial protocol. Describes what
the supporting plugin has to do.

= “Protocol plugin structure” on page 58

In depth explanation of the Protocol plugin. Starts with overall architecture, and
describes how to write continuations as state machines. Ends with a walk-through of
the Protocol plugin code as it processes a transaction.

About the sample protocol

The sample protocol allows a client to ask a server for a file. Clients send requests to a
specific Traffic Edge port (specified in pl ugi n. confi g). The requests look like the
following:

server_nanefile_nanme\n\n

With the Protocol plugin, Traffic Edge can accept these requests, parse them, and act as a
proxy cache (requesting the file from the origin server on the client’s behalf, and storing
copies of the response messages in the cache).

The Protocol plugin is a state machine that flows through the states illustrated in Figure
12. The figure shows the steps that Traffic Edge and the Protocol plugin go through to
support the sample protocol. In words, Traffic Edge and the Protocol plugin must:

m listen for and accept client connections (on the accept port specified in
pl ugi n. confi g)

m read incoming client requests
m look up the requested content in the Traffic Edge cache

m if the request is a cache hit, serve the content from the cache (this simple example does
not do freshness checking)

m if the request is a cache miss, open a connection to the origin server (on the server port
specified in pl ugi n. confi g)

m forward the request to the origin server

m receive the origin server response

m cache the response and send it on to the client

56 About the sample protocol

accept client

request
create txn
state machine
y
parse » handle parse
request error
v
cache
lookup
cache cache
hit miss
DNS 5| DNS lookup
error
] lookup
read from
cache
connect to »| connection
origin server error
-
send
request
receive origin —p| parse
Ferver response error

write to
cache

to client

send responsq

Figure 12 Sample protocol state diagram

New Protocol Plugins

57

Protocol plugin structure

To see how the Protocol plugin works, you need to understand a couple of big pictures.

This section assumes you are familiar with the concepts of continuation, Traffic Edge’s
asynchronous event model, and basic Traffic Edge plugin structure. If not, see “Getting
Started” on page 13 and “Creating Traffic Edge Plugins” on page 23.

Continuations in the Protocol plugin

The Protocol plugin creates a static continuation that is an “accept” state machine, a state
machine whose job is to accept client connections on the appropriate port. When Traffic
Edge accepts a net connection from a client on that port, the accept state machine is
activated and it creates a new continuation, a transaction state machine. The accept state
machine creates one transaction state machine for each transaction (a transaction consists
of a client request and Traffic Edge’s response). Each transaction state machine lives until
the transaction completes, and then it is destroyed. If the client’s request for content is a
cache miss, a transaction state machine might have to open a connection to the origin
server. This is illustrated in Figure 13.

for each request if cache miss, transaction state machines
accept state machine
creates transaction transaction open connections to origin server
state machine . ~
state machine ~
~
~a S origin
) server
incoming e accept transaction _ — —
state machine o .
client requests / state machine /
e
e
e
transaction e

state machine|’

Figure 13 Protocol plugin overview

Now you can see the first steps in writing this Protocol plugin: in I NKPI ugi nl ni t, you
must create a continuation that listens for net connections on the client port specified in
pl ugi n. confi g (this continuation is the accept state machine).

Here is a summary of the continuations implemented for the Protocol plugin:
= An accept state machine that listens for client connections, and creates transaction

state machines whenever Traffic Edge accepts a new client connection. The accept
state machine lives as long as Traffic Edge is running.

m Transaction state machines that read client requests, process them, and are destroyed
when the transaction is done.

58

About the sample protocol

Event flow

To understand how to implement the rest of the Protocol plugin you need to understand
the flow of events that takes place in the course of a transaction. Unlike HTTP transaction
plugins, this plugin must read data from network connections and read and write data to
the Traffic Edge cache. This means that its continuations do not receive HTTP state
machine events; they receive events from Traffic Edge’s processor subsystems.

For example, the accept state machine is activated by an | NK_EVENT_NET_ACCEPT event
from Traffic Edge’s Net Processor. The handler function for the accept state machine must
be able to handle that event.

The transaction state machines are activated when the client connection receives incoming
request data. The Net Processor notifies the transaction state machine of incoming data.
The transaction state machine reads the data, and then when it is done, initiates a cache
lookup of the requested file. When the cache lookup completes, the transaction state
machine is activated by the Traffic Edge Cache Processor.

If the transaction state machine has to open a connection to the origin server to fetch
content (in the case of a cache miss), the transaction state machine initiates a DNS lookup
of the server name. The transaction state machine is activated by a DNS lookup event
from the Traffic Edge Host Database Processor.

If the transaction has to connect to the origin server, the transaction state machine initiates
a net connection and waits for an event from Net Processor.

accept transaction transaction transaction
state machine state machine state machine| [state machine
\ 4
\ / [/ LI 3 4
;

Traffic Server API Layer

\ g ;
\ / \\/~~ ’l . /,

T
1

1

// j ‘
‘l

l,~~“_

Cache Processor

Traffic Server

Net Processor

Host DB Processor

Event Processor

Figure 14 Protocol plugin flow of events

The flow of events is illustrated in Figure 14. The thin straight lines show Net Processor
event flow, the thin dashed lines are Host DB event flow, and the thick dashed lines are
Cache event flow.

Notice that this flow of events is independent of the design of the Protocol plugin
(whether you build “accept” and “transaction” state machines or not). Any plugin that
supports network connections uses the net vconnection interfaces (I NKNet Accept ,

I NKNet Connect) and thus receives events from Net Processor. Any plugin that performs
cache lookups or cache writes uses | NKCacheRead, | NKCacheW i t e, | NKVConnRead, and

I NKVConnW i t e and thus receives events from Cache Processor and the Traffic Edge event
system; similarly, any plugin that does DNS lookups receives events from the Host DB
Processor.

New Protocol Plugins 59

One way to implement a transaction state machine

The transaction state machines (TSMSs) in the Protocol plugin have to do several things:
m Keep track of the state of the transaction

s Handle the events they receive (based on the state of the transaction and the event
received)

m Update the state of the transaction as it changes

Here is one way you can implement TSMs (details on how the Protocol plugin does this
follow in the next section):

m Create a data structure for transactions that contains all of the state data you need to
keep track of. In the Protocol plugin this is a struct, Txn_SM

m When you create the TSM’s continuation, initialize data of type Txn_SM Initialize the
data to the initial state of a transaction (in this case, a net connection has just been
accepted). Associate this data to the TSM continuation using | NKCont Dat aSet .

= Write state handler functions that handle the expected events for each state.

= Write the handler for the TSM. Its job is to receive events, examine the current state,
and execute the appropriate state handler function. In the Protocol plugin, the handler
is mai n_handl er. mai n_handl er calls the state handler functions to handle each state.

The flow of execution is illustrated in Figure 15.

1 The handler for the TSM, (called mai n_handl er in the Protocol plugin) receives the
TSM’s events.

2 mai n_handl er examines the state of the transaction—in particular, it examines the
current handler.

3 mai n_handl er calls the current _handl er, which is one of the state handler functions,
and passes curr ent _handl er the current event. In Figure 15, the current handler is
state2_handl er.

4 Thecurrent _handl er handles the event, and updates the data. In Figure 15, the state
is changed from st at e2 to st at e3 (and the current handler is changed from
st at e2_handl er tost at e3_handl er). The next time main_handler receives an event,
it will be processed by st at e3_handl er.

5 state2_handl er arranges the next callback of the TSM. Typically, it gives Traffic Edge
additional work to do (such as writing a file to cache), in order to progress to the next
state. The TSM (nmai n_handl er) then waits for the next event to arrive from Traffic
Edge.

This implementation is diagrammed in Figure 15. The details are provided in the next
section, a walk through the processing of a typical transaction.

60

About the sample protocol

txn_sm data

~..@
s ~
~
txn_sm N
' state1_handler N
| » main_handler (contp, event, edata) ~,’ execute based on event Y
/|] ’ change to state2 f
e examine state (current handler)” arrange TS callback when state2 1
J e.g. state2_handler S
2 4
I' execute state handler -7 ’
' (send event to current handler) state2_handler -
' S~o) ¢ execute based on event . - =
! Seee L __o-- -~| * change tostate3 -~
' _arrange TS callback when state3
o, e
1 -’ s
1 e
! @, e state3_handler
. L’ execute based on event
1 , change to state4
'| , arrange TS callback when state4
1 ,I
1 1
1 1
1 T
1 1
1 1
1
\ y

Traffic Server event system

Figure 15 How transaction state machines are implemented in the Protocol plugin

Processing a typical transaction

The code is contained in the following files:
m Protocol.candProtocol.h

m Accept.cand Accept. h

m TxnSM c and TxnSM h

Here is a step-by-step run-through of the code.
1 The I NKPI ugi nl ni t function is in Prot ocol . c. It checks the validity of the

pl ugi n. confi g entries (there must be two, a client accept port and a server port), and

runs an initialization routine, i ni t.

2 Theinit function (in Protocol . c) creates the plugin’s log file using
| NKText LogObj ect Cr eat e.

3 Theinit function creates the accept state machine using Accept Cr eat e. The code for

Accept Creat e isin Accept . c.

4 The accept state machine, like the transaction state machine, keeps track of its state via

a data structure. This data structure, Accept, is defined in Accept . h. In

New Protocol Plugins

61

Accept Cr eat e, state data is associated to the new accept state machine using
| NKCont Dat aSet .

Thei ni t function arranges the callback of the accept state machine when there is a
network connection using | NKNet Accept .

The handler for the accept state machine is accept _event in Accept . c. When Traffic
Edge’s Net Processor sends | NK_EVENT_NET_ACCEPT to the accept state machine,
accept _event creates a transaction state machine, t xn_sm by calling TxnSMCr eat e.
Notice that accept _event creates a mutex for the transaction state machine; each
transaction state machine has its own mutex.

The TxnSMCr eat e function is in TxnSM c. The first thing it does is to initialize the
transaction’s data. This data is of type TxnSM(defined in TxnSM h). Notice that the
current handler (g_current _handl er)issettostate _start.

Then TxnSMCr eat e creates a transaction state machine using | NKCont Cr eat e. The
handler for the transaction state machine is mai n_handl er.

mai n_handl er isin TxnSM c. When accept _event receives | NK_EVENT_NET_ACCEPT,
it calls the transaction state machine (I NKCont Cal | (txn_sm 0, NULL);). The event
passed to main_handler is 0 (I NK_EVENT_NONE).

10 The first thing mai n_handl er does is examine the current t xn_smstate by calling

| NKCont Dat aGet . The state isstate_start .

11 mai n_handl er invokes the handler for st at e_st art by using the function pointer

TxnSMHandl er (defined in TxnSM h).

12 The st at e_st art handler function (in TxnSM c) is handed an event (at this stage, the

event is | NK_EVENT_NET_ACCEPT) and a client vconnection. state_start checks to see if
this client vconnection is closed; if not, st at e_st art attempts to read data from the

62

About the sample protocol

13

14

15

16

17

18
19

20

21

client vconnection into an | NKI OBuf f er. (st at e_st art is handling the event it
receives).

state_start changes the current handlertostate_interface with_client.
(Updates the state of the transaction to the next state).

state_start initiates a read of the client vconnection (arranges for Traffic Edge to
send | NK_EVENT_VCONN_READ READY events to the TSM), by calling | NKVConnRead.

state_interface_wi th_client isactivated by the next event from Traffic Edge. It
checks for errors, and examines the read VIO for the read operation initiated by
I NKVConnRead.

If the read VIO is the cl i ent _r ead_VI O(which we are expecting at this stage in the
transaction), state_i nterface_wi th_client updates the state to
state_read_request _fromclient.

state_read_request _fromclient handlesactual | NK_EVENT _READ READY events
and reads the client request.

state_read_request _fromclient parsesthe client request.

state_read_request _fromclient updates the state to the next state,
st at e_handl e_cache_| ookup.

state_read_request _fromclient arranges for Traffic Edge to call back the TSM
with the next set of events, initiating the cache lookup, by calling | NKCacheRead.

When the | NKCacheRead sends the TSM | NK_EVENT_COPEN_READ (a cache hit) or
| NK_EVENT_OPEN_READ FAI LED (a cache miss), mai n_handl er calls
st at e_handl e_cache_| ookup.

New Protocol Plugins 63

64 About the sample protocol

CHAPTER 6

HTTP
transaction

transform
hooks

HTTP
session

HTTP Hooks and Transactions

Hooks are points in Traffic Edge transaction processing where plugins can step in and do
some work. Registering a plugin function for callback amounts to “adding” the function
to a hook. You can register your plugin to be called back for every single transaction, or for
specific transactions only.

This chapter contains the following sections:

= “Adding hooks” on page 67

m “HTTP sessions” on page 68

m “HTTP transactions” on page 69

m “Intercepting HTTP Transactions” on page 73
m “Initiate HTTP Connection” on page 73

m “HTTP alternate selection” on page 73

Transformation hooks are discussed in “Transformations” on page 42.

The set of hooks

First you need the following terminology

A transaction consists of a single HTTP request from a client and the response that Traffic
Edge sends to that client. A transaction begins when Traffic Edge receives a request, and
ends when Traffic Edge sends the response.

Traffic Edge uses HTTP state machines to process transactions. The state machines follow
a complex set of states involved in sophisticated caching and document retrieval (taking
into account, for example, alternate selection, freshness criteria, and hierarchical caching).
The Traffic Edge API provides hooks to a subset of these states, illustrated in Figure 16, on
page 66.

The two transform hooks, | NK_HTTP_REQUEST TRANSFORM HOOK and

I NK_HTTP_RESPONSE_TRANSFORM HOOK are called in the course of an HTTP transform. To
see where in the HTTP transaction they are called, look for the “set up transform” ovals in
Figure 16, on page 66.

A session consists of a single client connection to Traffic Edge. A session can consist of
several transactions, in succession. The session starts when the client connection opens,
and ends when the connection closes.

CaceepD

[INK_HTTP_TXN_START_HOOK]

read req hdrs

[INK_HTTP_READ_REQUEST_HDR_HOOK

[INK_HTTP_OS_DNS_HOOK]

cache lookup

hit
[INK_HTTP SELECT ALT_HOOK]

no match H \rnétch

|INK HTTP READ_CACHE_HDR_HOOK|

|INK HTTP_ CACHE LOOKUP_COMPLETE_HOOK

miss

no match

lock URL in cache
pick address
success

[INK_HTTP_SEND_REQUEST_HDR_HOOK]
¥
send req hdrs
POST/PUT
set up POST/PUT read
Y
set up req transform req transform takes place herd

tunnel req body
read reply hdrs

[INK_HTTP_READ_RESPONSE_HDR_HOOK]

miss
stale fresh

send cached hdrs

set up cache read

set up server read

cachable

set up cache write

uncachable

response transform takes place here

set up transform

[INK_HTTP_SEND_RESPONSE_HDR_HOOK |

send reply hdrs
S G

[INK_HTTP_TXN_CLOSE_HOOK

Figure 16 HTTP transaction state diagram

66

The set of hooks

global
HTTP hooks

transaction
hooks

transforma
tion hooks

session
hooks

HTTP
select
alternate
hook

Adding hooks

There are several ways of adding hooks to your plugin.

HTTP transaction hooks are set on a global basis using the function | NKHt t pHookAdd. This
means that the continuation specified as the parameter to | NKHt t pHook Add is called for
every transaction. | NKHt t pHookAdd must be used in | NKPI ugi nl ni t.

Transaction hooks can be used to call plugins back for a specific HTTP transaction. You
cannot add transaction hooks in I NKPI ugi nl ni t ; you first need a handle to a transaction.
See “Accessing the Transaction Being Processed” on page 33.

Transformation hooks are a special case of transaction hooks. See
“INKVConnCacheObjectSizeGet” on page 220 for more information on the transformation
hooks. You add a transformation hook using | NKHt t pTxnHookAdd, described in “HTTP
transactions” on page 69.

An HTTP session starts when a client opens a connection to Traffic Edge and ends when
the connection closes. A session can consist of several transactions. Session hooks allow
you to hook your plugin to a particular point in every transaction within a specified
session. See “HTTP sessions” on page 68. Session hooks are added in a manner similar to
transaction hooks (you first need a handle to an HTTP session).

Alternate selection hooks allow you to hook on to the alternate selection state. These
hooks must be added globally, since Traffic Edge does not have a handle to a transaction
or session when alternate selection is taking place. See “HTTP alternate selection” on page 73
for information on the alternate selection mechanism.

All of the hook addition functions (INKHttpHookAdd, IINKHttpSsnHookAdd,
INKHttpSsnReenable)take an | NKHt t pHook! D identifying the hook to add on to and an

I NKCont which is the basic callback mechanism in Traffic Edge. A single | NKCont can be
added to any number of hooks at a given time.

An HTTP hook is identified by the enumerated type | NKHt t pHookl! D. The values for
I NKHt t pHookI D are:

Values for INKHttpHookID Description
INK_HTTP_READ_REQUEST_HDR_H | Called immediately after the request header is read
OOK from the client.

Corresponds to the event
I NK_EVENT_HTTP_READ_REQUEST_HDR.

INK_HTTP_OS_DNS_HOOK Called immediately after the HTTP state machine
has completed a DNS lookup of the origin server.
The HTTP state machine will know the origin
server's IP address at this point which is useful for
performing both authentication and blacklisting.

Corresponds to the event
I NK_EVENT_HTTP_OS_DNS.

INK_HTTP_SEND_REQUEST_HDR_H | Called immediately before the proxy's request
OOK header is sent to the origin server or the parent
proxy. Notice that this hook will not be called if the
document is being served from cache. This hook is
usually used for modifying the proxy's request
header before it is sent to the origin server or parent

proxy.

HTTP Hooks and Transactions 67

Values for INKHttpHookID Description

INK_HTTP_READ_CACHE_HDR_HOO | Called immediately after the request and response
K header of a previously cached object is read from
cache. Notice that this hook will only be called if the
document is being served from cache.

Corresponds to the event
I NK_EVENT_HTTP_READ_CACHE_HDR.

INK_HTTP_READ_RESPONSE_HDR_ | Called immediately after the response header is
HOOK read from the origin server or parent proxy.

Corresponds to the event
I NK_EVENT_HTTP_READ RESPONSE_HDR.

INK_HTTP_SEND_RESPONSE_HDR_ | Called immediately before the proxy's response
HOOK header is written to the client. This hook is usually
used for modifying the response header.

Corresponds to the event
I NK_EVENT_HTTP_SEND_RESPONSE_HDR.

INK_HTTP_REQUEST_TRANSFORM_ | See “Transformations” on page 42 for information on

HOOK the transformation hooks.
INK_HTTP_RESPONSE_TRANSFOR See “Transformations” on page 42 for information on
M_HOOK the transformation hooks.
INK_HTTP_TXN_START_HOOK Called when an HTTP transaction is started. A

transaction starts when either a client connects to
Traffic Edge and data is available on the connection
or a previous client connection left open for keep
alive has new data available.

INK_HTTP_TXN_CLOSE_HOOK Called when an HTTP transaction ends.

INK_HTTP_SELECT_ALT_HOOK See “HTTP alternate selection” on page 73 for
information on the alternate selection mechanism.

INK_HTTP_SSN_START_HOOK Called when an HTTP session is started. A session

starts when a client connects to Traffic Edge. You
can only add this hook as a global hook.

INK_HTTP_SSN_CLOSE_HOOK Called when an HTTP session ends. A session ends
when the client connection is closed. You can only
add this hook as a global hook.

INK_HTTP_CACHE_LOOKUP_COMPL | Called once the HTTP state machine has
ETE_HOOK commpleted the cache lookup for the document
requested in the ongoing transaction. Register this
hook either using either | NKHt t pTxnHook Add or
| NKHt t pHook Add. Corresponds to the event

I NK_EVENT_HTTP_CACHE_LOOKUP_COWPLETE.

The function you use to add a global HTTP hook is “INKHttpHookAdd™ on page 151.

HTTP sessions

An HTTP session is an object that is defined for the lifetime of a client’s TCP session. The
Traffic Edge API allows you to add a global hook to the start or end of an HTTP session,

68

HTTP sessions

and you can add session hooks that call back your plugin for every transaction within a
given session.

When a client connects to Traffic Edge it opens up a TCP connection and sends one or
more HTTP requests. An individual request and its response make up an HTTP
transaction. The HTTP session begins when the client opens the connection, and ends
when the connection closes.

The HTTP session hooks are:

INK_HTTP_SSN_START_HOOK Called when an HTTP session is started. A session
starts when a client connects to Traffic Edge. This hook
must be added as a global hook.

INK_HTTP_SSN_CLOSE_HOOK Called when an HTTP session ends. A session ends
when the client connection is closed. This hook must be
added as a global hook.

You use the session hooks to get a handle to a session (an | NKHt t pSsn object) and then if
you want your plugin to be called back for each transaction within the session, you use
I NKHt t pSsnHook Add.

Note that you must reenable the session with | NKHt t pSsnReenabl e after processing a
session hook.

The session hook functions are:
m “lINKHttpSsnHookAdd” on page 152
m “INKHttpSsnReenable” on page 153

HTTP transactions

The HTTP transaction functions allow you to set up plugin callbacks to HTTP
transactions, and obtain and modify information about particular HTTP transactions.

As described in the section on HTTP sessions, an HTTP transaction is an object defined for
the lifetime of a single request from a client and the response from Traffic Edge. The

I NKHt t pTxn structure is the main handle given to a plugin for manipulating internal state
about a transaction. Additionally, an HTTP transaction has a reference back to the HTTP
session that created it.

Below is a sample of code that illustrates how to register locally to a transaction and
associate data to the transaction.

/*

* Sinple plugin that illustrates:

* - howto register locally to a txn

* - howto deal with data associated to a txn

* Note: for code lisibility, error checking is omtted
*/

HTTP Hooks and Transactions 69

#i ncl ude "I nkAPI. h"

#defi ne DBG_TAG "txn"

/* Structure to be associated to txns */
typedef struct {

int i;

float f;

char *s;
} TxnDat a;

/* Al'locate nmenmory and init a TxnData structure */
TxnData *
txn_data_al |l oc()

{
TxnDat a *dat a;

data = | NKnal | oc(si zeof (TxnData)) ;

dat a- >i 1;
0.5;

data->s = "Constant String";

dat a- >f

return data;

/* Free up a TxnData structure */
voi d
txn_data_free(TxnData *data)

{
I NKf ree(dat a) ;

/* handl er for event READ REQUEST and TXN_CLOSE */
static int
| ocal _hook_handl er (I NKCont contp, |INKEvent event, void *edata)
{
INKHt t pTxn txnp = (I NKHtt pTxn) edat a;
TxnData *txn_data = | NKCont Dat aGet (cont p) ;

70 HTTP transactions

switch (event) {
case | NK_EVENT_HTTP_READ REQUEST_HDR:

/* Modify values of txn data */

2;

3.5;

txn_data->s = "Constant String 2";

txn_dat a- >i
t xn_dat a- >f

br eak;

case | NK_EVENT HTTP_TXN_CLOSE:

/* Print txn data val ues */
I NKDebug(DBG TAG, "Txn data i =% f=% s=%", txn_data->i, txn_data->f,

t xn_dat a- >s) ;

/* Then destroy the txn cont and it's data */
txn_data_free(txn_data);

I NKCont Dest roy(cont p) ;

br eak;

defaul t:

| NKAssert (! "Unexpected event");
br eak;

I NKHt t pTxnReenabl e(t xnp, | NK_EVENT_HTTP_CONTI NUE) ;
return 1;

/* Handl er for event TXN _START */
static int
gl obal _hook_handl er (1 NKCont contp, |NKEvent event, void *edata)

{

INKHt t pTxn txnp = (I NKHttpTxn) edat a;
I NKCont txn_cont p;
TxnData *txn_dat a;

switch (event) {
case | NK_EVENT_HTTP_TXN_START:

/* Create a new continuation for this txn and associate data to it */
txn_contp = | NKCont Creat e(l ocal _hook_handl er, | NKMutexCreate());
txn_data = txn_data_all oc();

| NKCont Dat aSet (t xn_contp, txn_data);

/* Registers locally to hook READ REQUEST and TXN_CLCSE */

HTTP Hooks and Transactions 71

| NKHt t pTxnHookAdd(t xnp, | NK_HTTP_READ REQUEST_HDR HOOK, txn_contp);
I NKHt t pTxnHookAdd(t xnp, | NK_HTTP_TXN CLOSE_HOOK, txn_contp);
br eak;

defaul t:
| NKAssert (! "Unexpected event");
br eak;

I NKHt t pTxnReenabl e(t xnp, | NK_EVENT_HTTP_CONTI NUE) ;
return 1;

voi d
INKPluginlnit (int argc, const char *argv[])

{
I NKCont cont p;

/* Note that we do not need a mutex for this txn as it registers globally
and doesn't have any data associated with it */
contp = | NKCont Creat e(gl obal _hook_handl er, NULL);

/* Register gloabally */
I NKHt t pHookAdd(| NK_HTTP_TXN_START_HOOK, contp);

See “Adding hooks” on page 67 for background about HTTP transactions, and HTTP hooks.
See Figure 16, on page 66, for an illustration of the steps involved in a typical HTTP
transaction.

The HTTP transaction functions are:
m “INKHttpTxnCacheLookupStatusGet” on page 154
m “INKHttpTxnCachedReqGet” on page 154
Note that it is an error to modify cached headers.
m “INKHttpTxnCachedRespGet” on page 155
Note that it is an error to modify cached headers.
m “INKHttpTxnClientincomingPortGet” on page 155
m “INKHttpTxnClientIPGet” on page 155
m “INKHttpTxnClientRemotePortGet” on page 156

72 HTTP transactions

m “NKHttpTxnClientReqGet” on page 156
Plugins that must read client request headers use this call to retrieve the HTTP header.
m “INKHttpTxnClientRespGet” on page 156
m “INKHttpTxnErrorBodySet” on page 157
m “INKHttpTxnHookAdd” on page 157
n “INKHttpTxnNextHopIPGet” on page 158
n “INKHttpTxnNextHopIPGet” on page 158
m “INKHttpTxnParentProxySet” on page 158
m “INKHttpTxnReenable”” on page 159
m “INKHttpTxnServerlPGet” on page 159
m “INKHttpTxnServerReqGet” on page 160
m “INKHttpTxnServerRespGet” on page 160
m “INKHttpTxnSsnGet” on page 160
m “INKHttpTxnTransformedRespCache” on page 161
m “INKHttpTxnTransformRespGet” on page 161
m “INKHttpTxnUntransformedRespCache” on page 162

Intercepting HTTP Transactions

The intercepting HTTP transaction functions provide plugins the ability to intercept
transactions either after the request is received or on contact with the origin server. The
plugin acts as the origin server using the INKVConn interface. Allows both for reading
POST bodies in plugins as well as using alternative transports to the origin server.

The intercepting HTTP transaction functions are:
m “INKHttpTxnIntercept” on page 163
m “INKHttpTxnServerintercept” on page 164

Initiate HTTP Connection

The initiate HTTP connection function allows plugins to initiate HTTP transactions. The
initiate HTTP connection function is:

m “INKHttpConnect™ on page 162

HTTP alternate selection

The HTTP alternate selection functions provide a mechanism for hooking into Traffic
Edge’s alternate selection mechanism and augmenting it with additional information.

HTTP Hooks and Transactions 73

HTTP alternate selection refers to the process of choosing between several alternate
versions of a document for a given URL. Alternates arise because the HTTP 1.1
specification allows different documents to be sent back for the same URL depending on
the clients request. For example, a server might send back a GIF image to a client who
only accepts GIF images and might send back a JPEG image to a client who only accepts
JPEG images.

The alternate selection mechanism is invoked when Traffic Edge looks up a URL in its
cache. For each URL Traffic Edge stores a vector of alternates. For each alternate in this
vector, Traffic Edge computes a quality value between 0 and 1 for how “good” the
alternate is. A quality value of 0 means that the alternate is unacceptable. A quality value
of 1 means that the alternate is a perfect match.

If a plugin hooks onto thel NK_HTTP_SELECT_ALT_HOOXK it will be called back when Traffic
Edge performs alternate selection. You cannot register locally to the hook

I NK_HTTP_SELECT_ALT_HOOK by using | NKHt t pTxnHookAdd, but by using only

I NKHt t pHookAdd. It is only valid to hook onto the global list of

I NK_HTTP_SELECT_ALT_HOXK's since Traffic Edge does not actually have an HTTP
transaction or an HTTP session on hand when alternate selection is performed. Traffic
Edge calls each of the select alternate hooks with the event

| NK_EVENT_HTTP_SELECT_ALT. The voi d *edat a argument that is passed to the
continuation is a pointer to an | NKHt t pAl t | nf o structure. It can be used later to call the
HTTP alternate selection functions listed at the end of this section. Unlike other hooks,
this alternate selection callout is non-blocking and the expectation is that the quality value
for the alternate will be changed by a call to | NKHt t pAl t | nf oQual it ySet .

Note ~ HTTP SM does not have to be reenabled using | NKHt t pTxnReenabl e or any other APIs.
Just return from the function.

Below is a sample of code that illustrates how to call the Alternate APIs.

static void handl e_sel ect_alt (I NKH tpAl tlnfo infop)
{

I NKMBuf fer client_req_buf, cache_resp_buf;

I NKMLoc client_req_hdr, cache_resp_hdr;

I NKMLoc accept _transformfield;
I NKMLoc content _transformfield;

int accept_transformlen = -1, content_transformlen = -1;
const char* accept_transformval ue = NULL;

const char* content_transformyval ue = NULL;

int content_plugin, accept_plugin;

float quality;
/* get client request, cached request and cached response */

INKHt t pAl t I nfod i ent ReqGet (infop, &client_req_buf, &client_req_hdr);
I NKHt t pAl t | nf oCachedRespGet (i nfop, &cache_resp_buf, &cache_resp_hdr);

74 HTTP alternate selection

/* get the Accept-Transformfield value fromthe client request */

accept _transformfield = | NKM neHdr Fi el dFi nd(client_req_buf,
client_req_hdr, "Accept-Transforni, -1);

if (accept_transformfield) {

I NKM meHdr Fi el dVal ueStri ngGet (client_req_buf, client_req_hdr,
accept _transformfield,

0, &accept_transformval ue,
&accept _transformlen);

| NKDebug(DBG_TAG, "Accept-Transform= |%|",
accept _transformval ue);

}

/* get the Content-Transformfield value fromcached server response
*/

content _transformfield = | NKM neHdr Fi el dFi nd(cache_r esp_buf,
cache_resp_hdr, "Content-Transfornt, -1);

if (content_transformfield) {

I NKM nmeHdr Fi el dVal ueStri ngGet (cache_resp_buf, cache_resp_hdr,
content _transformfield,

0, &content _transformval ue,
&content _transform.|en);

| NKDebug(DBG_TAG, "Content-Transform= | %s|",
cont ent _transform val ue);

}

/* conpute quality */

accept _plugin = (accept_transformval ue & (accept_transformlen > 0)
&&

(strncnp(accept _transformvalue, "plugin",
accept _transformlen) == 0));

content _plugin = (content_transformval ue & (content_transformlen >
0) &&

(strncnp(content _transformvalue, "plugin",
content _transformlen) == 0));

if (accept_plugin) {

quality = content_plugin ? 1.0 : 0.0;
} else {

quality = content_plugin ? 0.0 : 0.5;

I NKDebug(DBG _TAG, "Setting quality to 98.1f", quality);

/* set quality for this alternate */
I NKHt t pAl t I nfoQualitySet(infop, quality);

HTTP Hooks and Transactions 75

/* cleanup */
i f (accept_transformyval ue)

I NKHandl eStri ngRel ease(client_req_buf, accept_transformfield,
accept _transformval ue);

if (accept_transformfield)

I NKHandl eM_ocRel ease(client_req_buf, client_reqg_hdr,
accept _transformfield);

I NKHandl eM_ocRel ease(client_req_buf, INK NULL_MQOC, client_req_hdr);

if (content_transformval ue)

I NKHandl eStri ngRel ease(cache_resp_buf, content_transformfield,
content _transformval ue);

if (content_transformfield)

I NKHandl eM_ocRel ease(cache_resp_buf, cache_resp_hdr,
content _transformfield);

I NKHandl eM_ocRel ease(cache_resp_buf, I NK_NULL_M.QOC, cache_resp_hdr);

static int alt_plugin(l NKCont contp, |NKEvent event, void *edata)

{
I NKHt t pAl 't I nfo infop;

switch (event) {

case | NK_EVENT_HTTP_SELECT_ALT:
infop = (I NKHtt pAl tlnfo)edata;
handl e_sel ect _al t (i nfop);

br eak;

defaul t:

br eak;

return O;

void I NKPluginlnit (int argc, const char *argv[])

{

| NKHt t pHookAdd(| NK_HTTP_SELECT ALT HOOK, | NKContCreate (alt_pl ugin,
NULL)) ;

HTTP alternate selection

Traffic Edge augments the alternate selection through these callouts using the following
algorithm.

1 Traffic Edge computes its own quality value for the alternate. Traffic Edge takes into
account the quality of the accept match, the encoding match and the language match.

2 Traffic Edge then calls out each of the continuations on the global
I NK_HTTP_SELECT_ALT_HOOXK’s list.

3 It multiplies its quality value with the value returned by each callout. Since all of the
values are clamped to be between 0 and 1, the final value will be between 0 and 1.

4 This algorithm also ensures that a single callout can block the usage of a given
alternate by specifying a quality value of 0.

A common usage for the alternate selection mechanism is when a plugin transforms a
document for some clients and not for others and wants to store both the transformed and
un-transformed document. The client’s request would specify whether it accepted the
transformed document and the plugin could then determine if the alternate matched this
specification and set the quality level for the alternate appropriately.

The HTTP alternate selection functions are:

m “INKHttpAltinfoCachedReqGet” on page 165
m “INKHttpAltinfoCachedRespGet” on page 166
m “INKHttpAltinfoClientReqGet” on page 166

n “INKHttpAltinfoQualitySet” on page 166

HTTP Hooks and Transactions 77

78 HTTP alternate selection

CHAPTER 7

Miscellaneous Interface Guide

Most of the functions in the Traffic Edge API provide an interface to specific code modules
within Traffic Edge. The miscellaneous functions described in this chapter provide some
useful general capabilities:

= “Debugging functions” on page 79
m “The INKfopen family”” on page 79
= “Memory allocation” on page 80

m “Thread functions” on page 80

While the C library already provides functions such as pri nt f, mal | oc, and f open that
perform these tasks, the Traffic Edge API versions overcome various C library limitations
(such as portability to all Traffic Edge-supported platforms).

Debugging functions
The debugging functions give you the following debugging capabilities:

m “INKDebug” on page 143 prints out a formatted statement if you are running Traffic
Edge in debug mode.

» “INKIsDebugTagSet” on page 144 finds out if a debug tag is set. If the debug tag is set,
Traffic Edge prints out any debug statements associated to the debug tag.

m “INKError” on page 144 prints error messages to Traffic Edge’s error log.
m “INKAssert” on page 144 allows the use of assertion in a plugin.

m “INKReleaseAssert” on page 145 allows the use of assertion in a plugin.

The INKfopen family

The f open family of functions in C is normally used for reading configuration files, since
f get s is an easy way to parse files on a line by line basis. The | NKf open family of
functions is aimed at solving the same problem of buffered 10 and line ata time 10 in a
platform independent manner. The | NKf open family of functions works exactly the same
under Microsoft Windows NT as it does under any of the Unix platforms Traffic Edge
runs on. Further, the f open family of C library functions can only open a file if a file
descriptor less than 256 is available. Traffic Edge often has more than 2000 file descriptors
open at once, making the likelihood of an available file descriptor less than 256 very small.
The I NKkf open family can open files with descriptors greater than 256.

INKfopen

not optimized

for speed

The I NKf open family of routines is not intended for high speed 10 or for flexibility, but
are blocking APIs, not asynchronous. Thus, for performance reasons, it is recommended
not to directly use these APIs on a TS thread (when being called back on an HTTP hook).
It is better to use a separate thread for doing the blocking 10. The I NKf open family is
intended for reading and writing configuration information when corresponding usage of
the f open family of functions is inappropriate because of file descriptor and portability
limitations. The | NKf open family of functions consists of:

= “INKfclose” on page 146
m “INKfflush” on page 146
m “INKfgets” on page 146
= “INKfopen” on page 146
m “INKfread” on page 147
m “INKfwrite” on page 148

Memory allocation

Traffic Edge provides five routines for allocating and freeing memory. These routines
correspond to similar routines in the C library. For example, | NKr eal | oc behaves like the
C library routine r eal | oc. There are two reasons to use the routines provided by Traffic
Edge. The first is portability. The Traffic Edge API routines behave the same on all of
Traffic Edge’s supported platforms. For example, r eal | oc does not accept an argument of
NULL on some platforms. The second reason is that the Traffic Edge routines actually track
the memory allocations by file and line number. This tracking is very efficient, is always
turned on, and is useful for tracking down memory leaks.

The memory allocation functions are:
m “INKfree” on page 148

= “INKmalloc” on page 148

= “INKrealloc” on page 149

m “INKstrdup” on page 149

m “INKstrndup” on page 149

Thread functions

The Traffic Edge API thread functions enable you to create, destroy, and identify threads
within Traffic Edge. Multithreading enables a single program to have more than one
stream of execution and to process more than one transaction at a time.

Threads serialize their access to shared resources and data using the | NKWut ex type,
described in “Mutexes” on page 101.

The thread functions are:

80

Memory allocation

“INKThreadCreate” on page 150
“INKThreadDestroy” on page 150
“INKThreadInit” on page 151
“INKThreadSelf” on page 151

Miscellaneous Interface Guide 81

82 Thread functions

CHAPTER 8

Example
request

HTTP Headers

This chapter is about the functions used to manipulate HTTP headers.
m “About HTTP headers” on page 83

m “Guide to Traffic Edge HTTP header system” on page 87

m “Marshal buffers” on page 91

m “HTTP headers” on page 91

m “URLSs” on page 94

m “MIME headers” on page 95

About HTTP headers

An HTTP message consists of:
m An HTTP header
= body
m trailer
The HTTP header consists of:
m Request or response line
0 An HTTP request line is composed of a method, a URL and version
O A response line is composed of a version, a status code and a reason phrase
» MIME header

A MIME header is made up of zero or more MIME fields. A MIME field is composed of a
field name, a colon and zero or more field values. The values in a field are separated by
commas.

An HTTP header containing a request line is usually referred to as a request. The
following example shows a typical request header.

GET http://ww. inktom .coml HTTP/ 1.0

Pr oxy- Connecti on: Keep-Alive

User-Agent: Mozilla/4.08 [en] (X11; |; Linux 2.2.3 i686)

Host: www. i nkt om . com

Accept: image/gif, inmagel/x-xbitmap, inage/jpeg, inmage/pjpeg, image/ png, */
*

Accept - Encodi ng: gzip
Accept - Language: en
Accept - Charset: is0-8859-1, *, utf-8

Example
response

The response header for the above request might look like the following:

HTTP/ 1.0 200 K

Date: Mon, 29 Mar 1999 06:57: 43 GMI

Cont ent - Location: http://locutus.inktom .comindex.htm
Et ag: "07dbl4af a76bel: 1074"

Last-Modi fied: Thu, 25 Mar 1999 20:01: 38 GVl
Content - Length: 7931

Cont ent - Type: text/htm

Server: Mcrosoft-115/4.0

Age: 922

Proxy- Connection: cl ose

The following figure illustrates an HTTP message, with the HTTP header blown up:

HTTP request HTTP header

or response —
- - request or
HTTP header response line
body N MIME header

\ MIME field
\ name:value
\ MIME field
\ name:value

trailer

Figure 17 HTTP request/response and header structure

The following figure gives examples of HTTP request and response headers.

84

About HTTP headers

accessing
HTTP header
data

HTTP header: request example

HTTP header: response example

request line

GET http://www.inktomi.com/ HTTP/1.0

response line

HTTP/1.0 200 OK

MIME header

Proxy-Connection: Keep-Alive

User-Agent: Mozilla/4.08 [en]

MIME fields

Accept: image/gif, */*

Accept-Charset: is0-8859-1, *

MIME header

MIME fields

Date: Mon, 03 Jul 2000 06:57:43 GMT

Content-Location: http://a.b.com/index.html

Content-Length: 7931

Content-Type: text/html

Proxy-Connection: close

Figure 18 Examples of HTTP request and response headers

The marshal buffer or | NKMBuf f er is a heap data structure that stores parsed URLSs,
MIME headers and HTTP headers. You can allocate new objects out of marshal buffers,
and change the values within the marshal buffer. Whenever you manipulate an object,
you require the handle to the object (I NKM_oc) and the marshal buffer containing the

object (I NKMBuf f er).

HTTP Headers

85

request_bufp

‘ http_hdr_loc

HTTP header
method: GET

URL: ¢
version: HTTP/1.1 {4
MIME header:

~

http://www.inktomi.com/ HTTP/1.0

Proxy-Connection: Keep-Alive

»
&
Q)

/

MIME header

User-Agent: Mozilla/4.08 [en]

Accept: image/gif, */*

Enext_d up_loc

ﬂ Accept: image/jpg

- e e e e e e =
o = P

Figure 19 Marshal buffers and header locations

Figure 19 shows:

m The marshal buffer containing the HTTP request, r eqest _buf p

m | NKM.oc location pointer for the HTTP header (htt p_hdr _| oc)

m | NKM.oc location pointer for the request URL (url _I oc)

m | NKM.oc location pointers for the MIME header (mi ne_hdr _| oc)

m | NKM.oc location pointers for MIME fields (fi el di _I oc)

m | NKM.oc location pointer for the next duplicate MIME field (next _dup_I oc)

The diagram also shows that an HTTP header contains pointers to the URL location and
the MIME header location. You can obtain the URL location from an HTTP header using
the function | NKHt t pHdr Ur | Get . To work with MIME headers, you can pass either a
MIME header location or an HTTP header location to MIME header functions . If you pass

86 About HTTP headers

IMPORTANT

Note

an HTTP header to a MIME header function, the system locates the associated MIME
header and executes the MIME header function on the MIME header location.

Guide to Traffic Edge HTTP header system

Please read this section.

Previous versions of Traffic Edge are named Traffic Server. Throughout this manual,
Traffic Server, Traffic Server 3.0, Traffic Server 3.5, and Traffic Server 5.2 refer to previous
versions of Traffic Edge. For version checking, Traffic Edge 1.5 is equivalent to Traffic
Server 5.5.

Older (pre-4.0) versions of Traffic Server’s header processing system analysed and
disassembled HTTP headers for convenience, at considerable performance cost. New
performance enhancements do not assume this breakdown and reassembly. The
consequences are the following.

No null-terminated strings

In Traffic Server 5.2 and newer, you cannot assume that the string data contained in
marshal buffers (data such as URLs and MIME fields) is stored in null-terminated string
copies. This means that your plugins should always use the length parameter when
retrieving or manipulating these strings. You cannot pass in NULL for string-length return
values. String values returned from marshall buffers are not null-terminated. If you need a
null-terminated value, use | NKst r ndup to automatically null-terminate a string. The
strings that come back, which are not null-terminated, cannot be passed into the common
str*() routines.

Values returned from a marshall buffer can be NULL, which means the field or object
requested does not exist.

For example (from the bl ackl i st - 1 sample):

char *host_string;

int host_|ength;

host _string = I NKUrl Host Get (bufp, url_loc, &host_|ength);
for (i =0; i <nsites; i++) {

if (strncnmp (host_string, sites[i], host_length) == 0) {

}
See the sample plugins for more examples.

Duplicate MIME fields are not coalesced

MIME headers may contain more than one MIME field with the same name. Pre-4.0
versions of Traffic Server joined multiple fields with the same name into one field with
composite values. This behavior comes at a performance cost, and causes interoperability
problems with some older clients and servers. Traffic Server 4.0 and newer ceases
coalescing duplicate fields.

HTTP Headers 87

the parent
location

Correctly behaving plugins should check for the presence of duplicate fields, and iterate
over the duplicate fields, by using | NKM meHdr Fi el dNext Dup (see
“INKMimeHdrFieldNextDup” on page 191).

MIME fields always belong to an associated MIME header

In Traffic Server versions 4.0 and newer, you cannot create a new MIME field without an
associated MIME header or HTTP header; MIME fields are always seen as part of a MIME
header or HTTP header.

To use a MIME field, you must specify the MIME header or HTTP header to which it
belongs. This header is called the field’s parent header. The | NKM meFi el d* functions in
pre-2.0 versions of the SDK, which do not require the parent header as inputs, have been
deprecated. SDK 2.0 has new functions, the | NKM meHdr Fi el d* series, that require you to
specify the location of the parent header along with the location of the MIME field. For
every deprecated | NKM meFi el d* function, there is a new preferred | NKM neHdr Fi el d*
function. Use the | NKM neHdr Fi el d* functions instead of the deprecated | NKM neFi el d*
series. Here are some examples:

Instead of:

INKMLoc | NKM neFi el dCr eat e (I NKMBuf f er buf p)

Use:

INKMLoc | NKM meHdr Fi el dCr eat e (I NKMBuf f er buf p, | NKMLoc hdr)
Instead of:

voi d | NKM neFi el dCopyVal ues (| NKMBuf fer dest_bufp, | NKM.oc dest_offset,
I NKMBuf f er src_bufp, INKMLoc src_offset)

Use:
voi d | NKM neHdr Fi el dCopyVal ues (I NKMBuf f er dest _bufp, | NKMLoc dest _hdr,
I NKMLoc dest _field, | NKMBuffer src_bufp, INKM.oc src_hdr, | NKM.oc
src_field)
In the | NKM meHdr Fi el d* function prototypes, the | NKMLoc fi el d corresponds to the
I NKMLoc of f set used the | NKM neFi el d* functions. See the discussion of parent | NKM_oc
in the following section.

Release marshal buffer handles

When you fetch a component object or create a new object, you get back a handle to the
object location. The handle is either an | NKM_oc for an object location, or a char * for a
string location. You can manipulate the object through these handles, but when you are
finished, you need to release the handle to free up system resources.

The general guideline is to release all | NKM_oc and string handles you retrieve. The one
exception is the string returned by | NKUr | St ri ngGet , which must be freed by a call to
I NKf r ee.

The handle release functions expect three arguments: the marshal buffer containing the
data, the location of the parent object, and the location of the object to be released. The
parent location is usually clear from the creation of the | NKM_oc or string; for example, if
your plugin had the following calls:

url _loc = INKHtt pHdrUrl Get (bufp, hdr_loc);

88

Guide to Traffic Edge HTTP header system

host _string = I NKUrl Host Get (bufp, url_loc, &host_|ength);
Your plugin would have to call:

I NKHandl eStri ngRel ease (bufp, url _loc, host_string);
| NKHandl eM_ocRel ease (bufp, hdr_loc, url_loc);

null parent If an | NKMLoc is obtained from a transaction, it does not have a parent | NKM_oc. Use the
null I NKM_oc constant | NK_NULL_M_OC as its parent. For example, if your plugin calls:

I NKHt t pTxnd i ent ReqGet (txnp, &bufp, &hdr_loc);
You must release hdr _| oc with:

I NKHandl eM_ocRel ease (bufp, | NK_NULL_M.CC, hdr_loc);

whento You need to use | NK_NULL_M.OCto release any | NKMLoc handles retrieved by the

use null | NKHt t pTxn* Get functions.

Parent Hiere’s an example using a new | NKM neHdr Fi el d function:

I NKHt t pTxnSer ver RespGet (txnp, & esp_bufp, & esp_hdr_loc);
new field_loc = | NKM neHdr Fi el dCreate (resp_bufp, resp_hdr_I oc);
I NKHandl eM_.ocRel ease (resp_bufp, resp_hdr_loc, new field_|loc);
| NKHandl eM_ocRel ease (resp_bufp, I NK_NULL_MOC, resp_hdr_loc);
See the sample plugins for many more examples.

Tip Release handles before reenabling the HTTP transaction. In other words, call
| NKHandl eM_ocRel ease or | NKHandl eSt ri ngRel ease before | NKHt t pTxnReenabl e. See
the sample code.

Deprecated functions

Several marshal buffer functions and MIME field functions are deprecated in this release.
The following marshal buffer functions are deprecated. Do not use them:

m | NKMBuUf f er Conpr ess
m | NKMBUf f er Dat aGet

m | NKMBUf f er Dat aSet

m | NKMBuUf f er Lengt hGet
= | NKMBUf f er Ref

m | NKMBUf f er Unr ef

The following MIME field functions are deprecated. If you need to support these
functions in existing code, documentation is provided in “Deprecated Functions™” on page
253.

m | NKM neFi el dCreate

m | NKM neFi el dDest r oy

m | NKM neFi el dCopy

m | NKM neFi el dCopyVal ues

HTTP Headers 89

m | NKM neFi

el dNext

m | NKM neFi el dLengt hGet

m | NKM neFi el dNameCet

m | NKM neFi el dNameSet

m | NKM neFi el dVal uesd ear
m | NKM neFi el dval uesCount
m | NKM neFi el dVal ueCet

m | NKM neFi el dval ueCet I nt
m | NKM neFi el dval ueCet Ui nt
m | NKM neFi el dVal ueCet Dat e
m | NKM neFi el dVal ueSet

m | NKM neFi el dval ueSet I nt

m | NKM neFi
m | NKM neFi
m | NKM neFi
m | NKM neFi
m | NKM neFi
m | NKM neFi
m | NKM neFi

el dVal ueSet Ui nt

el dVal ueSet Dat e

el dval ueAppend

el dVal uel nsert

el dVal uel nsertl nt
el dVal uel nsert Ui nt

el dval uel nsert Dat e

m | NKM neFi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi
m | NKM nmeHdr Fi

el dval uebDel et e

el dval ueGet

el dval ueGet Dat e

el dval ueGet I nt

el dval ueGet Ui nt

el dval uel nsert

el dval uel nsert Dat e
el dval uel nsert| nt
el dval uel nsert Ui nt
el dVval ueSet

el dVval ueSet Dat e

el dval ueSet I nt

el dval ueSet Ui nt

el dDel et e

el dl nsert

el dRetri eve

Guide to Traffic Edge HTTP header system

Caution

HTTP
header data
structure

Marshal buffers

The marshal buffer or | NKMBuf f er is a heap data structure that stores parsed URLSs,
MIME headers and HTTP headers. You can allocate new objects out of marshal buffers,
and change the values within the marshal buffer. Whenever you manipulate an object,
you require the handle to the object (I NKM_oc) and the marshal buffer containing the
object (I NKMBuf f er).

Routines exist for manipulating the object based on these two pieces of information. See,
for example:

m “HTTP headers” on page 91
m “URLSs” on page 94
m “MIME headers” on page 95

The marshal buffer functions allow you to create and destroy Traffic Edge’s marshal
buffers, which are the data structures that hold parsed URLs, MIME headers, and HTTP
headers.

Any marshal buffer fetched by | NKHt t pTxn* Get will be used by other parts of the system.
Be careful not to destroy these shared, transaction marshal buffers. In functions such as:

I NKHt t pTxnd i ent ReqGet

I NKHt t pTxnd i ent RespGet

I NKHt t pTxnSer ver ReqGet

I NKHt t pTxnSer ver RespGet

I NKHt t pTxnCachedReqGet

I NKHt t pTxnCachedRespGet

I NKHt t pTxnTr ansf or nRespGet

the parameters | NKMBuf f er, buf p, | NKM_oc and | oc are output parameters and the buffer
buf p should not be a created MBuf f er. Also, the handle to the header (I oc) should be
released using the | NKHandl eM_ocRel ease function. Lastly, the MBuf f er returned by the
above functions should not be destroyed by the user.

The marshal buffer-specific functions are:
m | NKMBuf ferCreate
m | NKMBuUf f er Dest r oy

HTTP headers

The Traffic Edge APl HTTP header functions enable you to work with HTTP header data
stored in marshal buffers.

The HTTP header data structure is a parsed version of the HTTP header defined in the
HTTP protocol specification. An HTTP header is composed of a request or response line
followed by zero or more MIME fields. In fact, an HTTP header is a subclass of a MIME
header and all of the MIME header routines operate on HTTP headers.

HTTP Headers 91

An HTTP request line is composed of a method, a URL and version. A response line is
composed of a version, a status code and a reason phrase. See “About HTTP headers” on
page 83 for details and examples of HTTP headers.

In order to facilitate fast comparisons and to reduce storage size, Traffic Edge defines
several pre-allocated method names. These names correspond to the methods defined in
the HTTP 1.1 specification.

Traffic Edge also defines several common values that

Pre-allocated method names

HTTP 1.1 method

INK_HTTP_METHOD_CONNECT "CONNECT"
INK_HTTP_METHOD_DELETE "DELETE"
INK_HTTP_METHOD_GET "GET"
INK_HTTP_METHOD_HEAD "HEAD"
INK_HTTP_METHOD_ICP_QUERY | "ICP_QUERY"
INK_HTTP_METHOD_OPTIONS "OPTIONS"
INK_HTTP_METHOD_POST "POST"
INK_HTTP_METHOD_PURGE "PURGE"
INK_HTTP_METHOD_PUT "PUT"
INK_HTTP_METHOD_TRACE "TRACE"

appear in HTTP headers.

Traffic Edge definition

HTTP header value

INK_HTTP_VALUE_BYTES "bytes”
INK_HTTP_VALUE_CHUNKED "chunked"
INK_HTTP_VALUE_CLOSE "close"
INK_HTTP_VALUE_COMPRESS "compress”
INK_HTTP_VALUE_DEFLATE "deflate”
INK_HTTP_VALUE_GZIP "gzip"
INK_HTTP_VALUE_IDENTITY "identity”
INK_HTTP_VALUE_KEEP_ALIVE "keep-alive"
INK_HTTP_VALUE_MAX_AGE "max-age"
INK_HTTP_VALUE_MAX_STALE "max-stale”
INK_HTTP_VALUE_MIN_FRESH "min-fresh”

INK_HTTP_VALUE_MUST_REVALID
ATE

"must-revalidate”

INK_HTTP_VALUE_NONE

"none"

INK_HTTP_VALUE_NO_CACHE

"no-cache"

INK_HTTP_VALUE_NO_STORE

"no-store™

INK_HTTP_VALUE_NO_TRANSFOR
M

"no-transform”

INK_HTTP_VALUE_ONLY_IF_CACH
ED

"only-if-cached"

INK_HTTP_VALUE_PRIVATE

"private”

INK_HTTP_VALUE_PROXY_REVALI
DATE

"proxy-revalidate"

92

HTTP headers

The method names and header values above are defined in | nkAPI . h as const char *

Traffic Edge definition

HTTP header value

INK_HTTP_VALUE_PUBLIC

"public”

INK_HTTP_VALUE_S_MAX_AGE

"s-maxage"

strings. When Traffic Edge sets a method or a header value it makes a quick check to see if
the new value is one of the known values. If it is, instead of storing the known value in the
marshal buffer it stores a pointer into a global table. The method names and header values
listed above are also pointers into this table. This allows simple pointer comparison of the

value returned from | NKHt t pMet hodGet with one of the values listed above. It is also

recommended that you use the above values when referring to one of the known schemes

as doing so removes the possibility of a spelling error.
The HTTP header functions are:

| NKHt t pHdr Cl one

| NKHt t pHdr Copy

| NKHt t pHdr Cr eat e

| NKHt t pHdr Dest r oy

| NKHt t pHdr Lengt hGet
| NKHt t pHdr Met hodGet
| NKHt t pHdr Met hodSet
| NKHt t pHdr Pri nt

| NKHt t pHdr ReasonGet

| NKHt t pHdr ReasonLookup

| NKHt t pHdr ReasonSet
| NKHt t pHdr St at usGet
| NKHt t pHdr St at us Set
| NKHt t pHdr TypeGet

| NKHt t pHdr TypeSet

| NKHt t pHdr Ur | Get

| NKHt t pHdr Ur | Set

I NKHt t pHdr Ver si onGet
| NKHt t pHdr Ver si onSet
| NKHt t pPar ser Cl ear

| NKHt t pPar ser Creat e
| NKHt t pPar ser Dest r oy
| NKHt t pHdr Par seReq

| NKHt t pHdr Par seResp

HTTP Headers

93

URLSs

The URL data structure is a parsed version of a standard internet URL. The Traffic Edge
API URL functions provide access to URL data stored in marshal buffers. The URL
functions can create, copy, retrieve or delete entire URLs, and retrieve or modify parts of
URLSs, such as their port or scheme information.

URL The general form of an Internet URL is:
structure . . .
scheme: /[user: passwor d@ost : port/ st uff
The URL data structure includes support for two specific types of internet URLs. HTTP
URLSs have the form:
http://user: password@ost : port/ pat h; par ans?quer y#f r agnent
FTP URLs have the form:
ftp://user:password@ost: port/path;type=val
URLdata The URL port and FTP type are stored as integers. All remaining parts of the URL (the
storage scheme, user, etc.) are stored as strings.
URL URL functions are named according to the portion of the URL on which they operate. For
function instance, the function that retrieves the host portion of a URL is named | NKUr | Host Get .
naming To facilitate fast comparisons and to reduce storage size, Traffic Edge defines several pre-
allocated scheme names.
Traffic Edge definition Pre-allocated scheme | URL scheme string lengths
name
INK_URL_SCHEME_FILE “file” INK_URL_LEN_FILE
INK_URL_SCHEME_FTP “ftp” INK_URL_LEN_FTP
INK_URL_SCHEME_GOPHER “gopher” INK_URL_LEN_GOPHER
INK_URL_SCHEME_HTTP “http” INK_URL_LEN_HTTP
INK_URL_SCHEME_HTTPS “https” INK_URL_LEN_HTTPS
INK_URL_SCHEME_MAILTO “mailto” INK_URL_LEN_MAILTO
INK_URL_SCHEME_NEWS “news” INK_URL_LEN_NEWS
INK_URL_SCHEME_NNTP “nntp” INK_URL_LEN_NNTP
INK_URL_SCHEME_PROSPERO “prospero” INK_URL_LEN_PROSPERO
INK_URL_SCHEME_TELNET “telnet” INK_URL_LEN_TELNET
INK_URL_SCHEME_WAIS “wais” INK_URL_LEN_WAIS
The scheme names above are defined in | nkAPI . h as const char * strings. When Traffic
Edge sets the scheme portion of the URL (or any portion for that matter), it makes a quick
check to see if the new value is one of the known values. If it is, instead of storing the
known value in the marshal buffer, it stores a pointer into a global table. The scheme
values listed above are also pointers into this table. This allows simple pointer comparison
of the value returned from | NKUr | ScheneGet with one of the values listed above. Inktomi
recommends that you use the Traffic Edge-defined values when referring to one of the
known schemes, as doing so removes the possibility of a spelling error.
94 URLs

The URL functions are:

= [NKUrl O one

m | NKUr | Copy

m [NKUrl Create

m | NKUr | Destroy

m [NKUrI Print

m | NKUr| Ft pTypeCet

m | NKUr| Ft pTypeSet

m | NKUr | Host Get

m | NKUr | Host Set

m | NKUr| Htt pFragnent Get
m | NKUr| Htt pFragnent Set
m | NKUr| Htt pPar ansCet
m | NKUr| Htt pPar ansSet
m | NKUr| Htt pQuer yGet
m | NKUr| Htt pQuer ySet
m | NKUr | Lengt hGet

m | NKUrl Par se

m | NKUr | Passwor dGet

m | NKUr | Passwor dSet

m | NKUr | Pat hGet

m | NKUr | Pat hSet

m | NKUr| Port Get

m | NKUr | Port Set

m | NKUr | ScheneCet

m | NKUr | ScheneSet

m | NKUrI StringGet

m | NKUr| User Get

m | NKUr| User Set

MIME headers

The Traffic Edge APl MIME header functions enable you to retrieve and modify
information about HTTP MIME fields.

An HTTP request or response consists of a header, body, and trailer. The HTTP header
consists of a request or response line, and a MIME header. A MIME header is composed of

HTTP Headers 95

Example

Example

MIME
header
locations

zero or more MIME fields. A MIME field is composed of a field name, a colon and zero or
more field values. The values in a field are separated by commas. In the following
example, Foo is the MIME field name and bar is the first MIME field value and car is the
second MIME field value:

Foo: bar, car

The following is an augmented Backus-Naur Form (BNF) for the form of a MIME header.
It specifies exactly what was described above. A header consists of zero or more fields
which consist of a name, a separating colon and zero or more values. A name or value is
simply a string of tokens which is potentially zero length. And a token is any character
except certain control characters and separators such as colons.

M ME- header = *M Me-field

M Me-field = field-name ":" #field-value
field-name = *token

field-value = *token

For the purposes of retrieving a field, field names are not case sensitive: the field names
Foo, f oo and f OOare all equivalent.

The MIME header data structure is a parsed version of a standard Internet MIME header.
The MIME header data structure is similar to the URL data structure (see “URLS” on page
94). The actual data is stored in a marshal buffer and the MIME header functions operate
on a marshal buffer and a location (I NKM_oc) within the buffer.

After a call to | NKM neHdr Fi el dDest r oy, | NKM meHdr Fi el dRenpve or | NKUr | Dest r oy is
made, you must deallocate the | NKM_oc handle by a call to | NKHandl eM_ocRel ease. You
do not need to deallocate a NULL handles. For instance, if you called

I NKM meHdr Fi el dVal ueSt ri ngGet to get the value of the content type field and the field
does not exist, it returns | NK_NULL_M_QC. In this case, you would not have to deallocate
the handle by a call to | NKHandl eM_ocRel ease.

The location (I NKMLoc) in the following MIME header functions can be either a HTTP
header location or a MIME header location. If an HTTP header location is passed to these
function, the system locates the MIME header associated with this HTTP header, and
executes the corresponding MIME header operations specified by the functions. See the
example in the description of “INKMimeHdrCopy” on page 198.

MIME headers may contain more than one MIME field with the same name. Previous
versions of Traffic Edge (Traffic Server versions before 4.0) joined multiple fields with the
same name into one field with composite values. This behavior comes at a performance
cost, and causes interoperability problems with some older clients and servers. Future
versions of Traffic Edge will cease coalescing duplicate fields.

Correctly behaving plugins should check for the presence of duplicate fields, and iterate
over the duplicate fields, by using | NKM meHdr Fi el dNext Dup.

To facilitate fast comparisons and to reduce storage size, Traffic Edge defines several pre-
allocated field names. These field names correspond to field names found in HTTP and
NNTP headers.

96

MIME headers

Traffic Edge pre-allocated field names

HTTP and NNTP
header field names

Associated string lengths

INK_MIME_FIELD_ACCEPT

"Accept"

INK_MIME_LEN_ACCEPT

INK_MIME_FIELD_ACCEPT_CHARS
ET

“Accept-Charset"

INK_MIME_LEN_ACCEPT_CHARS
ET

INK_MIME_FIELD_ACCEPT_ENCOD
ING

"Accept-Encoding”

INK_MIME_LEN_ACCEPT_ENCOD
ING

INK_MIME_FIELD_ACCEPT_LANGU
AGE

"Accept-Language”

INK_MIME_LEN_ACCEPT_LANGU
AGE

INK_MIME_FIELD_ACCEPT_RANGE
s

"Accept-Ranges"

INK_MIME_LEN_ACCEPT_RANGE
s

INK_MIME_FIELD_AGE "Age" INK_MIME_LEN_AGE
INK_MIME_FIELD_ALLOW "Allow" INK_MIME_LEN_ALLOW
INK_MIME_FIELD_APPROVED “Approved" INK_MIME_LEN_APPROVED

INK_MIME_FIELD_AUTHORIZATION

"Authorization”

INK_MIME_LEN_AUTHORIZATION

INK_MIME_FIELD_BYTES

"Bytes"

INK_MIME_LEN_BYTES

INK_MIME_FIELD_CACHE_CONTR
oL

"Cache-Control"

INK_MIME_LEN_CACHE_CONTR
oL

INK_MIME_FIELD_CLIENT_IP

"Client-ip"

INK_MIME_LEN_CLIENT_IP

INK_MIME_FIELD_CONNECTION

"Connection”

INK_MIME_LEN_CONNECTION

INK_MIME_FIELD_CONTENT_BASE

"Content-Base"

INK_MIME_LEN_CONTENT_BASE

INK_MIME_FIELD_CONTENT_ENC
ODING

"Content-Encoding"

INK_MIME_LEN_CONTENT_ENCO
DING

INK_MIME_FIELD_CONTENT_LANG
UAGE

"Content-Language”

INK_MIME_LEN_CONTENT_LANG
UAGE

INK_MIME_FIELD_CONTENT_LENG
TH

"Content-Length”

INK_MIME_LEN_CONTENT_LENG
TH

INK_MIME_FIELD_CONTENT_LOCA
TION

"Content-Location"

INK_MIME_LEN_CONTENT_LOCA
TION

INK_MIME_FIELD_CONTENT_MD5

"Content-MD5"

INK_MIME_LEN_CONTENT_MD5

INK_MIME_FIELD_CONTENT_RAN
GE

"Content-Range"

INK_MIME_LEN_CONTENT_RANG
E

INK_MIME_FIELD_CONTENT_TYPE | "Content-Type" INK_MIME_LEN_CONTENT_TYPE
INK_MIME_FIELD_CONTROL "Control" INK_MIME_LEN_CONTROL
INK_MIME_FIELD_COOKIE "Cookie" INK_MIME_LEN_COOKIE
INK_MIME_FIELD_DATE "Date" INK_MIME_LEN_DATE
INK_MIME_FIELD_DISTRIBUTION | "Distribution" INK_MIME_LEN_DISTRIBUTION
INK_MIME_FIELD_ETAG "Etag" INK_MIME_LEN_ETAG
INK_MIME_FIELD_EXPECT "Expect” INK_MIME_LEN_EXPECT
INK_MIME_FIELD_EXPIRES "Expires” INK_MIME_LEN_EXPIRES
INK_MIME_FIELD_FOLLOWUP_TO | "Followup-To" INK_MIME_LEN_FOLLOWUP_TO
INK_MIME_FIELD_FROM "From”" INK_MIME_LEN_FROM
INK_MIME_FIELD_HOST "Host" INK_MIME_LEN_HOST
INK_MIME_FIELD_IF_MATCH "If-Match" INK_MIME_LEN_IF_MATCH

HTTP Headers 97

Traffic Edge pre-allocated field names

HTTP and NNTP
header field names

Associated string lengths

INK_MIME_FIELD_IF_MODIFIED_SI
NCE

"If-Modified-Since"

INK_MIME_LEN_IF_MODIFIED_SI
NCE

INK_MIME_FIELD_IF_NONE_MATC
H

"If-None-Match"

INK_MIME_LEN_IF_NONE_MATC
H

INK_MIME_FIELD_IF_RANGE "If-Range” INK_MIME_LEN_IF_RANGE
INK_MIME_FIELD_IF_UNMODIFIED | "If-Unmodified- INK_MIME_LEN_IF_UNMODIFIED
_SINCE Since" _SINCE
INK_MIME_FIELD_KEEP_ALIVE "Keep-Alive" INK_MIME_LEN_KEEP_ALIVE
INK_MIME_FIELD_KEYWORDS "Keywords" INK_MIME_LEN_KEYWORDS
INK_MIME_FIELD_LAST_MODIFIED | "Last-Modified" INK_MIME_LEN_LAST_MODIFIED
INK_MIME_FIELD_LINES "Lines" INK_MIME_LEN_LINES
INK_MIME_FIELD_LOCATION "Location” INK_MIME_LEN_LOCATION
INK_MIME_FIELD_MAX_FORWARD | "Max-Forwards" INK_MIME_LEN_MAX_FORWARD
s s
INK_MIME_FIELD_MESSAGE_ID "Message-ID" INK_MIME_LEN_MESSAGE_ID
INK_MIME_FIELD_NEWSGROUPS | "Newsgroups" INK_MIME_LEN_NEWSGROUPS
INK_MIME_FIELD_ORGANIZATION | "Organization" INK_MIME_LEN_ORGANIZATION
INK_MIME_FIELD_PATH "Path” INK_MIME_LEN_PATH
INK_MIME_FIELD_PRAGMA "Pragma” INK_MIME_LEN_PRAGMA

INK_MIME_FIELD_PROXY_AUTHEN
TICATE

"Proxy-Authenticate™

INK_MIME_LEN_PROXY_AUTHEN
TICATE

INK_MIME_FIELD_PROXY_AUTHO
RIZATION

"Proxy-Authorization"

INK_MIME_LEN_PROXY_AUTHOR
IZATION

INK_MIME_FIELD_PROXY_CONNE
CTION

"Proxy-Connection”

INK_MIME_LEN_PROXY_CONNE
CTION

INK_MIME_FIELD_PUBLIC "Public" INK_MIME_LEN_PUBLIC
INK_MIME_FIELD_RANGE "Range” INK_MIME_LEN_RANGE
INK_MIME_FIELD_REFERENCES | "References" INK_MIME_LEN_REFERENCES
INK_MIME_FIELD_REFERER "Referer” INK_MIME_LEN_REFERER
INK_MIME_FIELD_REPLY_TO "Reply-To" INK_MIME_LEN_REPLY_TO
INK_MIME_FIELD_RETRY_AFTER | "Retry-After" INK_MIME_LEN_RETRY_AFTER
INK_MIME_FIELD_SENDER "Sender" INK_MIME_LEN_SENDER
INK_MIME_FIELD_SERVER "Server" INK_MIME_LEN_SERVER
INK_MIME_FIELD_SET_COOKIE "Set-Cookie" INK_MIME_LEN_SET_COOKIE
INK_MIME_FIELD_SUBJECT "Subject" INK_MIME_LEN_SUBJECT
INK_MIME_FIELD_SUMMARY "Summary" INK_MIME_LEN_SUMMARY

INK_MIME_FIELD_TE

"TE"

INK_MIME_LEN_TE

INK_MIME_FIELD_TRANSFER_ENC
ODING

"Transfer-Encoding"

INK_MIME_LEN_TRANSFER_ENC
ODING

INK_MIME_FIELD_UPGRADE "Upgrade” INK_MIME_LEN_UPGRADE
INK_MIME_FIELD_USER_AGENT "User-Agent" INK_MIME_LEN_USER_AGENT
INK_MIME_FIELD_VARY "Vary" INK_MIME_LEN_VARY

98

MIME headers

custom
MIME fields

HTTP and NNTP
header field names

INK_MIME_FIELD_VIA "Via"

Traffic Edge pre-allocated field names Associated string lengths

INK_MIME_LEN_VIA

INK_MIME_FIELD_WARNING "Warning" INK_MIME_LEN_WARNING
INK_MIME_FIELD_WWW_AUTHENT | "Www- INK_MIME_LEN_WWW_AUTHENT
ICATE Authenticate" ICATE

INK_MIME_FIELD_XREF "Xref" INK_MIME_LEN_XREF

The header field names above are defined in | nkAPI . h as const char * strings. When
Traffic Edge sets the name portion of a header field (or any portion for that matter) it
makes a quick check to see if the new value is one of the known values. If it is, instead of
storing the known value in the marshal buffer it stores a pointer into a global table. The
header field names listed above are also pointers into this table. This allows simple
pointer comparison of the value returned from | NKM meHdr Fi el dNameGet with one of the
values listed above. It is also recommended that you use the above values when referring
to one of the known header field names as doing so removes the possibility of a spelling
error.

Traffic Edge adds one important feature to MIME fields that those people already familiar
with MIME headers will not know about. Namely, Traffic Edge does not print a MIME
field if the field name begins with the' @ symbol. For example, a plugin can add the field
" @w- Fi el d" to a header. Even though Traffic Edge never sends that field out in a request
to an origin server or in a response to a client, they can be printed in TS logs by defining a
custom log config file that explicitly logs these fields. This provides a useful mechanism
for plugins to store information about an object in one of the MIME headers associated
with the object.

The MIME header functions are:

I NKM meHdr Fi
I NKM meHdr Fi
I NKM meHdr Fi
I NKM meHdr Fi
I NKM meHdr Fi
I NKM meHdr Fi
I NKM meHdr Fi
I NKM meHdr Fi
I NKM meHdr Fi
I NKM nmeHdr Fi
I NKM nmeHdr Fi
I NKM nmeHdr Fi
I NKM meHdr Fi
I NKM meHdr Fi
| NKM meHdr Cl

el dCl one

el dCopy

el dCopyVal ues

el dCreate

el dDest r oy

el dLengt hGet

el dNanmeGet

el dNanmeSet

el dNext

el dNext Dup

el dval ueAppend
el dVval ueDel et e
el dval uesd ear
el dval uesCount

one

| NKM meHdr Copy

| NKM meHdr Cr eat e

HTTP Headers

99

| NKM nmeHdr Dest r oy

I NKM neHdr Fi el dFi nd

I NKM meHdr Fi el dCet

I NKM nmeHdr Fi el dRenove
I NKM nmeHdr Fi el dsCl ear
I NKM nmeHdr Fi el dsCount
| NKM meHdr Lengt hGet

I NKM nmeHdr Par se

I NKM nePar ser Cl ear

| NKM nmePar ser Creat e

| NKM nmePar ser Dest r oy
I NKM meHdr Pri nt

100

MIME headers

CHAPTER 9

Important:
use TryLock
when
possible

2 typical
ways to use
mutexes

Mutex Guide

Use mutexes to lock shared data. This chapter explains how to use the mutex interface.

Mutexes

A mutex is the basic synchronization method used within Traffic Edge to protect data
from simultaneous access by multiple threads. A mutex acts as a lock that protects data in
one program thread from being accessed by another thread.

The Traffic Edge API provides two functions that attempt to access and lock the data:

I nkMut exLockTry and | NKMut exLock. | NKMut exLock is a blocking call; if you use it, you
can slow Traffic Edge performance (transaction processing pauses until the mutex is
unlocked). It should be used only on threads created by the plugin

(I NKCont Thr eadCr eat e). Never use it on a continuation handler called back by HTTP SM
or Cache, Net or Event Processor. Even if the critical section is very small, do not use it. If
you need to update a flag, set a variable, use atomic operations. If | NKMut exLock is used
in any case other than the one recommended above, the result will cause serious
performance impact. | NKMut exLockTry, on the other hand, attempts to lock the mutex
only if it is unlocked (not being used by another thread). It should be used in all cases
other than the above mentioned | NKMut exLock case. If the | NKMut exLockTry attempt
fails, you can schedule a future attempt, which must be at least 10 milliseconds later. See
for an example.

Inktomi recommends that, in general, you use | NKMut exLockTry rather than
I NKMut exLock.

m | nkMit exLockTry is required if you are tying to lock Traffic Edge internal or system
resources, such as network, cache, eventProcessor, HTTP state machines and 10
buffers.

m | nkMit exLockTry is required if you are making any blocking calls, such as network or
cache or file 10 calls.

= | NKMut exLock might not be necessary if you are not making blocking calls, and if you
are only accessing local resources.

Traffic Edge API uses the | NKMut ex type for a mutex.

There are two typical uses of mutex. One use is to lock global data or data shared by
various continuations. The other typical usage is to lock data associated to a continuation
(data that might be accessed by other continuations).

Locking global data

The bl ackl i st - 1. ¢ sample plugin implements an example of this type. The blacklist
plugin reads its blacklisted sites from a configuration file. File read operations are
protected by a mutex created in | NKPI ugi nl ni t. The bl ackl i st - 1. c code uses

I NKMut exLockTry instead of | nkiut exLock. See “blacklist-1.c”” on page 245 for the
bl ackl i st - 1. c code (start by looking at the | NKPI ugi nl ni t function). The general
guideline for locking shared data is:

1 Create a mutex for this shared data using | NKMut exCr eat e.

2 Whenever you need to read or modify this data, first lock it by calling
I nkMut exLockTry. Then read or modify the data.

3 When you are done with the data, unlock it with | NKMut exUnl ock. If you are
unlocking data accessed during the processing of an HTTP transaction, you must
unlock it before calling | NKHt t pTxnReenabl e.

Protecting a continuation’s data

You need to create a mutex to protect a continuation’s data if it might be accessed by other
continuations or processes.
To protect the data associated to a continuation, follow these steps:
1 Create a mutex for the continuation using | NKMut exCr eat e. For example,
I NKMut ex nut exp;
mut exp = | NKMut exCreate ();

2 When you create the continuation, specify this mutex as the continuation’s mutex. For
example,

I NKCont cont p;
contp = | NKCont Create (handl er, nutexp);

If any other functions want to access cont p’ s data, it is up to them to get cont p’ s mutex
(using, for example, | NKCont Mut exGet) and lock it. See the sample Protocol plugin for
usage.

How to associate a continuation to every HTTP transaction

There might be several reasons to create a continuation for each HTTP transaction that
calls back your plugin. Some examples include:

m register hooks locally with the new continuation instead of registering them globally
to the continuation plugin.

m store data specific to each HTTP transaction that you might need to reuse across
various hooks.

m use of APIs (like INKHostLookup) which will call back this continuation with a
certain event.

How to add the new continuation

A typical way of adding the new continuation is to register the plugin continuation to be
called back by HTTP transactions globally when they reach | NK_HTTP_TXN_START_HOOK.
Refer to the example below using a transaction specific continuation called t xn_cont p.

void I NKPluginlnit(int argc, const char *argv[])

{

102

Mutexes

/* Plugin continuation */
I NKCont cont p;

if ((contp = I NKCont Create (plugin_cont_handler, NULL)) ==
I NK_ERROR_PTR) {

LOG_ERROR(" | NKCont Create");

} else {
if (I NKHttpHookAdd (I NK_HTTP_TXN_START_HOCOK, contp) == | NK_ERROR) {
LOG_ERROR(" | NKHt t pHookAdd") ;
}
}

}

In the plugin continuation handler, create teh new continuation t xn_cont p, and register it

to be called back at | NK_HTTP_TXN_CLOSE_HOOK:

static int plugin_cont_handl er (1 NKCont contp, | NKEvent event, void *edata)

{
INKHt t pTxn txnp = (I NKHtt pTxn) edat a;

I NKCont t xn_cont p;

switch (event) {
case | NK_EVENT_HTTP_TXN_START:
/* Create the HTTP txn continuation */
txn_contp = I NKCont Creat e(txn_cont _handl er, NULL);

/* Register txn_contp to be called back when txnp reaches
I NK_HTTP_TXN_CLOSE_HOOK */

if (1NKHttpTxnHookAdd (txnp, | NK_HTTP_TXN_CLOSE_HOCK,
txn_contp) == | NK_ERROR) {

LOG_ERROR("I NKHt t pTxnHookAdd") ;

br eak;

defaul t:

I NKAssert (! " Unexpected Event");

br eak;

if (INKHttpTxnReenabl e(txnp, | NK_EVENT_HTTP_CONTI NUE) ==
I NK_ERROR) {

LOG_ERROR(" I NKHt t pTxnReenabl e") ;

return O;

Mutex Guide

103

Have the t xn_cont p handler destory itself when the HTTP transaction is closed. If you
forget, your plugin will have a big memory leak.

static int txn_cont_handl er (1 NKCont txn_contp, |NKEvent event, void
*edat a)

{
I NKHt t pTxn t xnp;

switch (event) {

case | NK_EVENT_HTTP_TXN_CLCSE:
txnp = (I NKHtt pTxn) edat a;
| NKCont Destroy(txn_contp);
br eak;

defaul t:
I NKAssert (! " Unexpected Event");
br eak;

if (I NKHttpTxnReenabl e(txnp, | NK_EVENT_HTTP_CONTI NUE) ==
I NK_ERROR) {

LOG_ERROR(" | NKHt t pTxnReenabl e") ;

return O;

How to store data specific to each HTTP transaction

For the example above, store the data in the t xn_cont p data structure. This means that
you will create your own data structure. Suppose you want to store the state of the HTTP
transaction:

typedef struct {
int state;
} Cont Dat a;

You would need to allocate the memory and initialize this structure for each HTTP txnp.
You can do that in the plugin continuation handler when it is called back with
| NK_EVENT_HTTP_TXN_START:

static int plugin_cont_handl er (1 NKCont contp, | NKEvent event, void *edata)
{
INKHt t pTxn txnp = (I NKHtt pTxn) edat a;
I NKCont t xn_cont p;
Cont Dat a *cont Dat a;

switch (event) {

104

Mutexes

case | NK_EVENT_HTTP_TXN_START:
/* Create the HTTP txn continuation */
txn_contp = | NKCont Creat e(txn_cont _handl er, NULL);

/* Allocate and initialize the txn_contp data */

contData = (ContData*) | NKnmall oc(sizeof (ContData));

cont Dat a- >state = O;

if (1 NKContDataSet (txn_contp, contData) == | NK_ ERROR) {
LOG_ERROR("1 NKCont Dat aSet ") ;

/* Register txn_contp to be called back when txnp reaches
I NK_HTTP_TXN_CLOSE_HOOK */

if (INKHttpTxnHookAdd (txnp, | NK_HTTP_TXN_CLOSE_HOCK,
txn_contp) == | NK_ERROR) {

LOG_ERROR("I NKHt t pTxnHookAdd") ;

br eak;

defaul t:
I NKAssert (! " Unexpected Event");
br eak;

if (I NKHttpTxnReenabl e(txnp, | NK_EVENT_HTTP_CONTI NUE) ==
I NK_ERROR) {

LOG_ERROR(" I NKHt t pTxnReenabl e") ;

return O;
}
For accessing this data from anywhere, use | NKCont Dat aGet :
I NKCont t xn_cont p;
Cont Dat a *cont Dat a;

cont Dat a = | NKCont Dat aGet (t xn_cont p);
if (contData == | NK_ERROR _PTR) {
LOG_ERROR(" | NKCont Dat aGet ") ;
}
cont Dat a->state = 1,
Remember to free this memory before destroying the continuation;

Mutex Guide 105

static int txn_cont_handl er (1 NKCont txn_contp, |NKEvent event, void
*edat a)

{
I NKHt t pTxn t xnp;
Cont Dat a *cont Dat a;

switch (event) {
case | NK_EVENT_HTTP_TXN_CLOSE:
txnp = (INKHtt pTxn) edat a;
cont Dat a = | NKCont Dat aGet (t xn_cont p);

if (contData == | NK_ERROR PTR) {
LOG_ERROR(" | NKCont Dat aGet ") ;
} else {

I NKf r ee(cont Dat a) ;

}
| NKCont Destroy(txn_contp);
br eak;
defaul t:
I NKAssert (! " Unexpected Event");
br eak;

if (INKHttpTxnReenabl e(txnp, | NK_EVENT_HTTP_CONTI NUE) ==
I NK_ERROR) {

LOG ERROR("I NKHt t pTxnReenabl e") ;

}
return O;
}
Using locks

You do not need to use locks when a continuation has registered itself to be called back by
HTTP hooks and it only uses the HTTP APIs. In the example above, the continuation

t xn_cont p has registered itself to be called back at HTTP hooks, and it only uses the
HTTP APIs. In this case only, it is safe to access data shared between t xnp and t xn_cont p
without grabbing a lock. In the example above t xn_cont p is created with a NULL mutex.
This works because the HTTP transaction t xnp is the only which will call back

t xn_cont p, and you are guaranteed that t xn_cont p will be called back only one hook at a
time. After processing is done t xn_cont p will reenable t xnp.

In all other cases, you should create a mutex with the continuation. Basically in the case
where you are using iocore APIs, or any other APl where t xn_cont p is scheduled to be
called back by a processor (the cache processor, the DNS processor...), a lock is needed.

106

Mutexes

continuatio
ns created in
HTTP
transactions
do not need
mutexes

This ensures that t xn_cont p will be called back only one at a time, (i.e. you are sure that
t xn_cont p will not be called back by both t xnp and by the cache processor
simultaneously, which would result in a situation where you are executing two pieces of
code in conflict!)

Special case: continuations created for HTTP transactions

If your plugin creates a new continuation for each HTTP transaction, you probably do not
have to create a new mutex for it, because each HTTP transaction (I NKHt t pTxn object)
already has its own mutex.

For example, if you have code such as the following, it is not necessary to specify a mutex
for the continuation created in t xn_handl er:

static void
txn_handl er (I NKHttpTxn txnp, | NKCont contp) {
| NKCont newCont ;

newCont = | NKCont Create (newCont_handl er, NULL);
/11t's not necessary to create a new nutex for newCont.

I NKHt t pTxnReenabl e (txnp, | NK_EVENT_HTTP_CONTI NUE) ;

static int
test_plugin (I NKCont contp, |NKEvent event, void *edata) {
INKHt t pTxn txnp = (I NKHtt pTxn) edata;

switch (event) {

case | NK_EVENT_HTTP_READ REQUEST_HDR:
txn_handl er (txnp, contp);
return O;

defaul t:
br eak;

}

return O;

}

The mutex functions are:

m “INKMutexCreate” on page 203
m “INKMutexLock” on page 204

m “INKMutexLockTry” on page 204

Mutex Guide 107

108 Mutexes

CHAPTER 10

Reentrant
Calls

Continuations

The continuation interface is Traffic Edge’s basic callback mechanism. Continuations are
instances of the opaque data type | NKCont . In its basic form a continuation represents a
handler function and a mutex. This chapter contains:

m Mutexes and data, on page 109

= “How to activate continuations” on page 110

Mutexes and data

A continuation must be created with a mutex if your continuation does one of the
following:

m isregistered globally (I NKHt t pHookAdd or | NKHt t pSsnHookAdd) to an HTTP hook and
uses | NKCont Dat aSet / CGet .

m isregistered locally (I NKHt t pTxnHook Add) but for multiple transactions and uses | NK
Cont Dat aSet / Cet .

m uses | NKCacheXXX, | NKNet XXX, | NKHost Lookup or | NKCont Schedul e APIs.

Before being activated, a caller must grab the continuation’s mutex. This requirement
makes it possible for a continuation’s handler function to safely access its data and to
prevent it from being run by multiple callers at the same time. See the sample Protocol
plugin for usage. The data protected by the mutex is: any global or continuation data
associated to the continuation by | NKCont Dat aSet . This does not include the local data
created by the continuation handler function. A typical example of continuations created
with associated data structures and mutexes is the transaction state machine created in the
sample Protocol plugin. See “One way to implement a transaction state machine” on page 60.

A reentrant call occurs when the continuation passed as an argument to the API can be
called in the same stack trace as the function calling the API. For instance, if you call

I NKCacheRead (cont p, nykey), it is possible that cont p’s handler will be called directly
and then | NKCacheRead returns. Caveats that could cause a possible issues if;

m acontinuation has data associated with it (I NKCont Dat aGet).

m the reentrant call passes itself as a continuation to the reentrant API. In this case, the
continuation should not try to access its data after having called the reentrant API.
The reason for this is that data may be modified by the section of code of the
continuation’s handler that handles the event sent by the API. It is recommended that
you always return after a reentrant call to avoid accessing something that has been
deallocated.

Below is an example with an explaination.

conti nuati on_handl er (1 NKCont contp, | NKEvent event, void *edata) {
switch (event) {
case event1:

null
mutexes

I NKReentrant Cal | (contp);
/* Return right away after this call */
br eak;
case event2:
| NKCont Destroy (contp);
br eak;

}

The above example first assumes that the continuation is called back with event 1 and
does the first reentrant call which schedules the continuation to receive event 2. Because
the call is reentrant, the processor calls back the continuation right away with event 2 and
the continuation is destroyed. If you try to access the continuation, or one of its members
after the reentrant call, you might access something that has been deallocated. To avoid
accessing something that has been deallocated, never access the continuation or any of its
members after a reentrant call, just exit the handler.

Note that most HTTP transaction plugin continuations do not need non-null mutexes,
because they are called within the processing of an HTTP transaction and thus have the
transaction’s mutex.

It is also possible to specify a continuation’s mutex as NULL. This should be done only
when registering a continuation to a global hook, by a call to | NKHt t pHookAdd. In this
case, the continuation can be called simultaneously by different instances of HTTP SM
running on different threads. Having a mutex here would slow down Traffic Edge
performance since all the threads will try to lock the same mutex. The drawback of not
having a mutex is that such a continuation cannot have data associated with it

(I NKCont Dat aGet / Set can not be used).

When using a NULL mutex, it is dangerous to access the continuation’s data, but it is
usually the case that continuations with NULL mutexes have no data associated with them.
An example of such a continuation would be one that gets called back every time an
HTTP request is read and determines from the request alone whether to let the request
through or whether to reject it. An HTTP transaction gives its continuation data to the
cont p.

How to activate continuations

Continuations are activated when they receive an event or by | NKCont Schedul e, which
schedules a continuation to receive an event. They might receive an event because:

= Your plugin calls I NKCont Cal |

m The Traffic Edge HTTP state machine sends an event corresponding to a particular
HTTP hook

m A Traffic Edge 10 processor (such as cache processor or net processor) is letting a
continuation know that there is (cache or network) data available to read or write.
These callbacks are a result of using functions such | NKvConnRead/ Wi t e, or
I NKCacheRead/ Wite

110

How to activate continuations

Caution

Events and
void * data

Writing handler functions

The handler function is the meat of the continuation. It is supposed to examine the event
and event data and do something appropriate. The probable action might be to schedule
another event for the continuation to received, or to open up a connection to a server or to
destroy itself.

The continuation’s handler function is a function of type | NKEvent Func. Its arguments are
a continuation, an event, and a pointer to some data (this data is passed to the
continuation by the caller; do not confuse this data with the continuation’s own data,
associated by | NKCont Dat aSet). When the continuation is called back, the continuation
and an event are passed to the handler function. The continuation is a handle to the same
continuation that is invoked. The handler function typically has a switch statement to
handle the events it receives:

static int sone_handler (INKcont contp, |NKEvent event, void *edata)

switch(event) {

case | NK_EVENT_SOVE_EVENT_1:
do_sone_t hing_1;
return;

case | NK_EVENT_SOVE_EVENT_2:
do_some_t hi ng_2;
return;

case | NK_EVENT_SOVE_EVENT_3:
do_sone_t hi ng_3;
return;

defaul t: break;

}

return O;

You might notice that a continuation cannot determine if more events are “in flight”
towards it. Do not use | NKCont Dest r oy to delete a continuation before making sure that
all incoming events, such as those sent because of | NKHt t pTxnHook Add, have been
handled.

The following table lists events and the corresponding type of voi d * data passed to
handler functions:

Event Hook or API function that sends the event void * data
type
INK_EVENT_HTTP_READ_REQUEST HDR INK_HTTP_READ_REQUEST_HDR_H | INKHttpTXn
OOK
INK_EVENT_HTTP_OS_DNS INK_HTTP_OS_DNS_HOOK INKHttpTxn

Continuations 111

Event Hook or API function that sends the event void * data
type
INK_EVENT_HTTP_SEND REQUEST_HDR INK_HTTP_SEND_REQUEST_HDR_H | INKHttpTxn
OOK
INK_EVENT_HTTP_READ_CACHE_HDR INK_HTTP_READ_CACHE_HDR_HOO | INKHttpTxn
K
INK_EVENT_HTTP_READ_RESPONSE_HDR INK_HTTP_READ_RESPONSE_HDR_ | INKHttpTxn
HOOK
INK_EVENT_HTTP_SEND_RESPONSE_HDR INK_HTTP_SEND_RESPONSE_HDR_ | INKHttpTxn
HOOK
INK_EVENT_HTTP_SELECT_ALT INK_HTTP_SELECT_ALT_HOOK INKHttpTxn
INK_EVENT_HTTP_TXN_START INK_HTTP_TXN_START_HOOK INKHttpTxn
INK_EVENT_HTTP_TXN_CLOSE INK_HTTP_TXN_CLOSE_HOOK INKHttpTxn
INK_EVENT_HTTP_SSN_START INK_HTTP_SSN_START_HOOK INKHttpSsn
INK_EVENT_HTTP_SSN_CLOSE INK_HTTP_SSN_CLOSE_HOOK INKHttpSsn
INK_EVENT_NONE
INK_EVENT_CACHE_LOOKUP_COMPLETE INK_HTTP_CACHE_LOOKUP_COMPLETE_HOOK | INKHttpTxn
INK_EVENT_IMMEDIATE INKVConnClose, INKVIOReenable,
INKContSchedule
INK_EVENT_IMMEDIATE INK_HTTP_REQUEST_TRANSFORM_HOOK
INK_EVENT_IMMEDIATE INK_HTTP_RESPONSE_TRANSFORM_HOOK
INK_EVENT_CACHE_OPEN_READ INKCacheRead Cache VC
INK_EVENT_CACHE_OPEN_READ_FAILED INKCacheRead Error code, see
INK_CACHE_ER
ROR_XXX
INK_EVENT_CACHE_OPEN_WRITE INKCacheWrite Cache VC
INK_EVENT_CACHE_OPEN_WRITE_FAILED INKCacheWrite Error code, see
INK_CACHE_ER
ROR_XXX
INK_EVENT _CACHE_REMOVE INKCacheRemove Nothing
INK_EVENT_CACHE_REMOVE_FAILED INKCacheRemove Error code, see
INK_CACHE_ER
ROR_XXX
INK_EVENT_NET_ACCEPT INKNetAccept, INKHttpTxnServerintercept, Net
INKHttpTxnintercept VConnection
INK_EVENT_NET_ACCEPT_FAILED INKNetAccept, INKHttpTxnServerintercept, Nothing
INKHttpTxnIntercept
INK_EVENT_HOST_LOOKUP INKHostLookup Null pointer -
error
Non null pointer
INKHostLookup
Result
INK_EVENT_TIMEOUT INKContSchedule

INK_EVENT_ERROR

Writing handler functions

Event Hook or API function that sends the event void * data
type
INK_EVENT_VCONN_READ_READY INKVConnRead INKVConn
INK_EVENT_VCONN_WRITE_READY INKVConnWrite INKVConn
INK_EVENT_VCONN_READ_COMPLETE INKVConnRead INKVConn
INK_EVENT_VCONN_WRITE_COMPLETE INKVConnWrite INKVConn
INK_EVENT_VCONN_EOS INKVConnRead INKVConn
INK_EVENT_NET_CONNECT INKNetConnect INKVConn
INK_EVENT_NET_CONNECT_FAILED INKNetConnect INKVConn
INK_EVENT_HTTP_CONTINUE
INK_EVENT_HTTP_ERROR
INK_EVENT_MGMT_UPDATE INKMgmtUpdateRegister NULL

The continuation functions are:
= INKContCall

= INKContCreate

= INKContDataGet

= INKContDataSet

= INKContDestroy

= INKContMutexGet

= INKContSchedule

Continuations

113

114 Writing handler functions

CHAPTER 11

external
web interface

not Traffic
Edge
configuration

Plugin Configurations

This chapter contains:

m “Plugin configurations” on page 115

Plugin configurations

The | NKConf i g family of functions provides a mechanism for accessing and changing
global configuration information within a plugin.

If you want to set up a web interface for configuring your plugin through Traffic
Manager, see “Setting up a plugin management interface” on page 131.

The functions discussed in this section do not examine or modify Traffic Edge
configuration variables. To examine Traffic Edge configuration and statistics variables, see
“Reading Traffic Edge settings and statistics” on page 132.

The I NKConf i g family of functions is designed to provide a fast and efficient mechanism
for accessing and changing global configuration information within a plugin. Such a
mechanism is simple enough to provide in a single-threaded program, but the translation
to a multi-threaded program such as Traffic Edge is difficult. A common technique is to
have a single mutex protect the global configuration information. The problem with this
solution is that a single mutex becomes a performance bottleneck very quickly.

The | NKConf i g family of functions define an interface to storing and retrieving an opaque
data pointer. Internally, Traffic Edge maintains reference count information about the data
pointer so that a call to | NKConf i gSet will not disturb another thread using the current
data pointer. The philosophy is that once a user has a hold of the configuration pointer it is
okay for him to use it even if the configuration changes. From the user’s perspective all he
wants is a non-changing snapshot of the configuration. Inktomi recommends that you use
I NKConf i gSet for all global data updates.

Here’s how the interface works:

/* Assune that you have previously defined a plugin configuration
* data structure naned ConfigData, along with its constructor
* plugin_config_allocator () and its destructor
* plugi n_config_destructor (ConfigData *data)
*/
Configbata *pl ugi n_confi g;

/* You will need to assign plugin_config a unique identifier of type
* unsigned int. It is inportant to initialize this identifier to zero
* (see the docunmentation of the function).

*/
static unsigned int ny_id = 0;

/* You will need an | NKConfig pointer to access a snapshot of the
* current plugin_config.
*/

I NKConfig config_ptr;

/* Initialize plugin_config. */

plugin_config = plugin_config_allocator();

/* Assign plugin_config an identifier using | NKConfigSet. */
nmy_id = I NKConfigSet (ny_id, plugin_config, plugin_config_destructor);

/* Get a snapshot of the current configuration using | NKConfigGet. */
config_ptr = INKConfigGet (nmy_id);

/* Wth an INKConfig pointer to the current configuration, you can
* retrieve the configuration's current data using | NKConfi gDataCet.
*/

pl ugi n_config = (ConfigbData*) | NKConfigDataGet (config_ptr);

/* Do sonething with plugin_config here. */

/* \When you are done with retrieving or nodifying the plugin data, you
* release the pointers to the data with a call to | NKConfi gRel ease.
*/

I NKConf i gRel ease (ny_id, config ptr);

/* Any time you want to nodify plugin_config, you nust repeat these

* steps, starting with

* my_id = | NKConfigSet (my_id,plugin_config, plugin_config _destructor);
* and continuing up to | NKConfi gRel ease.

*/

The configuration functions are:

m INKConfigDataGet

m INKConfigGet

m INKConfigRelease

m INKConfigSet

116 Plugin configurations

CHAPTER 12

Actions Guide

This chapter contains:
m Actions, on page 117
m Hosts Lookup API, on page 120

Actions

An action is a handle to an operation initiated by a plugin which has not yet completed.
For example, when a plugin connects to a remote server it uses the call | NKNet Connect
which takes an | NKCont as an argument to call back when the connection is established.

I NKNet Connect might not call the continuation back immediately and will return an

I NKAct i on structure which the caller can use to cancel the operation. Cancelling the
operation does not necessarily mean that the operation will not occur, but that the
continuation passed in to the operation will not be called back. In the above example, the
connection might still occur if the action is cancelled, but the continuation that initiated
the connection would not be called back when that occurred.

It is possible that the connection, in the preceding example, will complete and callback the
continuation before | NKNet Connect returns. If this occurs | NKNet Connect will return a
special action which will cause | NKAct i onDone to return 1. Basically this is specifying that
the operation has already completed. There is no point in trying to cancel the operation.
Note that an action will never change from non-completed to completed. When the
operation actually succeeds and the continuation is called back it is up to the continuation
to zero out its action pointer to indicate to itself that the operation succeeded.

The asynchronous nature of all operations in Traffic Edge necessitates actions. You should
notice from the above discussion that once a call to a function like | NKNet Connect is made
by a continuation and that function returns a valid action (I NKAct i onDone returns 0) then
it is not safe for the continuation to do anything else except return from its handler
function. It is not safe to modify or examine the continuation’s data since the continuation
may have already been destroyed.

Here is an example of a typical usage of an action:

#i ncl ude “I1nkAPI . h”
static int
handl er (1 NKCont contp, |NKEvent event, void *edata)
{
if (event == | NK_EVENT_I MVEDI ATE) {
I NKAction actionp = | NKNet Connect (contp, 127.0.0.1, 9999);
if (!'INKActionDone (actionp)) {

I NKCont Dat aSet (contp, actionp);

} else {
/* we've already been called back... */
return O;
}
} else if (event == | NK_EVENT_NET_CONNECT) {

/* net connection succeeded */

I NKCont Dat aSet (contp, NULL);

return O;
} else if (event == | NK_EVENT_NET_CONNECT_FAI LED) {
/* net connection failed */
I NKCont Dat aSet (contp, NULL);

return O;
}
return O;
}
voi d

INKPluginlnit (int argc, const char *argv[])

{

I NKCont cont p;

contp = I NKCont Create (handler, |INKMutexCreate ());

/* W don't want to call things out of |NKPIuginlnit
directly since it is called before the rest of the
systemis initialized. W' ll sinply schedul e an event
on the continuation to occur as soon as the rest of
the systemis started up. */

I NKCont Schedul e (contp, 0);

}

The preceding example shows a simple plugin which creates a continuation and
schedules it to be called immediately. When the plugin’s handler function is called the
first time the event will be | NK_EVENT_| MVEDI ATE. The plugin then tries to open a net
connection to port 9999 on localhost (127.0.0.1). I've left the IP description in dot notation
to make it clearer what is going on. Please note that the above won’t actually compile until
the IP address is modified. The action returned from | NKNet Connect is examined by the
plugin. If the operation has not completed the plugin stores the action in its continuation.
Otherwise the plugin knows it has already been called back and there is no reason to store
the action pointer.

A final question might be why would a plugin want to cancel an action. In the above
example a valid reason would be to place a time limit on how long it takes to open a
connection. The plugin could schedule itself to get called back in 30 seconds and then

118

Actions

initiate the net connection. If the time-out expires first then the plugin would cancel the

action. The following sample code implements this:

#i ncl ude “InkAPI . h”
static int

handl er (1 NKCont contp, |NKEvent event, void *edata)

{
switch (event) {
case (I NK_EVENT_I MVEDI ATE) :
I NKCont Schedul e (contp, 30000);
I NKAction actionp = | NKNet Connect (cont p,
if (!l NKActionDone (actionp)) {
I NKCont Dat aSet (contp, actionp);
} else {
/* we’ve already been called back ...
}
br eak;
case (I NK_EVENT_TI MEQUT) :
I NKAction actionp = | NKCont Dat aGet (contp);
if (!INKActionDone(actionp)) ({
I NKActi onCancel (actionp);
}
br eak;
case (| NK_EVENT_NET_CONNECT) :
/* net connection succeeded */
| NKCont Dat aSet (contp, NULL);
br eak;
case (I NK_EVENT_NET_CONNECT_FAI LED) :
/* net connection failed */
I NKCont Dat aSet (contp, NULL);
br eak;
}
return O;
}
voi d

INKPluginlnit (int argc, const char *argv[])

{
I NKCont cont p;

127.0.0.1, 9999);

Actions Guide

119

contp = I NKCont Create (handler, INKMutexCreate ());

/* W don't want to call things out of |NKPIuginlnit
directly since it is called before the rest of the
systemis initialized. W'll sinply schedul e an event
on the continuation to occur as soon as the rest of
the systemis started up. */

I NKCont Schedul e (contp, 0);

The action functions are:
0“INKActionCancel” on page 209

0“INKActionDone” on page 210

Hosts Lookup API

The hosts lookup allows plugins to ask Traffic Edge to do a host lookup of a host name.
This is in some way similar to a DNS lookup.

The hosts lookup functions are:
0“INKHostLookup™ on page 210

0“INKHostLookupResultIPGet” on page 211

120 Hosts Lookup API

CHAPTER 13

|O Guide

This chapter contains:

= \Vconnections, on page 121

= Net VConnections, on page 124

m Transformations, on page 124

m VIOs, on page 127

m 1O buffers, on page 128

m Guide to the cache API, on page 128

Vconnections

The vconnection functions allow you to schedule and obtain and modify information
about vconnections.

The vconnection user’s view

To use a vconnection, a user first needs to get a handle to one. This is usually
accomplished by having it handed to the user or the user issuing a call which creates a
vconnection such as | NKNet Connect . In the case of transform plugins, plugin creates a
transformation vconnection using | NKTr ansf or nCr eat e, and accesses the output
vconnection using | NKTr ansf or nQut put VConnGet .

Once the user has a handle to a vconnection he can then issue a read or write call. It’s
important to note that not all vconnections support both reading and writing. As of yet,
there has not been a need to query a vconnection ask to whether it can perform a read or
write operation. That ability is obvious from context.

To issue a read or write operation a user calls | NKVConnRead or | NKVConnW i t e. These
two operations both return VIO (I NKvI O) . The VIO describes the operation being
performed and how much progress has been made.

Transform plugins initiate output to the downstream vconnection by calling
I NKVConnW it e.

A vconnection read or write operation is different from a normal Unix read(2) or write(2)
operation in that the operation can specify more data to be read or written than exists in
the buffer handed to the operation. For example, it is typical to issue a read for | NT_MAX (4
billion) bytes from a network vconnection in order to read all the data from the network
connection until we reach the end of stream. Contrast this to the usual Unix fashion of
issuing repeated calls to read(2) until one of them finally returns 0 indicating the end of
stream was reached. (Yes, the underlying implementation of vconnections on Unix still
issues those calls to read(2), but the interface does not expose that detail).

A given vconnection can have at most one read operation and one write operation being
performed on it. This is restricted both by design and common sense. If two write
operations were to be performed on a single vconnection the user would not be able to
specify which one should occur first and the output would occur in an intermingled
fashion. Note that both a read operation and a write operation can happen on a single
vconnection at the same time. The restriction is on more than one operation of a given
type.

One issue that should be obvious is that the buffer passed to | NKVConnRead and

I NKVConnW i t e won't be large enough. There is no reasonable way to make a buffer that
can hold I NT_MAX (4 billion) bytes. The secret is that vconnections engage in a protocol
whereby they signal their user (the continuation passed to | NKVConnRead and

I NKVConnW i t e) that they have emptied out the buffers passed to them and are ready for
more data. When this occurs it is up to the user to add more data to the buffers (or wait for
more data to be added) and then wake up the vconnection by calling | NKVI OReenabl e on
the VIO describing the operation. | NKVI OReenabl e specifies that the buffer for the
operation has been modified and that the vconnection should reexamine it to see if it can
make further progress.

The null transform plugin gives an example of how this is done. First, here is the
prototype of | NKVConnW i t e:

I NKVI O | NKVConnW ite (I NKVConn connp, |NKCont contp, | NKIOBufferReader
readerp, int nbytes)

Where the connp is the vconnection that the user is writing to, and cont p is the “user” — it
is the continuation that connp calls back when it has emptied out its buffer and is ready
for more data.

The call made in the null transform plugin is:

I NKVConnWite (output_conn, contp, data->output_reader, |NKVI ONBytesGet
(input_vio));

In this example, cont p is the transformation vconnection, which is writing to the output

vconnection. The number of bytes to be written is obtained from the i nput _vi o by

I NKVI ONByt esCet .

When a vconnection calls back its user to indicate that it wants more data or when some
other condition has occurred, it issues a call to | NKCont Cal | and passes one of the
following values as the event parameter and the | NKVI Odescribing the operation as the
data parameter.

Event parameter value Description

INK_EVENT_ERROR Indicates that an error has occurred on
the vconnection. This will happen for
network 1O if the underlying read(2) or
write(2) call return an error.

INK_EVENT_VCONN_READ_REA | The vconnection has placed data in the
DY buffer passed to an | NKVConnRead
operation and it would like to do more 10
but the buffer is now full. When the user
consumes the data from the buffer it
should re-enable the VIO to indicate to
the vconnection that the buffer has been
modified.

122

Vconnections

Event parameter value Description

INK_EVENT_VCONN_WRITE_RE | The vconnection has removed data from
ADY the buffer passed to an | NKVConnW i t e
operation and it would like to do more 10
but the buffer does not have enough data
in it. When the user places more data in
the buffer he should re-enable the VIO to
indicate to the vconnection that the buffer
has been modified.

INK_EVENT_VCONN_READ_CO | The vconnection has read all the bytes
MPLETE specified by an | NKVConnRead
operation. The vconnection can now be
used to initiate a new 10 operation.

INK_EVENT_VCONN_WRITE_CO | The vconnection has written all the bytes
MPLETE specified by an | NKVConnW i t e
operation. The vconnection can now be
used to initiate a new 10 operation.

INK_EVENT_VCONN_EOS An attempt was made to read past the
end of the stream of bytes during the
handling of an | NKVConnRead
operation. This event occurs when the
number of bytes available for reading
from a vconnection is less than the
number of bytes the user specifies
should be read from the vconnection in a
call to | NKVConnRead. A common case
where this occurs is when the user
specifies that | NT_MAX bytes are to be
read from network connection.

The null transform plugin’s transformation, for example, receives
I NK_EVENT_VCONN_WRI TE_READY and | NK_EVENT_VCONN_WRI TE_COMPLETE events from
the downstream vconnection as a result of the call to | NKVConnWi t e.

When the user is finished using a vconnection he needs to call | NKVConnCl ose or

I NKVConnAbor t . Both calls indicate that the vconnection can destroy itself but

I NKVConnAbor t should be used when the connection is being closed abnormally. After a
call to | NKVConnd ose or | NKVConnAbor t the user will not be called back by the
vconnection again.

Sometimes it’s desirable to simply close down the write portion of a connection while
keeping the read portion open. This can be accomplished using the | NKVConnShut down
function which will shutdown either the read or write portion of a vconnection.
Shutdown means that the vconnection will no longer call back the user with events for the
portion of the connection shutdown. For example, if the user shuts down the write
portion of a connection he will no longer get | NK_EVENT_VCONN_WRI TE_READY or

I NK_EVENT_VCONN WRI TE_COMPLETE events.

In the null transform plugin, the write operation is shut down with a call to
I NKVConnShut down.

For a description of how vconnections are used in transformation plugins, see Writing
content transform plugins, on page 41.

The vconnection functions are:

IO Guide 123

= INKVConnAbort

s INKVConnClose

m INKVConnClosedGet (used for Transformations only)
= INKVConnCreate

= INKVConnRead

» INKVConnReadVIOGet

s INKVConnShutdown

= INKVConnWrite

m INKVConnWriteVIOGet

Net VConnections

A network vconnection (netvconnection) is a wrapper around a TCP socket that allows
the socket to work within the Traffic Edge vconnection framework. See Vconnections, on
page 121 for more information about the Traffic Edge abstraction for doing asynchronous
10.

The net vconnection functions are:
= INKNetAccept, on page 214
m INKNetConnect, on page 214

Transformations

The vconnection implementor’s view

A VConnection implementor writes only transformations. All other VConnections (net
VVConnections and cache VConnections) are implemented in iocore. As mentioned earlier,
a given vconnection can have at most one read operation and one write operation being
performed on it. The vconnection user gets information about the operation being
performed by examining the VIO returned by a call to | NKVConnRead or | NKVConnW i t e.
The implementor, in turn, gets a handle on the VIO operation by examining the VIO
returned by | NKVConnReadVI OGet or | NKVConnW i t eVI OGet . (Recall that every
vconnection created through the Traffic Edge API has an associated read VIO and write
VIO even if it only supports reading or writing.)

For example, the null transform plugin’s transformation examines the input VIO by
calling

input_vio = | NKVConnWiteVl CGet (contp);

Where cont p is the transformation.

A vconnection is a continuation, which means it has a handler function that gets run when
an event is sent to it, or more accurately, when an event that was sent to it is received. It is
the handler function’s job to examine the event, the current state of its read VIO and write

124 Net VConnections

VIO and any other internal state the vconnection might have and potentially make some
progress on the 10 operations.

It is common for the handler function for all vconnections to look similar. Their basic form
looks something like the following code fragment.

int

vconnection_handl er (I NKCont contp, |NKEvent event, void *edata)

{
i f (1 NKVConnCl osedGet (contp)) {

/* Destroy any vconnection specific data here. */
I NKCont Destroy (contp);
return O;
} else {
/* Handl e the incom ng event */

}

This code fragment basically shows that many vconnections simply want to destroy
themselves when they are closed. However, the situation might also require the
vconnection to do some cleanup processing which is why | NKVConnCl ose does not
simply just destroy the vconnection.

Vconnections are state machines which are animated by the events they receive. An event
is sent to the vconnection whenever an | NKVConnRead, | NKVConnW i t e, | NKVConnd ose,
I NKVConnShut down or | NKVI OReenabl e call is performed. | NKVI OReenabl e indirectly
references the vconnection through a back-pointer in the VIO structure to the vconnection.
The vconnection itself only knows what call was performed by examining its state and the
state of its VIOs. For example, when | NKVConnC ose is called, the vconnection will be sent
an immediate event (I NK_EVENT_| MVEDI ATE). For every event the vconnection receives, it
needs to check its closed flag to see if it has been closed. Similarly, when | NKVI OReenabl e
is called, the vconnection is sent an immediate event. So for every event the vconnection
receives, it needs to check its VIOs to see if the buffers have been modified to a state where
it can continue processing one of its operations.

Lastly, a vconnection is likely the user of other vconnections. It also receives events as the
user of these other vconnections. When it receives such an event, like

I NK_EVENT_VCONN_VRI TE_READY, it might just enable another vconnection that is writing
into the buffer used by the vconnection reading from it. The above description is merely
intended to give the overall idea for what a vconnection needs to do.

Transformation VConnection

A transformation is a specific type of vconnection which supports a subset of the
vconnection functionality that allows one or more transformations to be chained together.
See Transformations, on page 42 for a description of how to use transformations in
transformation plugins.

A transformation is a specific type of vconnection which supports a subset of the
vconnection functionality that allows one or more transformations to be chained together.
A transformation sits as a bottleneck between an input data source and an output data
sink which enables it to view and modify all the data passing through it. Some
transformations simply scan the data and pass it on. A common transformation is to
compress the data in some manner.

10 Guide 125

transforma
tions must

consume all

upstream

data before

closing

A transformation can modify either the data stream being sent to an HTTP client (e.g. the
document) or the data stream being sent from an HTTP client (e.g. post data). To do so the
transformation should hook on to one of these hooks:

0l NK_HTTP_REQUEST TRANSFORM HOOK
0l NK_HTTP_RESPONSE_TRANSFORM HOOK

Note that because a transformation is intimately associated with a given transaction that it
is only possible to add the hook to the transaction hooks and not to the global or session
hooks. Transformations reside in a chain and their ordering is very simply determined.
Transformations adding themselves to the chain are appended to it.

Data is passed in to the transformation by initiating a vconnection write operation on the
transformation. The consequence of this design is that a transformation must support the
vconnection write operation. In other words, your transformation must expect an
upstream vconnection to write data to it. The transformation has to read the data,
consume it, and tell the upstream vconnection that it is finished by send it an

I NK_EVENT_WRI TE_COMVPLETE event.

Transformations cannot send | NK_EVENT_VCONN_WRI TE_COMPLETE to the upstream
vconnection unless they are finished consuming all incoming data. If

I NK_EVENT_VCONN_WRI TE_COVPLETE is sent prematurely, certain internal Traffic Edge data
structures will not be deallocated, causing a memory leak.

How to make sure that all incoming data is consumed:

OMake sure that after reading or copying data, you consume the data and increase the
value of ndone for the input VIO, as in the following example taken from nul | -
transformc:

I NKI OBuf f er Copy (1 NKVI OBuf f er Get (dat a->out put_vi o),
| NKVI OReader Get (i nput_vio), towite, 0);

/* Tell the read buffer that we have read the data and are no
longer interested init. */

| NKI OBuf f er Reader Consune (| NKVI CReader Get (i nput _vi 0),
towite);

/* Modify the input VIOto reflect how nmuch has been read. */

I NKVI ONDoneSet (i nput _vi o, | NKVI ONDoneGet (i nput_vio) +
towite);

OBefore sending | NK_EVENT_VCONN_WRI TE_COVPLETE, your transformation should check
the numbe of bytes remaining in the upstream vconnection’s write VIO (input VIO)
using the function | NKVI ONTodoGet (i nput _vi o). This value should go to zero when
all of the upstream data is consumed (I NKVI ONTodoGet = nbytes - ndone). Do not
send | NK_EVENT_VCONN_WRI TE_COMPLETE events if | NKVI ONTodoGet is greater than
zero.

The transformation passes data out of itself by using the output vconnection retrieved by
I NKTr ansf or mOut put VConnGet . Immediately before Traffic Edge initiates the write
operation which inputs data into the transformation it sets the output vconnection to the
next transformation in the chain of transformations or to a special terminating
transformation if this is the last transformation in the chain. Since the transformation is
handed ownership of the output vconnection it must close it at some point in order for it to
be de-allocated.

126

Transformations

All of the transformations in a transformation chain share the transaction’s mutex. This
small restriction (enforced by | NKTr ansf or nCr eat €) removes many of the locking
complications of implementing general vconnections. For example, a transformation does
not have to grab its write VIO mutex before accessing its write VIO since it knows it
already holds the mutex.

The transformation functions are:
m INKTransformCreate, on page 220
m INKTransformOutputVConnGet, on page 221

VIOs

A VIO or virtual 10 is a description of an in progress 10 operation. The VIO data structure
is used by vconnection users to determine how much progress has been made on a
particular 10 operation and to re-enable an 10 operation when it stalls due to buffer space.
VIOs are used by vconnection implementors to determine the buffer for an 10 operation,
to determine how much work to do on the 10 operation and to determine which
continuation to call back when progress on the 10 operation is made.

The I NKVI Odata structure itself is opaque, but it might have been defined as follows:
typedef struct {
| NKCont conti nuati on;
I NKVConn vconnecti on;
| NKI OBuf f er Reader reader;
I NKMut ex nut ex;
i nt nbytes;
i nt ndone;
} %I NKVI O
The functions below simply access and modify various parts of the data structure.
m INKVIOBuUfferGet
= INKVIOVConnGet
= INKVIOContGet
m INKVIOMutexGet
= INKVIONBytesGet
m INKVIONBytesSet
m INKVIONDoneGet
m INKVIONDonNeSet
m INKVIONTodoGet
m INKVIOReaderGet

m INKVIOReenable

10 Guide 127

IO buffers

The 10 buffer data structure is the building block of the vconnection abstraction. An 10
buffer (I NKI OBuf f er) is composed of a list of buffer blocks which in turn point to buffer
data. Both the buffer block (I NKI OBuf f er Bl ock) and buffer data (I NKI OBuf f er Dat a) data
structures are reference counted so that they can reside in multiple buffers at the same
time. This makes it extremely efficient to copy data from one 10 buffer to another using

I NKI OBuf f er Copy since Traffic Edge only needs to copy pointers and adjust reference
counts appropriately and not actually copy any data.

The 10 buffer abstraction provides for a single writer and multiple readers. In order for
the readers to have no knowledge of each other, they manipulate 10 buffers through the
I NKI OBuf f er Reader data structure. Since only a single writer is allowed, there is no
corresponding | NKI OBuf f er Wi t er data structure. The writer simply modifies the 10
buffer directly.

The 10 buffer functions are:

Refer to the sample code in the description of INKIOBufferBlockReadStart, on page 225 for a
sample that illustrates how to use IOBuffers.

m The INKIOBufferReader data structure keeps track of how much data in the
INKIOBuffer has been read. It has an offset number of bytes which is the current start
point of a particular buffer reader. (For every read operation on an INKIOBuffer, you
must allocate an INKIOBufferReader).

= Note that the bytes that already have been read may or may not be freed within the
INKIOBuffer. You have to call INKIOBufferConsume to consume bytes that have been
read. See the sample code on page 215. See also the output-hdr.c sample plugin that
Chris Cooper sent.

Guide to the cache API

The cache API lets plugins read, write, and remove objects in the Traffic Edge cache. All
cache APIs are keyed by an object called an | NKCacheKey. Cache keys are created via

I NKCacheKeyCr eat e. Keys are destroyed via | NKCacheKeyDest r oy. Use

I NKCacheKeyDi gest Set to set the hash of the cache key.

Note that the cache APIs differentiates between HTTP data and plugin data. The cache
APIs do not allow you to write HTTP docs in the cache. You can only write plugin specific
data which is a specific type of data which is different from the HTTP type.

Example:

const unsigned char *key_nane = "exanpl e key nane";

I NKCacheKey key;
I NKCacheKeyCr eat e (&key);

I NKCacheKeyDi gest Set (key, (unsigned char *) key_nane ,
strl en(key_name));

| NKCacheKeyDest roy (key);

128

10 buffers

How to do a cache read
INKCacheRead does not really read, it is used for lookups. See the sample Protocol
plugin. The possible callback events include:

m | NK_EVENT_CACHE_OPEN_READ - indicating that the lookup was successful, the data
passed back along with this event is a cache vconnection that may be used to initiate a
read on this keyed data.

m | NK_EVENT_CACHE_OPEN_READ FAI LED- indicating that the lookup was unsuccessful.
Reasons for this event include: another continuation could be writing to that cache
location, or the cache key may not refer to a cached resource. Data payload for this
event indicates the possible reason for the read failing (I NKCacheEr r or).

How to do a cache write
Use | NKCacheW i t e to write to a cache. See the sample Protocol plugin. The possible
callback events include:

m | NK_EVENT_CACHE_WRI TE_READ - indicating that the lookup was successful, the data
passed back along with this event is a cache vconnection that may be used to initiate a
write to the cache.

m | NK_EVENT_CACHE _OPEN WRI TE_FAI LED- The event is returned if another
continuation is currently writing to this location in the cache. Data payload for this
event indicates the possible reason for the write failing (I NKCacheErr or).

How to do a cache remove

Use | NKCacheRenpve to remove items from the cache. The possible callback events
include:

m | NK_EVENT_CACHE_REMOVE - item was removed. There is not data payload for this
event.

m | NK_EVENT_CACHE_REMOVE_FAI LED - indicating that the cache was unabled to remove
the item idetified by the cache key. Data indicates the reason why the removed failed
(I NKCacheErr or).

Errors

Errors as to why various cache operations failed are indicated by INKCacheError
(enumeration) as follows:

m | NK_CACHE_ERROR_NO DCC - key does not match a cached resource.

m | NK_CACHE_ERROR_DOC BUSY - e.g, another continuation could be writing to that cache
location.

m | NK_CACHE _ERROR_NOT_READY - the cache is not ready.

Example

In the example below, suppose we have a cache hit and the cache returns a vconnection
for us to read the document from the cache. To do this, we have to prepare a buffer

IO Guide 129

(cache_buf p) to hold the document. Meanwhile, we would use

I NKVConnCachedbj ect Si zeGet to tell us the actual size of the document

(cont ent _I engt h). After, we would issue | NKVConnRead to read the document with the
total data length required being cont ent _| engt h. Assume the following data:

I NKI OBuf f er cache_bufp = INKIOBufferCreate ();

I NKI OBuf f er Reader cache_readerp = | NKI OBuffer Reader Al | oc (out_bufp);
I NKVConn cache_vconnp = NULL;

I NKVI O cache_vi o = NULL;

int content _length = O;

In the | NK_CACHE_OPEN_READ handler;
cache_vconnp = (I NKVConn) dat a;
I NKVConnCachedObj ect Si zeGet (cache_vconnp, &content_I| ength);

cache_vi o = I NKVConnRead (cache_vconn, contp, cache_bufp,
content _Il ength);

In the | NK_EVENT_VCONN_READ_READY handler:
(usual VCONN_READ_READY handler logic)
int nbytes = | NKVI ONByt esGet (cache_vi0);
int ntodo = | NKVI ONTodoGet (cache_vio);
int ndone = INKVI ONDoneCGet (cache_vio);
(consume data in cache_buf p)
I NKVI OReenabl e (cache_vi0);

Do not try to get continuations or vios from INKVConn objects for Cache VConnections.
Also note that the following APIs can only be used on Transformation VConnections and
must not be used on Cache or Net VConnections:

= | NKVConnWi t eVl OGet
= | NKVConnReadVI OCet

m | NKVConnCl osedCet

APIs such as | NKVConnRead, | NKVConnW i t e, | NKVConnC ose, | NKVConnAbort and
I NKVConnShut down can be used on any kind of VConnections.

When you are done:

I NKCacheKeyDestroy (key);

130

Guide to the cache API

CHAPTER 14

Plugin Management

This chapter decribes:
m “Setting up a plugin management interface” on page 131.

You can add your own HTML information pages or CGI forms to the Traffic Manager
Ul. Traffic Manager can send configuration information from a CGI form to your

plugin.
m “Reading Traffic Edge settings and statistics” on page 132.

Using the functions in this chapter, plugins can read Traffic Edge configuration
settings and statistics from the r ecor ds. confi g file.

m “Accessing installed plugin files” on page 132.

Have plugins access related files in the plugin installation directory, and make sure
that your plugins are preserved during Traffic Edge upgrades.

= “Licensing your plugin” on page 133.
m “Guide to the logging API”” on page 135.

The logging API enables your plugin to log text entries in a custom Traffic Edge log
file. This section gives a basic overview of the logging interface.

Setting up a plugin management interface

To set up a plugin management interface, follow these steps:

1 Create your interface. It must be browser-based, since it is accessed through the Traffic
Manager Ul. Your interface can be static or dynamic. If you are using a dynamic
interface, your CGI form submission must set the | NK_PLUG N_NANE variable to be the
name of your plugin, as it is entered in the | NKMynt Updat eRegi st er function.

2 Note the location of your interface files.

3 Use the | NKMgnt Updat eRegi st er function in your plugin. It should be part of
I NKPI ugi nlnit.

The | NKMgnt Updat eRegi st er function does two things:

m Informs Traffic Manager of the location of your interface, so that the links to your
interface appear in the Traffic Manager Ul

= If you have a dynamic interface, it sets up a callback to your plugin whenever
configuration information is submitted through the interface

Caution

Four result
types

Reading Traffic Edge settings and statistics

Your plugin might need to know information about Traffic Edge’s current configuration
and performance. The functions described in this section read this information from the
Traffic Edge r ecor ds. confi g file. Configuration settings are stored in CONFI G variables
and statistics are stored in PROCESS variables.

Not all CONFI Gand PROCESS variables in r ecor ds. conf i g are relevant to Traffic Edge’s
configuration and statistics. Retrieve only the r ecor ds. conf i g variables that are
documented in the Traffic Edge Administrator’s Guide.

To retrieve a variable, you need to know its type (i nt, count er, f | oat, or st ri ng). Plugins
store the recor ds. confi g values as an | NKMgnt | nt, | NKMgnt Count er, | NKMynt Fl oat , or

I NKMgnt St ri ng. You can look up r ecor ds. conf i g variable types in the Traffic Edge
Administrator’s Guide.

Depending on the result type, use | NKMynt | nt Get , | NKMgnt Count er Get ,
I NKMgnt Fl oat Get, or | NKMgnt St ri ngGet to obtain the variable value.

See the example for “INKMgmtIntGet” on page 234..
The | NKMgnt * Get functions are:

m “INKMgmtCounterGet” on page 233.
n “INKMgmtFloatGet” on page 234.

m “INKMgmtintGet” on page 234.

m “INKMgmtStringGet” on page 234.

Accessing installed plugin files

Your plugin might rely on files in addition to its source code, such as configuration files.
When you upgrade Traffic Edge, you might need to make sure your plugin is always able
to find its associated files. The mechanism for preserving relative file locations with
upgrades is the following:

= Make sure all plugins are contained in their own directories within the plugin
directory.

m The plugin directory path is specified in the Traffic Edge r ecor ds. confi g file variable
proxy. confi g. pl ugi n. pl ugi n_di r. This path is relative to the Traffic Edge install
directory. The default value is confi g/ pl ugi n.

m Make sure all plugins are listed in the pl ugi n. db file. For each plugin, this file
contains the plugin name, object file, license key, file name(s), and directory relative to
the plugin directory.

m When Traffic Edge is upgraded, the Traffic Edge installation program looks at the
pl ugi n. db file to see which plugins to copy over to the new Traffic Edge installation,
and what the appropriate object files, license keys, additional files, and directories
should be.

The format of the pl ugi n. db file is as follows:
[nane of your plugin]

132

Reading Traffic Edge settings and statistics

notes
about
plugin.db
format

oj ect=[nane of plugin's shared object file
Li cense=[li cense key]
Dir=[nane of any directories to be copied over]

m Entriesin pl ugi n. db are case-sensitive.

m Do not include white spaces in your entries. For example, the following line is
incorrect:

bj ect = plugin.so
The correct entry would be:
Obj ect =pl ugi n. so

For example, suppose that you have a blacklist plugin in the plugin directory. Its object
file is Bl ackl i st. so and it has some user interface files (images and HTML files) in the
Bl ackl i st/ ui directory. To make sure that the blacklist plugin is upgraded properly,

pl ugi n. db needs the following entry:

[Bl ackl i st plugin]

nj ect =Bl ackl i st. so

Li cense=ABCD0123456789
Di r=Bl ackl i st/ ui

In this example, if all of the necessary files and directories are in the Blacklist directory,
you could simply specify Dir = Bl ackl i st.

This means that the Blacklist image and HTML files are always located in:
<Traffic Edge install directory>/<plugin directory>/Bl acklist/ui

Your plugin might need to specify the absolute location of its associated files. The
following functions provide the Traffic Edge install directory path and plugin directory
path:

m “INKInstallDirGet” on page 235.
m “INKPluginDirGet” on page 235.

Licensing your plugin

When installing a plugin which requires a license, the plugin.db must be updated. This
file contains the license keys for the plugins. At load time, Traffic Edge reads the key in the
plugin.db file and checks their validity. If a key is not valid, the plugin is not executed.

Format of plugin.db

comments start by a '# character
[pl ugi n_nane]

oj ect =pl ugi n. so

Li cense=Key

Be careful with the syntax:

m Object is with an uppercase 'O

ex.: obj ect =pl ugi n. so is bad

Plugin Management 133

m License is with an uppercase 'L’
ex. i cense=key is bad

m No blank between '="and value.
ex.: Obj ect = plugin.soisbad

= No blank after the value.

ex. Li cense=Key is bad

Setting up licensing

Set up licensing in these steps:
1 Develop your plugin, using the I NKPI ugi nLi censeRequi r ed function.

2 Create an installation program for your plugin. The installation program must update
both pl ugi n. confi g and pl ugi n. db. When your plugin customer installs the plugin,
the program should ask the customer for the license key.

3 Use the gen_key tool to generate license keys. You can generate different keys for
different customers, and you can set expiration dates for each key.

4 Distribute your plugin together with license key to customers.

When the customer installs the plugin, the installation program should ask for the license
key. The installation program should then make an entry in pl ugi n. db and

pl ugi n. confi g for the new plugin. When the customer runs the plugin, Traffic Edge
checks the license key. If it passes, Traffic Edge then calls | NKPI ugi nl ni t .

Example

m You have apluginfiltering, implemented in objectfiltering.so
= You generate a key for your pluginfiltering by using:
gen_key filtering ABCDE 03312002
m The key generated by gen_key is:
ABCDE2E01E07D95
= You must update pl ugi n. db and add the following lines:
[filtering]
oject=filtering.so
Li cense=ABCDE2EO1E07D95
The following function is used to license your plugin:

m “INKPluginLicenseRequired” on page 235.

Generating a license key

The gen_key tool generates a license key based on your plugin name (which must match
the plugin name entered in the pl ugi n. db file), an expiration date, and a customer ID (so

134

Generating a license key

that you can give different license keys to different customers). You can specify an
expiration date of 0 which means that the plugin never expires.
Running the gen_key tool

1 On Unix, cd to the sdk/ t ool s directory in your SDK package. On NT, open a DOS
command window and cd to the sdk/ t ool s directory.

2 Enter the following:
gen_key plugin_name I D expiration

0 * plugin_name is the name of the plugin and it needs to match the name specified in
plugin.db

0 IDis a string of 5 alphanumeric characters, used to identify different customers
O expiration is the expiration date of the plugin in the following format:
mudyyyy
For example, 03312001 for March 31, 2001. Use 0 for no expiration.

Guide to the logging API

The logging API lets your plugin log entries in a custom text log file. You create the file
with the call | NKText LogQObj ect Cr eat e. The log file is part of Traffic Edge’s logging
system. By default, the log file is stored in the logging directory. Once you have created
the log object, you can set log properties.

The logging API enables you to:
OEstablish a custom text log for your plugin. See “INKTextLogObjectCreate” on page 240..

m Set the log header for your custom text log. See “INKTextLogObjectHeaderSet” on page
241.

m Enable or disable rolling your custom text log. See
“INKTextLogObjectRollingEnabledSet” on page 242.

m Set the rolling interval in seconds for your custom text log. See
“INKTextLogObjectRollingIntervalSecSet” on page 242.

m Set the rolling offset for your custom text log. See
“INKTextLogObjectRollingOffsetHrSet” on page 243.

OWrite text entries to the custom text log. See “INKTextLogObjectWrite” on page 243..

dFlush the contents of the custom text log’s write buffer to disk. See
“INKTextLogObjectFlush” on page 243..

ODestroy custom text logs when you are done with them. See “INKTextLogObjectDestroy”
on page 244..

Here is how the logging APl is used in the bl ackl i st - 1. ¢ sample plugin. See “Sample
Source Code” on page 245. for complete source code.

1 Anew logfile is defined as a global variable.

static | NKText LogObj ect | og;

Plugin Management 135

2 In 1 NKPI ugi nl ni t, anew log object is allocated:

| og = | NKText LogObj ect Create("bl acklist",
| NK_LOG_MODE_ADD_TI MESTAMP,

NULL, &error);

The new log is named bl ackl i st. | og. Each entry written to the log will have a
timestamp. The NULL argument specifies that the new log does not have a log header.
The error argument stores the result of the log creation. If the log is created
successfully, error isequal to | NK_LOG ERROR _NO ERROR.

3 After creating the log, the plugin makes sure that the log was created successfully:
if ('log) {

printf("Blacklist plugin: error %d while creating |og\n",
error);

}

4 Thebl ackl i st -1 plugin matches the host portion of the URL in each client request
with a list of blacklisted sites stored in the array si tes[] :

for (i =0; i < nsites; i++) {
if (strncnp (host, sites[i], host_length) == 0) {

If the host matches one of the blacklisted sites, say si t es[i], then the plugin writes a
blacklist entry to bl ackl i st. | og:

if (log) {

| NKText LogObj ect Wite(log, "blacklisting site: %",
sites[i]);

The format of the log entry is :
<tinmestanp> blacklisting site: sites[i]

The log is not flushed or destroyed in the bl ackl i st - 1 plugin. It lives for the life of
the plugin.

136 Guide to the logging API

CHAPTER 15

Adding Statistics

This chapter describes how to add statistics to your plugins. Statistics can be coupled or
uncoupled. Coupled statistics are quantities that are related and must be updated
together. The Traffic Edge API statistics functions add your plugin’s statistics to the Traffic
Edge statistics system. You can view your plugin statistics as you would any Traffic Edge
statistic, using Traffic Line (Traffic Edge’s command line interface). This chapter contains
the following topics:

m Uncoupled statistics, on page 137
m Coupled statistics, on page 137

= Viewing statistics using Traffic Line, on page 139

Uncoupled statistics

A statistic is an object of type | NKSt at . The value of the statistic is of type | NKSt at Type.
The possible | NKSt at Types are:

m | NKSTAT_TYPE_| NT64

m | NKSTAT_TYPE_FLOAT

There is no | NKSTAT_TYPE_| NT32.

To add uncoupled statistics, follow these steps:

1 Declare your statistic as a global variable in your plugin. For example:

static INKStat ny_statistic;
2 In I NKPI ugi nl ni t, create new statistics using | NKSt at Cr eat e.

When you create a new statistic, you need to give it an “external” name that the Traffic
Edge command line interface (Traffic Line) uses to access the statistic. For example:

my_statistic = INKStatCreate (“nmy.statistic”,
| NKSTAT_TYPE_| NT64) ;

3 Modify (increment, decrement, or other modification) your statistic in plugin
functions.

Coupled statistics

Use coupled statistics for quantities that are related and must be updated jointly. As a very
simple example, suppose that you have three statistics: sum part _1 and part _2, and they
must always preserve the relationship that sum = part _1 + part_2. If you update

Note

part _1 without updating sumat the same time, the equation would be untrue. The
mechanism for updating coupled statistics jointly is to create local copies of global
coupled statistics in the routines that modifiy them. When each local copy is updated
appropriately, you do a global update using | NKSt at sCoupl edUpdat e. To specify which
statistics are related to one another, you establish a coupled statistic category, and make
sure that each coupled statistic belongs to the appropriate category. When it is time to do
the global update, you specify the category to be updated.

The local statistic copy must have a duplicate set of statistics as that of the master copy.
Local statistics must also be added to the local statistic category in the same order as their
master copy counterparts were added originally.

Here are the steps you needed, followed by an example of code that is taken from the
redirect-1. c sample plugin.

To add coupled statistics:

1 Declare the global category for your coupled statistics as a global | NKCoupl edSt at
variable in your plugin.

2 Declare your coupled statistics as global | NKSt at variables in your plugin.

3 InI NKPI ugi nl ni t, create a new global coupled category using
I NKSt at Coupl edd obal Cat egor yCr eat e.

4 In I NKPI ugi nl ni t, create new global coupled statistics using
I NKSt at Coupl edd obal Add.

When you create a new statistic, you need to give it an “external” name that the Traffic
Edge command line interface (Traffic Line) uses to access the statistic.

5 Inany routine where you want to modify (increment, decrement, or other
modification) your coupled statistics, declare local copies of the coupled category and
coupled statistics.

6 Then create local copies using | NKSt at Coupl edLocal CopyCr eat e and
I NKSt at Coupl edLocal Add.

7 Modify the local copies of your statistics. Then to update the global copies jointly, call
I NKSt at sCoupl edUpdat e.

8 When you are done, you must destroy the all of the local copies in the category using
I NKSt at Coupl edLocal CopyDest r oy.

Example using the redi rect - 1. c sample plugin

static | NKCoupl edSt at request _out cones;
static | NKStat requests_all;

static INKStat requests_redirects;
static | NKStat requests_unchanged;

request _out comes = | NKSt at Coupl edd obal Cat egoryCreate ("request_outconmes");

requests_all = | NKSt at Coupl edd obal Add (request_outconmes, "requests.all",
| NKSTAT_TYPE_FLOAT) ;

138

Coupled statistics

requests_redirects = | NKSt at Coupl edd obal Add (request_out cones,
"requests.redirects",

| NKSTAT_TYPE_| NT64) ;

requests_unchanged = | NKSt at Coupl edd obal Add (request _out cones,
"requests. unchanged",

| NKSTAT_TYPE_I NT64) ;

| NKCoupl edSt at | ocal _request _out cones;
I NKSt at | ocal _requests_all;
I NKSt at | ocal _requests_redirects;

I NKSt at | ocal _requests_unchanged;

| ocal _request _out comes = | NKSt at Coupl edLocal CopyCreate("I| ocal _request _out cones",

request _outcones);

l ocal _requests_all = | NKStat Coupl edLocal Add(| ocal _request _out cones,

"requests.all.local",
| NKSTAT_TYPE_FLOAT) ;

| ocal _requests_redirects = | NKSt at Coupl edLocal Add(| ocal _r equest _out cones,
"requests.redirects.local", | NKSTAT_TYPE_I NT64);

| ocal _requests_unchanged = | NKSt at Coupl edLocal Add(| ocal _r equest _out cones,
"requests. unchanged. | ocal ", | NKSTAT_TYPE_I NT64) ;

| NKSt at FI oat AddTo(| ocal _requests_all, 1.0) ;

I NKSt at | ncrenent (1 ocal _requests_unchanged);
| NKSt at sCoupl edUpdat e(l ocal _request _out cones);

I NKSt at Coupl edLocal CopyDestroy(l ocal _request_out cones);

Viewing statistics using Traffic Line

To view your plugin’s statistics, follow these steps:

1 Make sure you know the name of your statistic (the name used in the
I NKSt at Coupl edd obal Add, | NKSt at Cr eat e, Or
I NKSt at Coupl edd obal Cat egor yCr eat e call).

2 Inyour<Traffic Edge>/bin directory, enter the following:

traffic_ line -r the name

Adding Statistics

139

140 Viewing statistics using Traffic Line

aweer1s FUNCHION Reference

This chapter provides a description of each function in the Traffic Edge API. The functions
are grouped according to what they do. The following section lists all the function groups.
You can look up functions alphabetically in the Function Index, on page 281.

List of function groups

Olnitialization functions, on page 142

0Debugging functions, on page 143

OThe INKfopen family, on page 145

OMemory allocation, on page 148

OThread functions, on page 150

OHTTP functions, on page 151

Olnitiate Connection, on page 162

Olntercepting HTTP transaction functions, on page 163
OMutex functions, on page 203

oOContinuation functions, on page 205

OPlugin configuration functions, on page 207

OAction functions, on page 209

OHost Lookup Functions, on page 210

oVconnection functions, on page 211

ONetvconnection functions, on page 214

OCache interface functions, on page 215
OTransformation functions, on page 220

0VIO functions, on page 221

01O buffer interface, on page 225

OManagement interface function, on page 233

OTraffic Edge Configuration Read Functions, on page 233
OCustomer installation and licensing functions, on page 235
OStatistics functions, on page 236

OLogging functions, on page 240

INKPIugininit

Initialization functions

Prototype

Arguments

Description

First release

void I NKPluginlnit (int argc, const char *argv[])

ar gc is a count of the number of arguments in the argument vector, ar gv. The count is at least
one because the first argument in the argument vector is the plugin’s name, which must exist in
order for the plugin to be loaded.

ar gv is the vector of arguments. The number of arguments in the vector is ar gc, and ar gv[0]
always contains the name of the plugin shared library.

This function must be defined by all plugins. Traffic Edge calls this initialization routine when it
loads the plugin and sets ar gc and ar gv appropriately based on the values in pl ugi n. confi g.

Traffic Server 3.0

INKPluginRegister
Registers the appropriate SDK version for your plugin.

Prototype

Arguments

Description

Returns

First release

int | NKPl ugi nRegi ster (1 NKSDKVersion sdk_version,
I NKPI ugi nRegi strationlnfo *plugin_info)

sdk_ver si on can have the following values: | NK_SDK_VERSI ON_1_0,
I NK_SDK_VERSI ON_1_1, | NK_SDK_VERSI ON_2_0, | NK_SDK_VERSI ON_5_2.
I NKPI ugi nRegi strati onl nf o is the following struct:
t ypedef struct
{
char *plugi n_nane;
char *vendor _nane;
char *support_email;
} I NKPI ugi nRegi strationl nfo;
Registers the appropriate SDK version for your plugin. Use this function to make sure that the

version of Traffic Edge on which your plugin is running supports the plugin. See Modified hello-
world that checks Traffic Edge version, on page 20 for usage.

Important: Previous versions of Traffic Edge are named Traffic Server. Throughout this manual,
Traffic Server, Traffic Server 3.0, Traffic Server 3.5, and Traffic Server 5.2 refer to previous
versions of Traffic Edge. For version checking, Traffic Edge 1.5 is equivalent to Traffic Server 5.5.

Returns 0 if the plugin registration fails.

Traffic Server 3.5

142 Initialization functions

INKTrafficServerVersionGet
Returns the version of Traffic Edge running the plugin.

Prototype const char* | NKTrafficServerVersi onGet (void)

Description Returns the release version of Traffic Edge running the plugin as a string. See Modified hello-
world that checks Traffic Edge version, on page 20 for usage.

Returns A pointer to a string of characters that describes the Traffic Edge release version.

Important: Previous versions of Traffic Edge are named Traffic Server. Throughout this manual,
Traffic Server, Traffic Server 3.0, Traffic Server 3.5, and Traffic Server 5.2 refer to previous
versions of Traffic Edge. For version checking, Traffic Edge 1.5 is equivalent to Traffic Server 5.5.

First release Traffic Server 3.5

Debugging functions

The debugging functions are:

INKDebug
Issues debug statements.

Prototype void | NKDebug (const char *tag, const char *format_str, ...)

Arguments t ag is the Traffic Edge parameter that enables Traffic Edge to print out f or mat _str.
. is avariable for f or mat _str.

Description | NKDebug prints out the statement f or mat _st r if debugging is enabled. There are two ways to
enable debugging:
0 On UNIX systems, run Traffic Edge with the - Tt ag option. For example, if the tag is ny-
pl ugi n:
traffic_server -Tmy-plugin
In this case, the debug output goestotraffi c. out.
0 On either UNIX or Windows NT systems, set the following variables in records.config (in the
Traffic Edge config directory):
proxy. confi g. di ags. debug. enabl ed I NT 1
proxy. confi g. di ags. debug. t ags STRI NGdebug-t ag- nane
In this case, debug output goestotraffi c. out on UNIX systems, and to di ags. | og on
Windows NT systems.

Example | NKDebug ("my-plugin”, “Starting my-plugin at %d\n”, the_time);
The statement “Starting my-plugin at <time>" appears whenever you run Traffic Edge with the my-
plugin tag:

traffic_server -Tny-plugin

First release Traffic Server 3.5

Function Reference 143

INKIsDebugTagSet
Tells you if a particular debug tag is set.

Prototype

Description

Example

Returns

First release

int | NKI sDebugTagSet (const char *t)

Returns 1 if the debug tagt is set. You can use this tag to let the Traffic Edge administrator know
whether the debug tag is set or not.

if (INKIsDebugTagSet("demp"))
| NKDebug("init", "The denp tag is set");
el se
I NKDebug("init", "The denpo tag is not set") ;

In this example if you run Traffic Edge with the i ni t tag, it will tell you whether or not the deno
tag is set. You can run Traffic Edge with more than one debug tag set, by adding the tags to the
debug tag variable in records.config, for example:

proxy. config. di ags. debug STRING i nit denp

0 if the specified debug tag is not set.
1 if the specified debug tag is set.

Traffic Server 3.5

INKError

Writes an error to the Traffic Edge error log.

Prototype

Arguments

Description

Example

First release

void I NKError (const char *fmt, ...)

fnt isthe printf format description.
. is the argument for the format description.

It is sometimes useful to log messages when errors occur. Traffic Edge has a global error log file
to which it writes such messages. The function | NKEr r or is the API interface to this error log.

I NKEr r or is similar to pri nt f except that instead of writing the output to the C standard output,
I NKEr r or writes output to the Traffic Edge error log. One advantage of | NKEr r or over pri nt f
is that each call is atomically placed into the error log and is not garbled with other error entries.
This is not an issue in single-threaded programs but is a definite nuisance in multi-threaded
programs.

I NKEr r or ("couldn't retrieve client request header\n");

Traffic Server 3.0

INKAssert

Allows the use of assertion in a plugin.

Prototype

Arguments

voi d | NKAssert (expression);

A boolean expression.

144 Debugging functions

Description

Example

First release

If expression is false:

In debug mode, causes the Traffic Edge to print the file name, line number and expression, then
to abort.

In optim mode, the expression is *not* removed. But the effect of printing an error message and
aborting are. This is an artifact of the way the system assert is normally used and permits:

ink_assert(!setsockopt(...));

Allows the use of assertion in a plugin.

Note that when using the system “assert”, you do not have to worry about the condition as the
code will be ‘dead code eliminated' by the compiler. With | NKAssert you do.

switch (event) {

case EVENT_I| MVEDI ATE:

defaul t:

I NKAssert (!setsockopt(...));

br eak;

}
Traffic Server 5.2

INKReleaseAssert

Allows the use of assertion in a plugin.

Prototype
Arguments

Description

First release

voi d | NKRel easeAssert (expression);
A boolean expression.

If expression is false, causes the Traffic Edge in debug AND optim mode to print the file name,
line number and expression, then to abort.

Allows the use of assertion in a plugin.

Traffic Server 5.2

INKfopen
not optimized
for speed

The INKfopen family

The f open family of functions in C is normally used for reading configuration files, since
f get s is an easy way to parse files on a line by line basis. The | NKf open family of
functions is aimed at solving the same problem of buffered 10 and line at a time 10 in a
platform independent manner. The | NKf open family of functions works exactly the same
under Microsoft Windows NT as it does under any of the Unix platforms Traffic Edge
runs on. Further, the f open family of C library functions can only open a file if a file
descriptor less than 256 is available. Traffic Edge often has more than 2000 file descriptors
open at once, making the likelihood of an available file descriptor less than 256 very small.
The INKfopen family can open files with descriptors greater than 256.

The I NKf open family of routines is not intended for high speed 10 or for flexibility. It is
intended for reading and writing configuration information when corresponding usage of
the f open family of functions is inappropriate because of file descriptor and portability
limitations. The INKfopen family of functions consists of:

Function Reference 145

INKfclose

Closes a file.
Prototype void INKfclose (INKFile filep)
Arguments fil ep is the file to close.
Description Closes the file pointed to by f i | ep and frees the data structures and buffers associated with it. If
the file was opened for writing, any pending data is flushed.
Example See the example for INKfopen.

First release

Traffic Server 3.0

INKfflush
Flushes a file.
Prototype void INKfflush (INKFile filep)
Arguments fil ep is the file to flush.
Description Flushes pending data that has been buffered up in memory from previous calls to | NKf wri t e.

First release

Traffic Server 3.0

INKfgets

Reads a line from a file to a buffer.

Prototype

Arguments

Description

First release

char* INKfgets (INKFile filep, char *buf, int |ength)

filepis the file to read from.

buf is the buffer to read into.

| engt h is the size of the buffer to read into.

Reads a line from the file pointed to by f i | ep into the buffer buf . Lines are terminated by a line
feed character, \ n'. The line placed in the buffer includes the line feed character and is

terminated with a NUL. If the line is longer than | engt h bytes then only the first| ength - 1
bytes are placed in buf .

Traffic Server 3.0

INKfopen

Reads a line from a file to a buffer.

Prototype

Arguments

I NKFi | e I NKf open (const char *fil enane, const char *nopde)

fi | enane is the name of the file to open.

node specifies whether to open the file for reading or writing. If node is
‘r” then the file is opened for reading.

“w’, then the file is opened for writing.

“a” then the file is opened for appending.

Currently “r” *w’ and “a” are the only two valid modes for opening a file.

146

The INKfopen family

Description

Example

First release

Opens a file for reading or writing and returns a descriptor for accessing the file. Descriptors of
type | NKFi | e can be greater than 256. | NKf open can open a file for reading or for writing, but
not both. (This is a limitation of the current implementation).

The following example is taken from the append-transform plugin. The append-transform plugin appends text to the
end of HTTP response bodies. This subroutine loads the text to be added from a file.

static int
I oad (const char *filenane)
{

INKFi | e fp;

I NKI OBuf f er Bl ock bl k;
I NKI OBuf f er Dat a dat a;
char *p;

int avail;

int err;

fp = I NKfopen (filenane, "r");
if ('fp) {
return O;

}

append_buffer = INKIOBufferCreate ();
append_buf fer_reader = | NKI OBuf f er Reader All oc (append_buffer);

for (;;) {
bl k = I NKIOBufferStart (append_buffer);
p = INKI OBuf ferBl ockWiteStart (blk, &avail);

err = |NKfread (fp, p, avail);
if (err >0) {

I NKI OBuf f er Produce (append_buffer, err);
} else {

br eak;

}
}

append_buf fer_l ength = | NKI OBuf f er Reader Avai | (append_buf fer_reader);

I NKf cl ose (fp);
return 1;

}
Traffic Server 3.0

INKfread

Reads a specified number of bytes from a file to a buffer.

Prototype

Arguments

Description

int INKiread (INKFile filep, void *buf, int [ength)

fil ep is the name of the file to read from.
buf is the buffer to read into.
| engt h is the amount of data to read.

Attempts to read | engt h bytes of data from the file pointed to by f i | ep into the buffer buf . If the
file was not opened for reading, | NKf r ead returns - 1. If an error occurs while reading the file,

| NKf r ead returns - 1. If the end of the file is reached, | NKf r ead returns 0. Otherwise,

I NKf r ead returns the number of bytes read.

Function Reference 147

Example

First release

See the example for INKfopen.

Traffic Server 3.0

INKfwrite

Writes a specified number of bytes to a file.

Prototype

Arguments

Description

First release

int INKfwite (INKFile filep, void *buf, int Iength)

filepis the file to write to.

buf is the buffer containing the data to be written.

| engt h is the amount of data to write to f i | ep.

Attempts to write | engt h bytes of data to the file pointed to by f i | ep from the buffer buf . If the
file was not opened for writing, | NKf wr i t e returns - 1. Otherwise, | NKf wr i t e returns the

number of bytes written. Unless an error occurs when writing data to the file, the number of bytes
written is equal to | engt h. One common error is an insufficient amount of space on disk.

Traffic Server 3.0

INKfree

Memory allocation

Traffic Edge provides five routines for allocating and freeing memory. These routines
correspond to similar routines in the C library. For example, | NKr eal | oc behaves like the
C library routine r eal | oc. There are two reasons to use the routines provided by Traffic
Edge. The first is portability. The Traffic Edge API routines behave the same on all of
Traffic Edge’s supported platforms. For example, r eal | oc does not accept an argument of
NULL on some platforms. The second reason is that the Traffic Edge routines actually track
the memory allocations by file and line number. This tracking is very efficient, is always
turned on, and is useful for tracking down memory leaks.

The memory allocation functions are:

Frees memory allocated by | NKnal | oc or | NKr eal | oc.

Prototype
Arguments

Description

First release

void INKfree (void *ptr)
pt r is a pointer to the memory to deallocate.

Releases the memory allocated by | NKnal | oc or | NKr eal | oc. If ptr is NULL, | NKf r ee does
no operation.

Traffic Server 3.0

INKmalloc

Allocates memory.

Prototype

Arguments

voi d* | NKmal | oc (unsigned int size)

si ze is the number of bytes to allocate.

148 Memory allocation

Description Returns a pointer to si ze bytes of memory allocated from the heap. Traffic Edge uses
I NKmal | oc internally for memory allocations. Always use | NKf r ee to release memory allocated
by I NKmal | oc; do not use fr ee.

Returns A pointer to the newly allocated memory.

First release Traffic Server 3.0

INKrealloc
Changes the size of an allocated block of memory.

Prototype void* | NKrealloc (void *ptr, unsigned int size)

Arguments ptr is the pointer to the memory to reallocate.
si ze is the number of bytes to allocate.

Description Changes the size of the memory block pointed to by pt r to si ze bytes and returns a pointer to
the new block. It may not be possible to simply extend pt r to satisfy a request to increase the
allocated block, so the returned pointer might point to a new block of memory. If pt r is NULL,

I NKr eal | oc behaves like | NKnmal | oc and returns a pointer to the newly allocated memory.

Returns A pointer to the reallocated memory.

First release Traffic Server 3.0

INKstrdup
Returns a pointer to a duplicate string.

Prototype char* | NKstrdup (const char *str)
Arguments str is a pointer to the null-terminated string to duplicate.

Description Returns a pointer to a new string that is a duplicate of the string pointed to by st r. The memory
for the new string is allocated using | NKmal | oc and should be freed by a call to | NKf r ee.

Returns Pointer to the duplicated string.

Note: A valid null-terminated string may not be returned if the input st r argument is not a valid
pointer (i.e. a NULL argument would simply cause | NKst r dup to return NULL).

First release Traffic Server 3.0

INKstrndup
Returns a pointer to a duplicate string of specified length.

Prototype char* | NKstrndup (const char *str, int |ength)

Arguments str is a pointer to the string to duplicate.
| engt h is the length of the string to duplicate.

Description Returns a pointer to a new string that is a duplicate of the string pointed to by st r and | engt h
bytes long. The new string will be null-terminated. This API is very useful for transforming non-
null terminated string values returned by APIs such as INKMimeHdrFieldStringValueGet into null-
terminated string values. The memory for the new string is allocated using | NKmal | oc and
should be freed by a call to | NKf r ee.

Function Reference 149

Returns

First release

Pointer to the duplicated string.

Note: A valid null-terminated string may not be returned if the input st r argument is not a valid
pointer (i.e. a NULL argument would simply cause | NKst r ndup to return NULL).

Traffic Server 3.0

Thread functions

The Traffic Edge API thread functions enable you to create, destroy, and identify threads
within Traffic Edge. Multithreading enables a single program to have more than one
stream of execution and to process more than one transaction at a time.

Threads serialize their access to shared resources and data using the | NKWut ex type,
described in Mutexes, on page 101.

The thread functions are:

INKThreadCreate
Creates a new thread.

Prototype

Arguments

Description

Returns

First release

I NKThread | NKThreadCreate (I NKThreadFunc func, void *data)

| NKThr eadFunc f unc is the function that the new thread executes.
voi d *dat a is the data passed as an argument to f unc.

Creates a new thread and calls f unc with the argument dat a. When f unc exits, the thread is
destroyed automatically.

Note: the | NKThr ead return pointer does not provide any indication of the status of the new
thread, and cannot be modified.

A valid pointer to an | NKThr ead object if successful.
A NULL pointer in case of an error.

Traffic Server 3.0

INKThreadDestroy
Destroys a thread.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKThreadDestroy (I NKThread thread)

Destroys a thread and frees all memory and associated data structures. This should only be
called on threads that have been initialized using | NKThr eadl ni t .

I NK_SUCCESS if successful.
I NK_ERRORif an error occurs.

Traffic Server 3.0

150 Thread functions

INKThreadInit
Initializes a thread.

Prototype | NKThread | NKThreadl nit (void)

Description Initializes a thread for use by Traffic Edge. This function should only be used if you create your
own thread using something other than the | NKThr eadCr eat e function. This should not be
called more than once for any given thread.

Returns A valid pointer to an | NKThr ead object if successful.
A NULL pointer in case of an error.

First release Traffic Server 3.0

INKThreadSelf
Obtain a thread identifier.

Prototype | NKThread | NKThreadSel f (void)
Description Returns the thread identifier for the currently executing thread.

Returns A valid pointer to an | NKThr ead object if successful.
A NULL pointer in case of an error.

First release Traffic Server 3.0

HTTP functions

Hook functions

INKHttpHookAdd
Adds an HTTP hook.

Prototype | NKRet ur nCode | NKHt t pHookAdd (1 NKHtt pHookl d id, | NKCont contp)

Description Adds cont p to the end of the list of global HTTP hooks specified by i d. Since

I NKHt t pHook Add is adding cont p to a global list this function is only safe to call from the plugin

initialization routine.

Returns | NK_SUCCESS if the hook is successfully added.
I NK_ERROR if the hook is not added.

First release Traffic Server 3.0

Function Reference

151

Session functions

[INKHttpSsnHookAdd
Adds an HTTP session hook.

Prototype | NKRet ur nCode | NKHt t pSsnHookAdd (I NKHtt pSsn ssnp, | NKHtt pHookl D i d,
I NKCont cont p)

Description Adds cont p to the end of the list of HTTP transaction hooks specified by i d. This means that
cont p is called back for every transaction within the session, at the point specified by the hook
ID. Since cont p is added to a session, it is not possible to call | NKHt t pSsnHook Add from the

plugin initialization routine; the plugin needs a handle to an HTTP session. See the following
example.

Returns | NK_SUCCESS if the hook is successfully added.
I NK_ERROR if the hook is not added.

152 HTTP functions

First release Traffic Server 3.0
Example #include InkAPI.h
static void txn_handler (INKHttpTxn txnp, |NKCont contp)

// handl e transaction

}
static void handl e_session (I NKH t pSsn ssnp, | NKCont contp)
{
I NKHt t pSsnHookAdd (ssnp, | NK_HTTP_TXN _START_HOOK, contp);
}
static int ssn_handl er (INKCont contp, |NKEvent event, void *edata)
{
I NKHt t pSsn ssnp;
I NKHt t pTxn t xnp;
switch (event){
case | NK_EVENT_HTTP_SSN_START:
ssnp = (I NKHt t pSsn) edat a;
handl e_session (ssnp, contp);
I NKHt t pSsnReenabl e (ssnp, | NK_EVENT_HTTP_CONTI NUE) ;
return O;
case | NK_EVENT_HTTP_TXN_START:
txnp = (I NKHt t pTxn) edata;
txn_handl er (txnp, contp);
| NKHt t pTxnReenabl e (txnp, | NK_EVENT_HTTP_CONTI NUE) ;
return O;
defaul t:
br eak;
}
return O;
}
void INKPluginlnit (int argc, const char *argv[])
{
I NKCont cont p;
contp = I NKCont Create (ssn_handl er, NULL);
I NKHt t pHookAdd (| NK_HTTP_SSN_START_HOOK, contp);
}

INKHttpSsnReenable
Re-enables an HTTP session.

Prototype | NKRet urnCode | NKHt t pSsnReenabl e (I NKHtt pSsn ssnp, | NKEvent event)

Description Notifies the HTTP session ssnp that the plugin is done processing the current hook. If
| NK_EVENT_HTTP_CONTI NUE is specified for event , then the plugin wants the session to
continue. If | NK_EVENT_HTTP_ERROR is specified for event , then the plugin wants the session
to be terminated and for an error to be sent back to the client if no response has already been
sent.

Returns | NK_SUCCESS if the session is successfully re-enabled.
I NK_ERRORif the hook is not added.

First release Traffic Server 3.5

Function Reference 153

HTTP transaction functions

INKHttpTxnCacheLookupStatusGet

Stores the current cache lookup status for the ongoing transaction. Also stores the number of cache lookup
operations already performed.

Prototype | NKRet urnCode | NKHt t pTxnCacheLookupSt at usGet (1 NKHtt pTxn txnp,
int *| ookup_stat us)

Arguments | NKHt t pTxn t xnp is the ongoing transaction.
i nt *| ookup_st at us is set to the lookup status.

Description Obtains the status of the current cache lookup for the ongoing transaction t xnp in the
| ookup_st at us variable.

This function should only be called from | NK_HTTP_CACHE_LOOKUP_COVPLETE_HOOK.
The possible status values returned in | ookup_st at us are:
I NK_CACHE_LOOKUP_M SS - Document was not in the cache. It will be fetched from the OS.

I NK_CACHE_LOOKUP_HI T_STALE - Document was present in the cache but stale. A fresher
version will be fetched from the OS (IMS request).

I NK_CACHE_LOOKUP_HI T_FRESH - Document was present in the cache and is fresh. Document
will be served from the cache.

I NK_CACHE_LOOKUP_SKI PPED - Traffic Edge didn't perform a cache lookup as the request was
not cacheable (url looks dynamic or request marked as noncacheable).

Returns | NK_SUCCESS if the API is called successfully.
I NK_ERRORif an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 5.2

INKHttpTxnCachedReqGet
Gets the cached request header for a specified HTTP transaction.

Prototype | NKRet ur nCode | NKHtt pTxnCachedReqGet (1 NKHttpTxn txnp,
I NKMBuUf f er *bufp, | NKMLoc *hdr_I oc)
Description Retrieves the cached request header from the HTTP transaction t xnp and stores the cached
request header in buf p, at location hdr _| oc.
Call after READ_CACHE_HDR_HOOK.

Caution: Do not modify any cached request headers returned by | NKHt t pTxnCachedReqGet .
The underlying data structure is read-only.

Release the returned hdr _| oc with a call to | NKHandl eM_ocRel ease.

Returns If the cached request header does not exist, then | NKHt t pTxnCachedReqGCet returns 0.
Otherwise returns 1.

First release Traffic Server 3.0

154 HTTP functions

INKHttpTxnCachedRespGet
Gets the cached response header for a specified HTTP transaction.

Prototype

Description

Returns

First release

| NKHt t pTxnCachedRespGet (I NKHtt pTxn t xnp, I NKMLoc

*hdr _I| oc)

int I NKMBUf f er *buf p,

Retrieves the cached response header from the HTTP transaction t xnp and stores the cached
response header in buf p, at location hdr _| oc.

Call after SEND_RESPONSE_HDR_HOOK.

Caution: Do not modify any cached response headers returned by
I NKHt t pTxnCachedRespGet . The underlying data structure is read-only.

Release the returned hdr _| oc with a call to | NKHandl eM_ocRel ease.

If the cached response header does not exist, then | NKHt t pTxnCachedRespGCet returns 0.
Otherwise returns 1.

Traffic Server 3.0

INKHttpTxnClientincomingPortGet
Gets the port on which the incoming request is received.

Prototype

Description

Returns

First release

int INKHttpTxnd ientlncom ngPortGet (I NKH tpTxn txnp)

Returns the port on which the HTTP transaction t xnp was received. This is not the destination
port in the URL. It is the proxy port to which the client browser is pointed.

Call after TXN_START_HOOK.

The port number in host byte order.
Returns -1 if an error occurred.

Traffic Server 3.5

INKHttpTxnClientIPGet
Gets the client IP address for a specified HTTP transaction.

Prototype

Description

Returns

First release

unsigned int INKHttpTxnCientlPGet (INKHttpTxn txnp)

Returns the IP address of the client for the HTTP transaction t xnp.
I NKHt t pTxnd i ent | PGet returns the IP address in network byte order.
Call after TXN_START_HOOK.

The client IP address.
Returns 0 if an error occurred.

Traffic Server 3.0

Function Reference

155

INKHttpTxnClientRemotePortGet
Gets the remote host’s port number for a specified HTTP transaction.

Prototype | NKRet urnCode | NKHt t pTxnCl i ent Renot ePort Get (I NKHtt pTxn txnp, int *port)

Arguments | NKHtt pTxnt xnp is an HTTP transaction.

i nt *port is set to the client's remote port value (port number used by the client when creating
a socket connection with the proxy for the transaction t xnp) in network byte order.

Description Obtains the port number of the remote host for the specified HTTP transaction. The port number
is returned in network byte order. Note: this is an exception to the rule that port numbers are
retrieved in host byte order.

The proxy port on which the connection was accepted can be retrieved using
I NKHt t pTxnd i ent | ncom ngPort Get .

Returns | NK_SUCCESS if the API is called successfully.
I NK_ERRCORif an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 5.2

NKHttpTxnClientReqGet
Gets the client request header for a specified HTTP transaction.

Prototype int INKHttpTxnCientReqGet (I NKHttpTxn txnp, | NKMBuffer *bufp,
I NKMLoc *hdr _| oc)

Description Retrieves the client request header from the HTTP transaction t xnp.
I NKHt t pTxnd i ent ReqGet stores the client request header in buf p, at location hdr _| oc.
Call after READ_REQUEST_HDR_HOOK.
Release the returned hdr _| oc with a call to | NKHandl eM_ocRel ease.
Returns If the client request header does not exist or in case of an error, then
I NKHt t pTXnCl i ent ReqGet returns 0.
Otherwise returns 1.

First release Traffic Server 3.0

INKHttpTxnClientRespGet
Gets the client response header for a specified HTTP transaction.

Prototype int INKHttpTxnCientRespGet (INKHttpTxn txnp, | NKMBuffer *bufp,
I NKMLoc *hdr _I oc)

Description Retrieves the client response header from the HTTP transaction t xnp.
I NKHt t pTxnCd i ent RespGet stores the client response header in buf p, at location hdr _| oc.
Call after SEND_RESPONSE_HOOK.
Release the returned hdr _| oc with a call to | NKHandl eM_ocRel ease.

156 HTTP functions

Returns If the client response header does not exist or in the case of an error, then
I NKHt t pTxnd i ent RespGet returns 0.

Otherwise returns 1.

First release Traffic Server 3.0

INKHttpTxnErrorBodySet
Sets the format and content of the error body (or response data) that Traffic Edge sends to clients.

Prototype | NKRet urnCode | NKHt t pTxnError BodySet (I NKHt t pTxn txnp, char *buf,
int buflength, char *m nmetype)

Arguments t xnp is the HTTP transaction to act upon.

buf contains the error (or response) body. The error body can be text, an HTML document,
image, or another format. Before you call | NKHt t pTxnEr r or Body Set , be sure to allocate buf
using | NKmal | oc.

buf I engt h is the length of the error body.

m net ype contains the format of the error body. If you want to set the i net ype to a value
other than NULL, you must allocate m et ype using | NKnal | oc before you call
I NKHt t pTXnEr r or Body Set .

Description Sets the format of the error body that Traffic Edge sends back when sending an error or response
to a client. The error body data is stored in the buffer buf . If the error body is just plain text,
setting m net ype to NULL works fine. If the error body is HTML then mi net ype should be
"text/htm ". If the error body is a JPEG image then mi et ype should be “i mage/ j peg".
Note: Traffic Edge automatically calls | NKf r ee to free buf when buf is no longer needed; make
sure that the buffer buf is allocated by a call to | NKnmal | oc. Similarly, if you want to set
m met ype to something other than NULL, make sure that you allocate m et ype with a call to
I NKmal | oc. Traffic Edge automatically calls | NKf r ee to free ni et ype.

Call after SEND_RESPONSE_HDR_HOOK.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKHttpTxnHookAdd
Adds a continuation to the list of HTTP transaction hooks for a specified HTTP transaction.

Prototype | NKRet ur nCode | NKHt t pTxnHookAdd (I NKHtt pTxn txnp, | NKHttpHookl D id,
I NKCont cont p)
Description Adds cont p to the end of the list of HTTP transaction hooks specified by i d. Since cont p is

added to a transaction, it is not possible to call | NKHt t pTxnHook Add from the plugin
initialization routine but only when the plugin has a handle to an HTTP transaction.

Call after HTTP_TXN_START_HOOK.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRORf an error occurs.

First release Traffic Server 3.0

Function Reference 157

INKHttpTxnNextHopIPGet
Gets the IP address of the next server from which Traffic Edge tries to retrieve requested HTTP content.

Prototype unsigned int | NKH t pTxnNext Hopl PGet (I NKHt t pTxn t xnp)

Description Returns the IP address of the next server from which Traffic Edge attempts to retrieve the
requested document, in network byte order. This IP address could be the origin server IP address
or it could be the parent proxy’s IP address.

Call after SEND_REQUEST_HDR_HOOK.

Returns Returns the IP address of the next server from which Traffic Edge attempts to retrieve the
request, in network byte order. Returns 0 if an error occurred.

First release Traffic Server 3.0

INKHttpTxnParentProxyGet
Gets the parent proxy name and port, if parent proxying is enabled.

Prototype | NKRet ur nCode | NKHt t pTxnPar ent ProxyGet (I NKHt t pTxn txnp,
char **hostnane, int *port)

Description Retrieves the value set previously by | NKHt t pPar ent Pr oxySet . Does not return values set in
recor ds. confi g parameter pr oxy. confi g. http. parent _proxi es orin
parent . confi g file.

This function can be called from within any txn hook.
The host nane string returned must not be deallocated.
Note: if parent proxying is not enabled, | NKHt t pTxnPar ent Pr oxyGet returns NULL in
host name and - 1 in port.
Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKHttpTxnParentProxySet
Sets the parent proxy name and port.

Prototype | NKRet ur nCode | NKHt t pTxnPar ent ProxySet (I NKHtt pTxn txnp,
char *hostnane, int port)

Description This can be used to overwrite the value setin r ecor ds. conf i g parameter
proxy. config. http. parent _proxi es orinparent. confi g file.

Call before or within CACHE_LOOKUP_COMPLETE.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRORf an error occurs.

First release Traffic Server 3.0

158 HTTP functions

INKHttpTxnReenable
Tells a transaction whether or not the processing of a particular hook has completed.

Prototype | NKRet urnCode | NKHt t pTxnReenabl e (I NKHtt pTxn txnp, | NKEvent event)

Description Notifies the HTTP transaction t xnp that the plugin is done processing the current hook. If
I NK_EVENT_HTTP_CONTI NUE is specified for event , then the plugin wants the transaction to
continue. If | NK_EVENT_HTTP_ERROR is specified for event , then the plugin wants the
transaction to be terminated and for an error to be sent back to the client if no response has
already been sent.
You must always re-enable the HTTP transaction after the processing of each transaction event.
However, never re-enable twice. Re-enabling twice is a serious error.
When event is setto | NK_EVENT_HTTP_ERROR, Traffic Edge performs different processing
depending on the type of hook involved.
I NK_HTTP_TXN_START_HOCK: The transaction is stopped right away, the connection to the
client is closed, and no response is sent back to the origin server.
I NK_HTTP_READ REQUEST_HDR_HOCK: Traffic Edge does not send any request to the origin
server, it directly sends a 500 to the client.
I NK_HTTP_SEND REQUEST_HDR_HOCK: Traffic Edge opens a connection to the origin server,
sends an empty request to the origin server, and sends back 500 to the client. Then the
connection to the origin server is closed.
I NK_HTTP_READ_RESPONSE_HDR HOOK, | NK_HTTP_SEND RESPONSE_ HOCK,
I NK_HTTP_OS _DNS_HOOK, | NK_HTTP_READ CACHE HDR HOOK, and
I NK_HTTP_CACHE_LOCOKUP_COWPLETE_HOOK: Traffic Edge receives all the headers of the
response from the origin server, then closes the connection to the origin server and sends a 500
to the client. TS does not receive the response body.
I NK_HTTP_TXN_CLOSE_HOCK: The client receives whatever answer was sent by the origin
server because with this hook, the response has already been sent to the client.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRORif an error occurs.

First release Traffic Server 3.0

INKHttpTxnServerlPGet
Gets the origin server IP address for a specified HTTP transaction.

Prototype unsigned int | NKHttpTxnServerl PGet (INKH tpTxn txnp)

Description Returns the IP address of the origin server specified by the client request in network byte order.
I NKHt t pTxnSer ver | PGet returns O if it is called before | NK_HTTP_QOS_DNS_HOOK in a
transaction.

Call after | NK_HTTP_OS_DNS_HOOK.

Returns Returns the origin server IP address in network byte order.
Returns 0 if an error occurred.

First release Traffic Server 3.0

Function Reference 159

INKHttpTxnServerReqgGet

Gets the server request header from a specified HTTP transaction.

Prototype

Description

Returns

First release

int INKHtpTxnServerReqGet (I NKHttpTxn txnp,

*hdr _I| oc)

I NKMBUf f er *buf p,

Retrieves the server request header from the HTTP transaction t xnp.
I NKHt t pTxnSer ver ReqGet stores the server request header in buf p, at location hdr _| oc.

Call after SEND_REQUEST_HDR_HOOK.

Release the returned hdr _| oc with a call to | NKHandl eM_ocRel ease.

If the server request header does not exist or in the case of an error, then

I NKHt t pTxnSer ver ReqGet returns 0.
Otherwise returns 1.

Traffic Server 3.0

I NKMLoc

INKHttpTxnServerRespGet

Gets the server response header from a specified HTTP transaction.

Prototype

Description

Returns

First release

int I NKHtt pTxnServer RespGet (I NKHtt pTxn txnp,

*hdr _| oc)

| NKMBUf f er *buf p,

Retrieves the server response header from the HTTP transaction t xnp.
I NKHt t pTxnSer ver RespGet stores the server response header in buf p, at location

hdr _I oc.

Call after READ_RESPONSE_HDR_HOOK.

Release the returned hdr _| oc with a call to | NKHandl eM_ocRel ease.

If the server response header does not exist or in the case of an error, then

I NKHt t pTxnSer ver RespGet returns 0.
Otherwise returns 1.

Traffic Server 3.0

I NKMLoc

INKHttpTxnSsnGet

Returns the session handle associated to a specified HTTP transaction.

Prototype

Description

Returns

First release

I NKHt t pSsn | NKHt t pTxnSsnGet (I NKHtt pTxn t xnp)

Retrieves the | NKHt t pSsn handle associated with the HTTP transaction t xnp.

Call after TXN_START_HOOK.

The session handle associated with the specified HTTP transaction.
I NK_ERROR_PTRIf error.

Traffic Server 3.0

160 HTTP functions

INKHttpTxnTransformedRespCache
Indicates whether or not Traffic Edge writes transformed documents to the cache.

Prototype | NKRet urnCode | NKHt t pTxnTransf or mredRespCache (I NKHtt pTxn txnp, int on)

Description Specifies whether the transformed document should be written to the cache or not. If a
transformation is occurring the default is for the transformed copy to be written to the cache. The
default maintains a rule that only a single version of a document will be written to the cache for a
single transaction. It is valid for that rule to be broken by specifying that both the transformed and
the un-transformed documents be written to the cache. Calls need to be made prior to the actual
transformation, (i.e. at the time of creating the transformation) rather than in the transformation.

Note: This function does not overwrite HTTP directives, like Cache-Control or Expire, that
determine whether or not a document may be cached. If the document can be cached, this
function determines whether or not to cache the transformed version. Untransformed and
transformed documents are cached as HTTP alternates.

Call from within or after hook TXN_START_HOOK.
If called after hook SEND_RESPONSE_HDR, this function will not be taken into account by TS.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKHttpTxnTransformRespGet
Gets the transform response header from a specified HTTP transaction.

Prototype int |INKHttpTxnTransfornRespGet (I NKHttpTxn txnp, | NKMBuffer *bufp,
I NKMLoc *of fset)

Description Retrieves the transform response header from the HTTP transaction t xnp and stores the
transform response header in buf p, at location of f set .
Call from within your transformation, before transform data is written to the downstream
vconnection.
Returns If the transform response header does not exist, then | NKHt t pTxnTr ansf or nRespGet returns
0.
Otherwise returns 1.

First release Traffic Server 3.0

Function Reference 161

INKHttpTxnUntransformedRespCache
Indicates whether or not Traffic Edge writes un-transformed documents to the cache.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKHt t pTxnUnt r ansf or medRespCache (I NKHt t pTxn t xnp,
int on)

Specifies whether the un-transformed document should be written to the cache or not. If there is
no transformation occurring then the default is for the un-transformed copy to be written to the
cache. If a transformation is occurring the default is for the un-transformed copy to not be written
to the cache. The defaults maintain a rule that only a single version of a document will be written
to the cache for a single transaction. It is valid for that rule to be broken by specifying that both
the transformed and un-transformed document be written to the cache. Calls need to be made
prior to the actual transformation, (i.e. at the time of creating the transformation) rather than in the
transformation.

Note: This function does not overwrite HTTP directives, like Cache-Control or Expire, that
determine whether or not a document can be cached. If the document can be cached, this
function determines whether or not to cache the untransformed version. Untransformed and
transformed documents are cached as HTTP alternates.

Call from within or after hook TXN_START_HOOK.
If called after hook SEND_RESPONSE_HDR, this function will not be taken into account by TS.

I NK_SUCCESS if the operation completes successfully.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

Initiate Connection

INKHttpConnect
Sends an HTTP request through the Traffic Edge HTTP SM.

Prototype

Arguments

I nkRet ur nCode | NKHtt pConnect (unsigned int ip, int port, |NKVConn *vc)

unsi gned int ipisthe IP address used to set the value of the VC remote IP address. This is
equivalent to a client IP address: IP from which the connection is originated. Value is in host byte
order.

i nt port is the port used to set the value of the VC remote port. This is equivalent to a client
port: port from which the connection is originated. Value is in host byte order.

I NKVConn *vc is the VConnection returned.
Once VConnection is established, you can use regular VConnection operations (I NKVConnRead,
I NKVConnW i t e, etc).

162

Initiate Connection

Description Sends an HTTP request through the Traffic Edge HTTP SM. The HTTP request goes through the
Traffic Edge the same way a request from a client (for instance a browser) does.

A typical scenario when using is:

Call I NKHt t pConnect .

Use | NKVConnW i t e to send an HTTP request.

Use INKVConnRead to get the HTTP response.

If needed, use | NKHt t pPar ser to parse the response.

Note that the request and response go through the Traffic Edge HTTP SM. The request and the
response can be cached and the transaction will be logged in squid.log.

Also note that the ip address passed to | NKHt t pConnect will be used as the client IP address in
squi d. | og.

Returns | NK_SUCCESS if APl is called successfully.
I NK_ERRORif an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 5.2

Intercepting HTTP transaction functions

INKHttpTxnIntercept
Allows a plugin to intercept an HTTP client’s request and to serve the content in place of the origin server.

Prototype | NKRet urnCode | NKHtt pTxnl ntercept (1 NKCont contp, |NKHttpTxn txnp)

Arguments | NKCont cont p is the continuation that is called to accept the connection.
I NKHt t pTxn t xnp is the current HTTP txn the plugin wants to intercept.

Function Reference 163

Description

Returns

First release

Allows a plugin to intercept an HTTP client's request and to serve the content in place of the
origin server. The request is intercepted right after being read by Traffic Edge. The origin server is
not contacted.

This API should be used in the | NK_HTTP_READ REQUEST HDR HOOK hook.

Once | NKHt t pTxnl nt er cept has been called, the handler of the continuation cont p receives
an event | NK_EVENT_NET_ACCEPT. Note that the continuation passed should not have a NULL
mutex or an error is returned.

The voi d *dat a passed to the handler of the continuation cont p is a data of type
NetVConnection representing the connection.

Once VConnection is established, user can use regular VConnection operations
(I NKVConnRead, | NKVConnW i t e, etc...).

A typical scenario when using | NKHt t pTxnl nt er cept is:
Call I NKHt t pTxnl nt er cept from hook | NK_HTTP_READ REQUEST_HDR_ HOOK.
Get called back on the continuation's handler passed as argument to | NKHt t pTxnl nt er cept .
Get the VC from argument voi d *dat a .

Use | NKVConnRead to get the HTTP request. Note that you will not receive an event
I NK_VCONN_READ_COWVPLETE, only | NK_VCONN_READ_READY, as the number of characters to
read is unknown. You should rely on | NKTHt t pPar ser to parse the request and return a status
I NK_PARSE_DONE when request is fully received (escape sequence “\r\n\r\n” read).

Use | NKHt t pPar ser to parse the request.
Use | NKVConnW i t e to write the HTTP response.

Note: the request and response do not go through the Traffic Edge HTTP state machine. So the
request and response are not cached by Traffic Edge. The request is logged in squi d. | og.

I NK_SUCCESS if the API is called successfully.

I NK_ERROR if an error occurs while calling the API or if an argument is invalid. This error is also
returned if the continuation passed has a NULL mutex.

Traffic Server 5.2

INKHttpTxnServerintercept
Allows a plugin to intercept an HTTP request sent to an origin server and to serve the content in place of the origin

server.

Prototype

Arguments

I NKRet ur nCode | NKHtt pTxnServerlntercept (1NKCont contp, |INKHttpTxn txnp
)

I NKCont cont p is the continuation that is called to accept the connection.
I NKHt t pTxn t xnp is the current HTTP txn the plugin wants to intercept.

164 Intercepting HTTP transaction functions

Description Allows a plugin to intercept an HTTP request sent to an origin server and to serve the content in
place of the origin server. The origin server is not contacted.

This API should be used in the | NK_HTTP_READ REQUEST HDR HOOK hook.

Once | NKHt t pTxnSer ver | nt er cept has been called, the handler of the continuation cont p
receives an event | NK_EVENT_NET_ACCEPT. Note that the continuation passed should not have
a NULL mutex or an error is returned.

The voi d *dat a passed to the handler of the continuation cont p is a data of type
NetVConnection representing the connection.

Once VConnection is established, you can use regular VConnection operations
(I NKVConnRead, | NKVConnW i t e, etc...).

A typical scenario when using | NKHt t pTxnSer ver | nt er cept is:
Call I NKHt t pTxnSer ver | nt er cept from hook | NK_HTTP_READ REQUEST_HDR HOK .

Get called back on the continuation's handler passed as argument to
I NKHt t pTxnServer | ntercept.

Get the VC from argument voi d *dat a.

Use | NKVConnRead to get the HTTP header. Note that you will not receive an event

I NK_VCONN_READ_COWVPLETE, only | NK_VCONN_READ_READY, as the number of characters to
read is unknown. You should rely on | NKTHt t pPar ser to parse the request and return a status
I NK_PARSE_DONE when request is fully received (escape sequence “\r\n\r\n” read).

Use | NKHt t pPar ser to parse the request.
Use | NKVConnW i t e to write the HTTP response.

Note that the request and response go through the Traffic Edge HTTP SM. The request and
response can be cached. The request is logged in squi d. | og.

Returns | NK_SUCCESS if the API is called successfully.

I NK_ERROR if an error occurs while calling the API or if an argument is invalid. This error is also
returned if the continuation passed has a NULL mutex.

First release Traffic Server 5.2

Alternate selection functions

INKHttpAltinfoCachedReqGet
Gets the cached request header from the specified alternate information.

Prototype | NKRet ur nCode | NKHtt pAl t | nfoCachedReqGet (I NKHttpAltlnfo infop,
I NKMBuf f er *bufp, | NKM.oc *of fset)

Description Retrieves the cached client request header from the alternate informationi nf op.
Call from within HTTP_SELECT _ALT_HOOK.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRORf an error occurs.

First release Traffic Server 3.0

Function Reference 165

INKHttpAltinfoCachedRespGet
Gets the cached response header from the specified alternate information.

Prototype | NKRet urnCode | NKHt t pAl t | nf oCachedRespGet (I NKH t pAltinfo infop,
I NKMBuf f er *bufp, | NKMLoc *of fset)

Description Retrieves the cached client response header from the alternate information i nf op.
Call from within HTTP_SELECT_ALT_HOOK.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKHttpAltinfoClientReqGet
Gets the client request header from the specified alternate information.

Prototype | NKRet urnCode | NKHtt pAltlnfod ientReqGet (INKHttpAltlnfo infop,
I NKMBuUf f er *bufp, | NKMLoc *of fset)

Description Retrieves the client request header from the alternate information i nf op.
Call from within HTTP_SELECT_ALT_HOOK.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRORIf an error occurrs.

First release Traffic Server 3.0

INKHttpAltinfoQualitySet
Sets the quality value for the specified alternate information.

Prototype | NKRet urnCode | NKHtt pAltlnfoQualitySet (INKH tpAltlnfo infop,
float quality)

Description Sets the quality value for this alternate information i nf op.
Call from within HTTP_SELECT_ALT_HOOK.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

166 Intercepting HTTP transaction functions

Handle release functions

INKHandleMLocRelease
Releases | NKMLoc handles.

Prototype

Arguments

Description

Returns

First release

I NKRet ur nCode | NKHandl eM_ocRel ease (I NKMBuf fer bufp, | NKM.oc parent,
I NKMLoc ml oc)

buf p is the marshal buffer containing the | NKM_oc to be released.

par ent is the location of the parent object from which the handle was created.
m oc is the | NKMLoc to be released.

Releases the | NKMLoc nl oc created from the | NKMLoc par ent . If there is no parent
I NKMLoc, use | NK_NULL_M_OC. See Release marshal buffer handles, on page 88 for a details
about parent | NKMLocs and the use of the null parent.

I NK_SUCCESS if the handle is successfully released.
I NK_ERRORif the hook is not added.

Traffic Server 3.5

INKHandleStringRelease
Releases string handles.

Prototype

Arguments

Description

Returns

First release

I nkRet ur nCode | NKHandl eStri ngRel ease (1 NKMBuf fer bufp, | NKM.oc parent,
const char *str)

buf p is the marshal buffer containing the string to be released.

par ent is the location of the parent object from which the handle was created.

str is the string to be released.

Releases the string st r created from the | NKMLoc par ent . Do not use

I NKHandl eSt ri ngRel ease for strings created by | NKUr | St ri ngGet (in that special case,
use | NKf r ee).

I NK_SUCCESS if the string handle is successfully released.

I NK_ERRORif the hook is not added.

Traffic Server 3.5

Marshal buffers

The marshal buffer or | NKMBuf f er is a heap data structure that stores parsed URLSs,
MIME headers and HTTP headers. You can allocate new objects out of marshal buffers,
and change the values within the marshal buffer. Whenever you manipulate an object,
you require the handle to the object (I NKM_oc) and the marshal buffer containing the
object (I NKMBuf f er).

Routines exist for manipulating the object based on these two pieces of information. See,
for example:

OHTTP header functions, on page 168
OURL functions, on page 178

Function Reference 167

OMIME headers, on page 187

The marshal buffer functions allow you to create and destroy Traffic Edge’s marshal
buffers, which are the data structures that hold parsed URLs, MIME headers, and HTTP
headers.

Caution Any marshal buffer fetched by | NKHt t pTxn* Get (for example, | NKHt t pTxnCl i ent ReqGet

or | NKHt t pTxnSer ver RespGet) will be used by other parts of the system. Be careful not to
destroy these shared, transaction marshal buffers.

INKMBufferCreate
Creates a new marshal buffer.

Prototype | NKMBuf fer | NKMBufferCreate (void)

Description Creates a new marshal buffer and initializes the reference count to 1.
Returns A pointer to the new marshal buffer.

First release Traffic Server 3.0

INKMBufferDestroy
Destroys a marshal buffer.

Prototype voi d | NKMBuf f er Destroy (| NKMBuffer bufp)
Arguments buf p is the marshal buffer to be destroyed.
Description Ignores the reference count and destroys the marshal buffer buf p. The internal data buffer

First release

associated with the marshal buffer is also destroyed if the marshal buffer allocated it.

Traffic Server 3.0

HTTP header functions

The HTTP header functions are:

INKHttpHdrClone
Copies an HTTP header to a marshal buffer and returns the | NKMLoc location of the copied header.

Prototype | NKMLoc | NKHtt pHdr Cl one (I NKMBuffer dest_bufp, | NKMBuffer src_bufp,
I NKMLoc src_hdr)
Description Copies the contents of the HTTP header located at sr ¢ _hdr within the marshal buffer sr ¢__buf p to the marshal

Returns

First release

buffer located at dest _buf p. If the HTTP header located at the sr ¢_hdr is a HTTP request header, ensure that it
has a valid method, url, protocol and version. If the HTTP header located at the sr ¢_hdr is a HTTP response header,
ensure that it has a valid protocol, version, status and reason.

Call after READ_REQUEST_HDR_HOOK,; if it is a transaction header.
Release the returned handle with a call to | NKHandl eM_ocRel ease.

Returns the | NKMLoc location of the copied header.
I NK_ERROR_PTRif error.

Traffic Server 3.5

168

Intercepting HTTP transaction functions

INKHttpHdrCopy
Copies an HTTP header.

Prototype | NKRet ur nCode | NKHt t pHdr Copy (| NKMBuUf fer dest _bufp, | NKM.oc
dest _hdr_l oc, | NKMBuffer src_bufp, INKM.oc src_hdr_I oc)

Description Copies the contents of the HTTP header located at sr ¢_hdr _| oc within the marshal buffer sr ¢c__buf p to the
HTTP header located at dest _hdr _| oc within the marshal buffer dest _buf p. | NKHt t pHdr Copy works
correctly even if sr c_buf p and dest _buf p point to different marshal buffers. Make sure that the destination
HTTP header exists (has been created) before copying into it. | NKHt t pHdr Copy automatically makes sure that
types of the source and destination HTTP headers match; if the destination type is not equal to the source type,

I NKHt t pHdr Copy calls | NKHt t pHdr TypeSet . Do not call | NKHt t pHdr Ty peSet on the destination
header after using | NKHt t pHdr Copy.

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.

Note: | NKHt t pHdr Copy appends the port number to the domain of the URL portion of the header. For example,
http://ww. i nkt om . com appears as:

http://wwv i nkt om . com 80/ inthe destination buffer.

Returns | NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKHttpHdrCreate
Creates a new HTTP header.

Prototype | NKMLoc | NKHtt pHdr Create (I NKMBuffer bufp)

Description Creates a new HTTP header with the marshal buffer buf p. When newly created, the HTTP header is assigned an
I NKHt t pType value of | NK_HTTP_TYPE_UNKNOWN. You can change the type after creating the header
using | NKHt t pHdr TypeSet , but you can only change the type once. You cannot modify the type after setting it.

Release with a call to | NKHandl eM_ocRel ease.
Returns A pointer to the new HTTP header.

First release Traffic Server 3.0

INKHttpHdrDestroy
Destroys an HTTP header.

Prototype | NKRet urnCode | NKHt t pHdr Destroy (I NKMBuf fer bufp, I NKM.oc hdr _| oc)

Description Destroys the HTTP header located at hdr _| oc within the marshal buffer buf p.
Caution: Do not forget to use | NKHandl eM_ocRel ease to release the handle hdr _| oc.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERROR _PTRIif error.

First release Traffic Server 3.0

Function Reference 169

INKHttpHdrLengthGet
Calculates the length of an HTTP header.

Prototype int | NKHttpHdrLengt hGet (I NKMBuffer bufp, | NKM.oc hdr_I oc)

Description Calculates the length of the HTTP header located at hdr _| oc within the marshal buffer buf p if
it were returned as a string. This is the length of the HTTP header in its un-parsed form and is
also the number of bytes that will be added to the 10 buffer by a call to | NKHt t pHdr Pri nt .

The header could be a request header, response header, or a standalone header that you have
created. Be sure to call this function appropriately (if you want the length of a request header, call
this function after READ_REQUEST_HDR_HOOK, for example).

Returns The length of the specified HTTP header.
I NK_ERRORf error.

First release Traffic Server 3.0

INKHttpHdrMethodGet
Gets the method portion of an HTTP request header.

Prototype const char* | NKHtt pHdr Met hodGet (| NKMBuf fer bufp, |INKM.oc hdr_loc, int
*| engt h)

Description Retrieves the method from the HTTP header located at hdr _| oc within the marshal buffer
buf p. The length of the returned string is placed in the | engt h argument. If | engt h is NULL,
then no attempt is made to de-reference it.

It is an error to try and retrieve the method from an HTTP header which is not of type
I NK_HTTP_TYPE_REQUEST.

Call after READ_REQUEST_HDR_HOOK,; if it is a transaction header.
Release with a call to | NKHand! eSt ri ngRel ease.

Returns A pointer to the method portion of the specified HTTP request header.
I NK_ERROR_PTRif error.

First release Traffic Server 3.0

INKHttpHdrMethodSet
Set the HTTP method.

Prototype | NKRet ur nCode | NKHt t pHdr Met hodSet (| NKMBuf f er bufp, | NKMLoc hdr_|I oc,
const char *value, int |length)

Description Sets the method in the HTTP header located at hdr _| oc within the marshal buffer buf p. If| engt his- 1 then
itis assumed that val ue is null-terminated. Otherwise, the length of the string val ue istakentobe | engt h. The
string is copied to within buf p, so it is okay to modify or delete val ue after calling | NKHt t pHdr Met hodSet .
It is an error to try and set the method in an HTTP header which is not of type | NK_HTTP_TYPE_REQUEST.

Call after READ_REQUEST_HDR_HOOK,; if it is a transaction header.

Returns | NK_SUCCESS if successful.
I NK_ERRORf an error occurs.

First release Traffic Server 3.0

170 Intercepting HTTP transaction functions

INKHttpHdrPrint
Prints the HTTP header to an IO buffer.

Prototype | NKRet urnCode | NKHt t pHdr Print (1 NKMBuf fer bufp, | NKM.oc hdr_lI oc,
I NKI OBuf f er i obuf p)

Description Formats the HTTP header located at hdr _| oc within the marshal buffer buf p into the 10 bufferi obuf p. See |0
buffers, on page 128 for information on allocating an 10 Buffer and retrieving data from within one.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRCRif an error occurs.

First release Traffic Server 3.0

INKHttpHdrReasonGet
Gets the reason phrase from an HTTP header.

Prototype const char* | NKHtt pHdr ReasonGet (I NKMBuffer bufp, I NKM.oc hdr_l oc, int
*| engt h)

Description Retrieves the reason phrase from the HTTP header located at hdr _| oc within the marshal buffer buf p. The length
of the returned string is placed in the | engt h argument. It is an error to try and retrieve the reason phrase from an
HTTP header which is not of type | NK_HTTP_TYPE_RESPONSE.

Call after READ_RESPONSE_HDR_HOOK, if it is a transaction header.
Note: the returned string is not guaranteed to be null-terminated.
Release with a call to | NKHandl eSt ri ngRel ease.

Returns Pointer to the reason phrase in the specified HTTP header.
I NK_ERROR_PTRIf error.

First release Traffic Server 3.0

INKHttpHdrReasonLookup
Provides the default reason phrase for a specified Traffic Edge HTTP status code.

Prototype const char* | NKHtt pHdr ReasonLookup (I NKHt t pSt at us st at us)

Description Returns the default reason phrase for the status code st at us.

I NKHt t pHdr ReasonLookup returns a string which is null-terminated and should not be freed or released.
It's a global shared value.

Returns Pointer to the default reason phrase for the specified Traffic Edge status code.
I NK_ERROR_PTRif error.

First release Traffic Server 3.0

Function Reference 171

INKHttpHdrReasonSet
Sets the reason phrase in an HTTP header.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKHt t pHdr ReasonSet (| NKMBuf fer bufp, | NKM.oc hdr_I oc,
const char *value, int |ength)

Sets the reason phrase in the HTTP header located at hdr _| oc within the marshal buffer buf p.

If | engt h is - 1 then it is assumed that val ue is null-terminated. Otherwise, the length of the

string val ue is taken to be | engt h. The string is copied to within buf p, so it is okay to modify or

delete val ue after calling | NKHt t pHdr ReasonSet . It is an error to try and set the reason
phrase in an HTTP header which is not of type | NK_HTTP_TYPE_RESPONSE.

Call after READ_RESPONSE_HDR_HOOK, if it is a transaction header.

I NK_SUCCESS if the operation completes successfully.
I NK_ERROR if the operation does not complete successfully.

Traffic Server 3.0

INKHttpHdrStatusGet
Retrieves the status code from an HTTP header.

Prototype

Description

Returns

I NKHt t pSt at us | NKHt t pHdr St at usGet (1 NKMBuf f er buf p, | NKMLoc hdr_| oc)

Retrieves the status code from the HTTP header located at hdr _| oc within the marshal buffer
buf p. Itis an error to try and retrieve the status code from an HTTP header which is not of type
I NK_HTTP_TYPE_RESPONSE. | NKHt t pSt at us is an enumerated type.

Call after READ_RESPONSE_HDR_HOOK, if it is a transaction header.

The status code from the specified HTTP header.
I NK_ERRORIf error.

172 Intercepting HTTP transaction functions

Example

The values of | NKHt t pSt at us are the following:
t ypedef enum

{
| NK_HTTP_STATUS_NONE

| NK_HTTP_STATUS_CONTI NUE
| NK_HTTP_STATUS_SW TCHI NG PROTOCOL

| NK_HTTP_STATUS_OK
| NK_HTTP_STATUS_CREATED

| NK_HTTP_STATUS_ACCEPTED

| NK_HTTP_STATUS_NON_AUTHORI TATI VE_I NFORMATI ON
| NK_HTTP_STATUS_NO_CONTENT

| NK_HTTP_STATUS_RESET_CONTENT

| NK_HTTP_STATUS_PARTI AL_CONTENT

| NK_HTTP_STATUS_MULTI PLE_CHO CES
| NK_HTTP_STATUS_MOVED_ PERMANENTLY
| NK_HTTP_STATUS_MOVED TEMPORARI LY
| NK_HTTP_STATUS_SEE_OTHER

| NK_HTTP_STATUS_NOT_MODI FI ED

| NK_HTTP_STATUS_USE_PROXY

| NK_HTTP_STATUS_BAD REQUEST

| NK_HTTP_STATUS_UNAUTHORI ZED

| NK_HTTP_STATUS_PAYMENT REQUI RED

| NK_HTTP_STATUS_FORBI DDEN

| NK_HTTP_STATUS_NOT_FOUND

| NK_HTTP_STATUS_METHOD_NOT_ALLOWED

| NK_HTTP_STATUS_NOT ACCEPTABLE

| NK_HTTP_STATUS_PROXY_AUTHENTI CATI ON_REQUI RED
| NK_HTTP_STATUS_REQUEST_TI MEQUT

| NK_HTTP_STATUS_CONFLI CT

| NK_HTTP_STATUS_GONE

| NK_HTTP_STATUS_LENGTH_REQUI RED

| NK_HTTP_STATUS_PRECONDI TI ON_FAI LED

| NK_HTTP_STATUS_REQUEST ENTI TY_TOO LARGE
| NK_HTTP_STATUS_REQUEST_URI _TOO LONG

| NK_HTTP_STATUS_UNSUPPORTED MEDI A TYPE

| NK_HTTP_STATUS_| NTERNAL_SERVER ERRCR
| NK_HTTP_STATUS_NOT_| MPLEMENTED
| NK_HTTP_STATUS_BAD GATEWAY

0,

100,
101,

200,
201,
202,
203,
204,
205,
206,

300,
301,
302,
303,
304,
305,

400,
401,
402,
403,
404,
405,
406,
407,
408,
409,
410,
411,
412,
413,
414,
415,

500,
501,
502,

I NK_HTTP_STATUS_SERVI CE_UNAVAI LABLE

I NK_HTTP_STATUS_GATEWAY_TI MEQUT

I NK_HTTP_STATUS_HTTPVER_NOT_SUPPORTED
} I NKHtt pSt at us;

F%%gtion Reference
504,

505

173

First release Traffic Server 3.0

INKHttpHdrStatusSet
Sets the status code within an HTTP header.

Prototype | NKRet ur nCode | NKHt t pHdr St at usSet (1 NKMBuf f er bufp, | NKMLoc hdr_|I oc,
I NKHt t pSt at us st at us)

Description Sets the status code in the HTTP header located at hdr _| oc within the marshal buffer buf p. It is an error to try
and set the status code in an HTTP header which is not of type | NK_HTTP_TYPE_RESPONSE.

Call after READ_RESPONSE_HDR_HOOK,; if it is a transaction header.

Returns | NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKHttpHdrTypeGet
Retrieves the HTTP header type.

Prototype | NKHttpType | NKHttpHdr TypeGet (1 NKMBuf fer bufp, | NKM.oc hdr_I oc)
Description Retrieves the type of the HTTP header located at hdr _| oc within the marshal buffer buf p.
I NKHt t pType is an enumerated type.
t ypedef enum
{
I NK_HTTP_TYPE_UNKNOWN,
| NK_HTTP_TYPE_REQUEST,
I NK_HTTP_TYPE_RESPONSE
} INKHtt pType;
Returns The type of the specified HTTP header.
I NK_ERROR if error.

First release Traffic Server 3.0

INKHttpHdrTypeSet
Sets the HTTP header type.

Prototype | NKRet ur nCode | NKHt t pHdr TypeSet (I NKMBuf fer bufp, | NKM.oc hdr_| oc,
I NKHt t pType type)

Description Sets the type of the HTTP header located at hdr _| oc within the marshal buffer buf p to t ype.
Use | NKHt t pHdr TypeSet only after you create an HTTP header. The | NKHt t pHdr Cr eat e
function automatically assigns the new header a type of | NK_HTTP_TYPE_UNKNOW, and you
would only use | NKHt t pHdr TypeSet to change the type of a header from
I NK_HTTP_TYPE_UNKNOW to either | NK_HTTP_TYPE_REQUEST or
I NK_HTTP_TYPE_RESPONSE. You can only change the type once. You cannot modify the type
after setting it.

174 Intercepting HTTP transaction functions

Returns | NK_SUCCESS if successful.
I NK_ERRCRif an error occurs.

First release Traffic Server 3.0

INKHttpHdrUrlGet
Gets the location of the URL portion of an HTTP header.

Prototype | NKMLoc | NKHttpHdrUrl Get (I NKMBuffer bufp, I NKM.oc req_hdr_| oc)

Description Retrieves the URL from the HTTP header located at r eq_hdr _| oc within the marshal buffer
buf p. It is an error to try and retrieve the URL from an HTTP header which is not of type
I NK_HTTP_TYPE_REQUEST.

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.
Release with a call to | NKHandl eM_ocRel ease. When you release the handle created by
I NKHt t pHdr Ur | Get , the parent should be r eq_hdr _| oc.
Returns The URL from the specified HTTP header.
I NK_ERROR_PTRif error.

First release Traffic Server 3.0

INKHttpHdrUriISet
Sets a URL location within an HTTP request header.

Prototype | NKRet ur nCode | NKHt t pHdr Ur| Set (1 NKMBuf fer bufp, |1 NKM.oc hdr_| oc,
I NKMLoc url)

Description Sets the URL in the HTTP header located at hdr _| oc within the marshal buffer buf p. It is an
error to try and set the URL in an HTTP header which is not of type | NK_HTTP_TYPE_REQUEST.

Call after READ_REQUEST_HDR_HOOK,; if it is a transaction header.

Returns | NK_SUCCESS if successful.
I NK_ERRORif an error occurs.

First release Traffic Server 3.0

INKHttpHdrVersionGet
Retrieves the HTTP version of the specified HTTP header.

Prototype int | NKHttpHdrVersionGet (I NKMBuffer bufp, | NKM.oc hdr_| oc)

Description Retrieves the version from the HTTP header located at hdr _| oc within the marshal buffer buf p.
An HTTP version is composed of a major and a minor version. Traffic Edge encodes the major
version in the upper 16 bits of the returned integer and the minor version in the lower 16 bits. The
macros | NK_HTTP_MAJCOR (ver) and | NK_HTTP_M NOR (ver) can be used to extract the
major and minor versions respectively.

Call after READ_REQUEST_HDR_HOOK,; if it is a transaction header.

Function Reference 175

Returns The HTTP version from the specified HTTP header.
I NK_ERRORIif error.

First release Traffic Server 3.0

INKHttpHdrVersionSet
Sets the HTTP version of the specified HTTP header.

Prototype | NKRet ur nCode | NKHt t pHdr Ver si onSet (| NKMBuf fer bufp, |1 NKM.oc hdr_I oc,

int ver)

Description Sets the version in the HTTP header located at hdr _| oc within the marshal buffer buf p to ver.
An HTTP version is composed of a major and a minor version. Traffic Edge encodes the major
version in the upper 16 bits of the returned integer and the minor version in the lower 16 bits. The
macro | NK_HTTP_VERSI ON (maj, min) can be used to encode a major and minor version
into the single integer expected by | NKHt t pHdr Ver si onSet .

Call after READ_REQUEST_HDR_HOOK, if it is a transaction header.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERROR if the operation does not complete successfully.

First release Traffic Server 3.0

INKHttpParserClear
Clears an HTTP parser.

Prototype | NKRet urnCode | NKHt t pPar ser Cl ear (I NKHtt pParser parser)

Description Clears the specified HTTP par ser so it may be used again.
Call after READ_REQUEST_HDR_HOOK,; if it is a transaction header.

Returns | NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKHttpParserCreate
Creates a parser for HTTP headers.

Prototype | NKHtt pParser | NKHt t pPar ser Create (void)

Description Creates an HTTP parser. The parser’s data structure contains information about the header
being parsed. A single HTTP parser can be used multiple times, though not simultaneously.
Before being used again, the parser must be cleared by calling | NKHt t pPar ser Cl ear .

Returns Parser structure for HTTP headers.
I NK_ERROR_PTRif error.

First release Traffic Server 3.0

176 Intercepting HTTP transaction functions

INKHttpParserDestroy
Destroys an HTTP parser.

Prototype | NKRet urnCode | NKHt t pPar ser Destroy (I NKHt t pPar ser parser)
Description Destroys the specified HTTP parser and frees the associated memory.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERROR if the operation does not complete successfully.

First release Traffic Server 3.0

INKHttpHdrParseReq
Parses an HTTP request header.

Prototype i nt | NKHt t pHdr Par seReq (| NKHt t pPar ser parser, | NKMBuf fer bufp, | NKM.oc
hdr_l oc, const char **start, const char *end)

Description Parses an HTTP request header. The HTTP header hdr _| oc must already be created, and must reside inside the
marshal buffer buf p. The st ar t argument points to the current position of the string buffer being parsed and the
end argument points to one byte after the end of the buffer to be parsed. On return, st ar t is modified to point
past the last character parsed.

It is possible to parse an HTTP request header a single byte at a time using repeated calls to
I NKHt t pHdr Par seReq. As long as an error does not occur, the | NKHt t pHdr Par seReq function will
consume that single byte and ask for more.

Call after READ_REQUEST_HDR_HOOK,; if it is a transaction header.

Returns | NK_PARSE_ERRORIs returned on error.
I NK_PARSE_DONE is returned when a\ r \ n\ r \ n pattern is encountered, indicating the end of the header.
I NK_PARSE_CONT is returned if parsing of the header stopped because the end of the buffer was reached.

First release Traffic Server 3.0

INKHttpHdrParseResp
Parses an HTTP response header.

Prototype int | NKHttpHdr ParseResp (1 NKHtt pParser parser, | NKMBuffer bufp, | NKM.oc
hdr | oc, const char **start, const char *end)

Description Parses an HTTP response header. The HTTP header hdr _| oc must already be created, and must reside inside the
marshal buffer buf p. The st ar t argument points to the current position of the string buffer being parsed and the
end argument points to one byte after the end of the buffer to be parsed. On return, st ar t is modified to point
past the last character parsed.

It is possible to parse an HTTP response header a single byte at a time using repeated calls to
I NKHt t pHdr Par seResp. As long as an error does not occur, the | NKHt t pHdr Par seResp function will
consume that single byte and ask for more.

Call after READ_RESPONSE_HDR_HOOK,; if it is a transaction header.

Returns | NK_PARSE ERRORIs returned on error.
I NK_PARSE_DONE is returned when a\ r \ n\ r \ n pattern is encountered, indicating the end of the header.
I NK_PARSE_CONT is returned if parsing of the header stopped because the end of the buffer was reached

First release Traffic Server 3.0

Function Reference 177

URL functions

The URL functions are:

INKUTrIClone
Copies a URL from a specified location in a source marshal buffer to a target marshal buffer.

Prototype | NKMLoc | NKUrl O one (I NKMBuf fer dest_bufp, | NKMBuffer src_bufp, | NKM.oc
src_url _l oc)

Arguments src_buf p and dest _buf p are the source and destination marshal buffers.
src_url _I oc is the source URL location within the source marshal buffer.

Description Copies the contents of the URL at location src_ur | _| oc within the marshal buffer sr c_buf p to
a location within the marshal buffer dest _buf p. | NKUr | Cl one.
Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.
Release the returned handle with a call to | NKHandl eM_ocRel ease.

Returns Returns the | NKM_oc location of the copied URL.
I NK_ERROR _PTRf error.

First release Traffic Server 3.5

INKUrICopy
Copies a URL at a specified location in a source marshal buffer to a specified location in a target marshal buffer.

Prototype | NKRet ur nCode | NKUr | Copy (1 NKMBuf fer dest _bufp, | NKM.oc dest _url | oc,
I NKMBuf f er src_bufp, INKM.oc src_url _Iloc)

Arguments src_buf p and dest _buf p are the source and destination marshal buffers.
src_url | oc anddest_url _| oc are the source and destination URL locations within the

source and destination marshal buffers. The type | NKM_oc is used for marshal buffer locations.

Description Copies the contents of the URL at location src_ur | _| oc within the marshal buffer sr c_buf p to
the location dest _ur | _| oc within the marshal buffer dest _buf p. | NKUr | Copy works correctly
even if src_buf p and dest _buf p point to different marshal buffers. It is important for the
destination URL (its marshal buffer and | NKM_oc) to have been created before copying into it.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns | NK_SUCCESS if successful.
I NK_ERRCRif an error occurs.

First release Traffic Server 3.0

INKUrICreate
Creates a new URL in a marshal buffer.

Prototype | NKMLoc | NKUrl Create (I NKMBuUffer bufp)

Description Creates a new URL within the marshal buffer buf p. Release the resulting handle with a call to
I NKHandl eM_ocRel ease, and destroy the URL with a call to | NKUr | Dest r oy (note that if you
destroy the URL, you must also release the handle).

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

178 Intercepting HTTP transaction functions

Returns

First release

A location handle for the URL within the marshal buffer.
I NK_ERROR_PTRf error.

Traffic Server 3.0

INKUrIDestroy

Destroys a specific URL within a marshal buffer.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKUr | Destroy (I NKMBuffer bufp, | NKM.oc url _| oc)

Destroys the URL located at ur | _| oc within the marshal buffer buf p.
Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

Caution: Do not forget to release the handle ur | _| oc with a call to | NKHandl eM_ocRel ease.

I NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

INKUTIPrint

Formats a URL stored in a marshal buffer to an INKIOBuffer.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKUrl Print (1NKWMBuffer bufp, |INKM.oc url _Ioc,
I NKI OBuf f er i obuf p)

Formats a URL stored in an | NKMBuf f er to an | NKI OBuf f er.
Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

I NK_SUCCESS if successful.
I NK_ERRCRif an error occurs.

Traffic Server 3.5

INKUrIFtpTypeGet
Gets the FTP type of a specific URL.

Prototype

Description

Returns

First release

int I NKU I FtpTypeGet (1 NKMBuffer bufp, | NKM.oc url _Ioc)

Retrieves the FTP type portion of the URL located at ur | _I oc within the marshal buffer buf p.
Call after READ_REQUEST_HDR_HOOK,; if it is within a transaction header.

Returns 65 if the FTP type is ASCII.
Return 73 if the FTP type is binary.
I NK_ERROR _PTRf error.

Traffic Server 3.0

Function Reference

179

INKUrlIFtpTypeSet
Sets the FTP type of a specific URL.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKUr | Ft pTypeSet (1 NKMBuf fer bufp, | NKM.oc url_loc, int
type)

Sets the FTP type portion of the URL located at ur | _| oc within the marshal buffer buf p to the
value t ype. The valid values for the type argumentare : 0, 65(' A'), 97('a'), 69('E),
101('e'), 73 ('1') and105('i").

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

I NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

INKUrlIHostGet

Gets the host portion of a specific URL.

Prototype

Description

Returns

First release

const char* | NKUrl Host Get (I NKMBuffer bufp, I NKM.oc url _| oc,
int *length)

Retrieves the host portion of the URL located at ur | _I oc within the marshal buffer buf p. The length of the
returned string is placed in the | engt h argument.

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

A pointer to the host portion of the specified URL. Release with a call to | NKHandl eSt ri ngRel ease.
I NK_ERROR_PTRIf error.
Note: the returned string is not guaranteed to be null-terminated.

Traffic Server 3.0

INKUrlIHostSet

Sets the host portion of a URL to a specific value.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKUr | Host Set (I NKMBuf fer bufp, | NKM.oc url _| oc, const
char *val ue, int |ength)

Sets the host portion of the URL located at ur | _| oc within the marshal buffer buf p to the string val ue. If

| engt his- 1 then | NKUr | Host Set assumes that value is null-terminated. Otherwise, the length of the string
val ue is taken to be | engt h. The string is copied to within buf p, so it is okay to modify or delete val ue after
calling | NKUr | Host Set .

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

I NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

180 Intercepting HTTP transaction functions

INKUrlIHttpFragmentGet
Gets a specified HTTP fragment of a URL.

Prototype const char* | NKUrl Htt pFragnent Get (1 NKMBuf fer bufp, |INKM.oc url _loc,
int *length)

Description Retrieves the HTTP fragment portion of the URL located at ur | _I oc within the marshal buffer buf p.
I NKUr | Ht t pFr agnent Get places the length of the returned string in the | engt h argument.
Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.
Returns A pointer to the HTTP fragment portion of the specified URL. Release with a call to
I NKHandl eStri ngRel ease.
I NK_ERROR_PTRIf error.
Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0

INKUrIHttpFragmentSet
Sets a specified HTTP fragment within a URL.

Prototype | NKRet ur nCode | NKUr | Ht t pFragment Set (| NKMBuf f er bufp, 1 NKM.oc url _| oc,
const char *value, int length)

Description Sets the HTTP fragment portion of the URL located at ur | _| oc within the marshal buffer buf p to the string value.
Ifl engt his-1thenl NKUr | Ht t pFr agnent Set assumes that value is null-terminated. Otherwise, the
length of the string value is taken to be | engt h. The string is copied to within buf p, so it is okay to modify or
delete value after calling | NKUr | Ht t pFr agnment Set .

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

Returns | NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKUrIHttpParamsGet
Gets the HTTP params portion of a specified URL.

Prototype const char* | NKUrl Htt pParansGet (I NKMBuffer bufp, INKM.oc url _loc, int
*| engt h)

Description Retrieves the HTTP params portion of the URL located at ur | _| oc within the marshal buffer buf p.
I NKUr | Ht t pPar ansGet places the length of the returned string in the | engt h argument.

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns A pointer to the HTTP params portion of the specified URL. Release with a call to | NKHandl eSt ri ngRel ease.
I NK_ERROR_PTRif error.
Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0

Function Reference 181

INKUrlIHttpParamsSet
Sets the HTTP params portion of a specified URL.

Prototype | NKRet urnCode | NKUrl Htt pPar ansSet (| NKMBuf fer bufp, |NKM.oc url _Il oc,
const char *value, int |ength)

Description Sets the HTTP params portion of the URL located at ur | _I oc within the marshal buffer buf p to the string val ue.
Ifl engthis -1 thenl NKUr | Ht t pPar amsSet assumes that val ue is null-terminated. Otherwise, the
length of the string val ue istakentobel engt h. | NKUr | Ht t pPar ams Set copies the string to within
buf p, so it is okay to modify or delete val ue after calling | NKUr | Ht t pPar ans Set .

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

Returns | NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKUrIHttpQueryGet
Gets the HTTP query portion of a specified URL.

Prototype const char* | NKUrl Htt pQueryGet (I NKMBuffer bufp, INKM.oc url _|oc, int
*| engt h)

Description Retrieves the HTTP query portion of the URL located at ur | _| oc within the marshal buffer buf p.
I NKUr | Ht t pQuer yGet places the length of the returned string in the | engt h argument.

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

Returns A pointer to the HTTP query portion of the specified URL. Release with a call to | NKHandl eSt ri ngRel ease.
I NK_ERROR_PTRIf error.
Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0

INKUrIHttpQuerySet
Sets the HTTP query portion of a specified URL.

Prototype | NKRet urnCode | NKUrl Ht t pQuerySet (1 NKMBuf fer bufp, INKM.oc url _| oc,
const char *value, int |length)

Description Sets the HTTP query portion of the URL located at ur | _I oc within the marshal buffer buf p to the string val ue.
Ifl engt his-1then| NKUr | Ht t pQuer ySet assumes that val ue is null-terminated. Otherwise, the length
of the string val ue istakentobel engt h. 1 NKUr | Ht t pQuer ySet copies the string to within buf p, soitis
okay to modify or delete val ue after calling | NKUr | Ht t pQuer ySet .

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

Returns | NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

182 Intercepting HTTP transaction functions

INKUrlLengthGet
Calculates the length of the string representation of a URL.

Prototype int | NKU I LengthGet (1 NKMBuffer bufp, | NKM.oc url _l oc)

Description Calculates the length of URL located at ur | _| oc within the marshal buffer buf p if it were
returned as a string. This length will be the same as the length returned by | NKUr | St ri ngCet .

Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns Returns the calculated length.
I NK_ERRORIif error.

First release Traffic Server 3.0

INKUTrlParse
Parses the specified URL.

Prototype int I NKUr| Parse (I NKMBuffer bufp, INKM.oc url _|oc, const char **start,
const char *end)

Description Parses a URL. The st ar t pointer is both an input and an output parameter and marks the start of the URL to be
parsed. After a successful parse, the start pointer equals the end pointer. The end pointer must be one byte after the
last character you want to parse.The URL parsing routine assumes that everything between st ar t and end is part
of the URL. It is up to higher level parsing routines, such as | NKHt t pHdr Par seReq, to determine the actual end
of the URL.

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.
Returns Returns | NK_PARSE_ERRORIf an error occurs, otherwise | NK_PARSE_DONE is returned to indicate success.

First release Traffic Server 3.0

INKUrlPasswordGet
Gets the password portion of a specified URL.

Prototype const char* | NKUr| PasswordGet (| NKMBuffer bufp, |INKM.oc url _loc, int
*| engt h)

Description Retrieves the password portion of the URL located at ur | _| oc within the marshal buffer buf p.
I NKUr | Passwor dGet places the length of the returned string in the | engt h argument.

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

Returns A pointer to the password portion of the specified URL. Release with a call to | NKHandl eSt ri ngRel ease.
I NK_ERROR_PTRIf error.
Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0

Function Reference 183

INKUrlPasswordSet
Sets the password portion of a specified URL.

Prototype | NKRet ur nCode | NKUr | Passwor dSet (| NKMBuf fer bufp, | NKM.oc url _| oc,
const char *value, int |ength)

Description Sets the password portion of the URL located at ur I _| oc within the marshal buffer buf p to the string val ue. If
I engt his- 1 then | NKUr | Passwor dSet assumes that val ue is null-terminated. Otherwise, the length of
the string val ue is taken to be | engt h. 1 NKUr | Passwor dSet copies the string to within buf p, soit is
okay to modify or delete val ue after calling | NKUr | Passwor dSet .

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

Returns | NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKUrlPathGet
Gets the path portion of a specified URL.

Prototype const char* | NKUrl Pat hGet (1 NKMBuffer bufp, |NKM.oc url _loc, int
*| engt h)

Description Retrieves the path portion of the URL located at ur | _| oc within the marshal buffer buf p. | NKUr | Pat hGet
places the length of the returned string in the | engt h argument.

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

Returns A pointer to the path portion of the specified URL. Release with a call to | NKHandl eSt ri ngRel ease.
I NK_ERROR_PTRIf error.
Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0

INKUrlPathSet
Sets the path portion of a specified URL.

Prototype | NKRet ur nCode | NKUr | Pat hSet (I NKMBuffer bufp, | NKM.oc url _| oc, const
char *value, int length)

Description Sets the path portion of the URL located at ur | _I oc within the marshal buffer buf p to the string val ue. If
I engt his-1then| NKUr | Pat hSet assumes that val ue is null-terminated. Otherwise, the length of the
stringval ueistakentobel engt h.1 NKUr | Pat hSet copies the string to within buf p, so it is okay to modify
or delete val ue after calling | NKUr | Pat hSet .

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

Returns | NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

184 Intercepting HTTP transaction functions

INKUrlPortGet
Gets the port number portion of a specified URL.

Prototype int INKUrl PortGet (INKMBuffer bufp, | NKM.oc url _| oc)

Description Retrieves the port number portion of the URL located at ur I _| oc within the marshal buffer buf p.
Call after READ_REQUEST_HDR_HOOK, if it is in a transaction header.

Returns The port number portion of the specified URL.
I NK_ERRORIf error.

First release Traffic Server 3.0

INKUrlPortSet
Sets the port number portion of a URL to a specified value.

Prototype | NKRet urnCode | NKUrl Port Set (I NKMBuffer bufp, I NKM.oc url _loc, int
port)

Description Sets the port number portion of the URL located at ur | _| oc within the marshal buffer buf p to the value port .

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

Returns | NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKUrISchemeGet
Gets the scheme portion of a specified URL.

Prototype const char* | NKUrl ScheneGet (I NKMBuffer bufp, | NKM.oc url _|oc, int
*| engt h)

Description Retrieves the scheme portion of the URL located at ur | _| oc within the marshal buffer buf p.
I NKUr | ScheneGet places the length of the returned string in the | engt h argument.

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

Returns A pointer to the scheme portion of the specified URL. Release with a call to | NKHandl eSt ri ngRel ease.
I NK_ERROR_PTRIf error.
Note: the returned string is not guaranteed to be null-terminated.

First release Traffic Server 3.0

Function Reference

185

INKUrlSchemeSet
Sets the scheme portion of a specified URL.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKUr | ScheneSet (| NKMBuf f er buf p,
char *value, int |ength)

I NKMLoc url _| oc, const

Sets the scheme portion of the URL located at ur | _| oc within the marshal buffer buf p to the string val ue. If

I engt his - 1thenl NKUr | SchemeSet assumes that val ue is null-terminated. Otherwise, the length of the
string val ue istakentobe | engt h. | NKUr I SchermeSet copies the string to within buf p, so it is okay to
modify or delete val ue after calling | NKUr | SchemeSet .

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

I NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

INKUrIStringGet
Constructs a string representation of the URL located at ur | _| oc within the marshal buffer buf p.

Prototype

Description

Returns

First release

char* INKUrl StringGet (INKMBuffer bufp, INKM.oc url _loc, int *Iength)

Constructs a string representation of the URL located at ur | _I oc within the marshal buffer buf p.

I NKUr | St ri ngGet stores the length of the allocated string in the parameter | engt h. This is the same length
that | NKUr | Lengt hGet returns. The returned string is allocated by a call to | NKmal | oc. It should be freed by
acallto | NKf r ee. If | engt h is NULL then no attempt is made to de-reference it.

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

A null-terminated string.
I NK_ERROR_PTRin case of an error.

Traffic Server 3.0

INKUrlUserGet

Gets the user portion of a specified URL.

Prototype

Description

Returns

First release

const char* | NKUr | User Get int

*| engt h)

(1 NKMBuf fer bufp, |1 NKM.oc url _I oc,

Retrieves the user portion of the URL located at ur | _I oc within the marshal buffer buf p. | NKUr | User Get
places the length of the returned string in the | engt h argument.

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

A pointer to the user portion of the specified URL. Release with a call to | NKHandl eSt ri ngRel ease.
I NK_ERROR_PTRIf error.
Note: the returned string is not guaranteed to be null-terminated.

Traffic Server 3.0

186

Intercepting HTTP transaction functions

INKUrlUserSet
Sets the user portion of a specified URL.

Prototype | NKRet urnCode | NKUrl User Set (I NKMBuffer bufp, | NKM.oc url _| oc, const
char *value, int |ength)

Description Sets the user portion of the URL located at ur I _| oc within the marshal buffer buf p to the string val ue. If
| engt his-1then| NKUr | User Set assumes that val ue is null-terminated. Otherwise, the length of the string
val ueistakentobe | engt h.1 NKUr | User Set copies the string to within buf p, so it is okay to modify or
delete val ue after calling | NKUr | User Set .

Call after READ_REQUEST_HDR_HOOK,; if it is in a transaction header.

Returns | NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

MIME headers

MIME headers and fields can be components of request headers, response headers, or
standalone headers created within your plugin. Make sure you call the MIME header
functions appropriately; for example, if you want to clone a MIME header field within a
request header, call | NKM meHdr Fi el dd one after READ_REQUEST_HDR_HOOK.

The MIME header functions are:

INKMimeHdrFieldAppend
Appends a field in a MIME header.

Prototype | NKRet ur nCode | NKM neHdr Fi el dAppend (| NKMBuf fer bufp, | NKM.oc hdr_I oc,
I NKMLoc fi el d)

Description Appends the MIME field located at f i el d within the marshal buffer buf p into the MIME header located at
hdr _| oc within the marshal buffer buf p.

Returns | NK_SUCCESS if the API is called successfully.
I NK_ERRORf an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.0

INKMimeHdrFieldClone
Copies a MIME field to a marshal buffer, and returns the | NKM_oc location of the copied field.

Prototype | NKMLoc | NKM neHdr Fi el dCl one (1 NKMBuf fer dest_bufp, | NKM.oc dest_hdr,
I NKMBuf f er src_bufp, INKMeoc src_hdr, INKMeoc src_field)

Description Copies the contents of the MIME field located at sr ¢_f i el d within the marshal buffer sr c_buf p to a MIME
header located at dest _hdr within the marshal buffer dest _buf p.

Returns The I NKMLoc location of the copied field. Release the returned handle with a call to
| NKHandl eM_ocRel ease.

I NK_ERROR_PTRIferror.

First release Traffic Server 3.5

Function Reference 187

INKMimeHdrFieldCopy
Copies a MIME field from a specified location to another specified location.

Prototype | NKRet ur nCode | NKM neHdr Fi el dCopy (| NKMBuf f er dest _bufp, | NKM.oc
dest _hdr, | NKM.oc dest _field, |INKMBuffer src_bufp, | NKM.oc src_hdr,
I NKMLoc src_field)

Description Copies the contents of the MIME field located at sr c_f i el d within the marshal buffer sr ¢c_buf p to the MIME
field located at dest _f i el d within the marshal buffer dest _buf p. 1 NKM meHdr Fi el dCopy works
correctly even if sr c_buf p and dest _buf p point to different marshal buffers. Note: you must first create the
destination MIME field before copying into it.

Returns | NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.5

INKMimeHdrFieldCopyValues
Copies MIME field values from one location to another.

Prototype | NKRet ur nCode | NKM neHdr Fi el dCopyVal ues (| NKMBuf f er dest _bufp, | NKM.oc
dest _hdr, I NKM.oc dest _field, |INKMBuffer src_bufp, | NKM.oc src_hdr,
I NKMLoc src_field)

Description Copies the values contained within the MIME field located at sr ¢_f i el d within the marshal buffer sr ¢c_buf p
to the MIME field located at dest _f i el d within the marshal buffer dest _buf p.
I NKM nmeHdr Fi el dCopyVal ues works correctly even if sr c_buf p and dest _buf p point to different
marshal buffers. | NKM rmeHdr Fi el dCopyVal ues does not copy the field’s name.

Returns | NK_SUCCESS if successful.
I NK_ERRORf an error occurs.

First release Traffic Server 3.5

INKMimeHdrFieldCreate
Creates a new MIME field within a specified marshal buffer.

Prototype | NKMLoc | NKM nmeHdr Fi el dCreate (1 NKMBuf fer bufp, | NKM.oc hdr)
Description Creates a new MIME field with the marshal buffer buf p.
Returns The location of the new MIME field. Release with a call to | NKHandl eM_ocRel ease.

First release Traffic Server 3.5

188 Intercepting HTTP transaction functions

INKMimeHdrFieldDestroy
Deletes a specified MIME field from a marshal buffer.

Prototype

Description

First release

voi d | NKM neHdr Fi el dDestroy (I NKMBuffer bufp, |INKM.oc hdr, | NKM.oc
field)

Destroys the MIME field located at f i el d within the MIME header located at hdr within the marshal buffer
buf p.

After the call to | NKM neHdr Fi el dDest r oy, you must release the | NKMLoc handle f i el d with acall to
I NKHandl eM_ocRel ease.

Traffic Server 3.5

INKMimeHdrFieldLengthGet
Calculates the length of a string representation of a specified MIME field.

Prototype

Description

Returns

First release

int | NKM neHdr Fi el dLengt hGet (| NKMBuf fer bufp, |1 NKM.oc hdr, | NKM.oc
field)

Calculates the length of the MIME field located at f i el d within the marshal buffer buf p if it were returned as a
string. This is the length of the MIME field in its unparsed form.

The calculated length of a string representation of the specified MIME field.
I NK_ERRORIf there is an error.

Traffic Server 3.5

INKMimeHdrFieldNameGet
Gets the name and name length of a specified MIME field.

Prototype

Description

Returns

First release

const char* | NKM neHdr Fi el dNameGet (1 NKMBuf fer bufp, | NKMLoc hdr,
I NKMLoc field, int *Iength)

Returns the name of the field located at f i el d within the marshal buffer buf p.
I NKM neHdr Fi el dNameGet places the length of the returned string in the | engt h argument.

A pointer to the name of the specified field within the specified MIME header. Release the returned string with a call
tol NKHandl eSt ri ngRel ease.

I NK_ERROR_PTRIf error.

Note: the returned string is not guaranteed to be null-terminated.

Traffic Server 3.5

Function Reference 189

INKMimeHdrFieldNameSet
Sets a specified MIME field’s name.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKM meHdr Fi el dNanmeSet (| NKMBuf fer bufp, | NKM.oc hdr,
I NKMLoc field, const char *nane, int |ength)

Sets the name of the field located at f i el d within the marshal buffer buf p to the string name. If| engt hiis- 1
then | NKM neHdr Fi el dNameSet assumes thatnane is null-terminated. Otherwise, the length of the string
name istakentobel engt h. | NKM neHdr Fi el dNameSet copies the string to within buf p, so it is okay to
modify or delete name after calling | NKM nmeHdr Fi el dNanmeSet .

For nane, use the | NK_M ME_FI ELD_XXX tokens when possible. See Constant Index, on page 277.

I NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

Traffic Server 3.5

INKMimeHdrFieldNext
Returns the next MIME field after a specified MIME field in a MIME header.

Prototype

Description

Returns

Example

First release

I NKMLoc | NKM meHdr Fi el dNext (| NKMBuf f er bufp, | NKMLoc hdr, | NKM.oc
field)

Conceptually, there are a list of MIME fields in a MIME header (see Guide to Traffic Edge HTTP
header system, on page 87). 1 NKM meHdr Fi el dNext returns the location of the next field in the
list after the field located at f i el d within the marshal buffer buf p. If the next field is not found, a
NULL pointer is returned.

The location of the MIME field following the specified MIME field within the specified MIME
header. Release the returned | NKMLoc with a call to | NKHandl eM_ocRel ease. See the code
example below.

I NK_ERROR_PTRif error.

An example of a loop through each MIME field of an HTTP header:
field_loc = I NKM nmeHdr Fi el dGet (hdr_bufp, hdr_loc, 0);
while (field_loc) {
/* Tenp variable used only for the | oop */
| NKMLoc next _fiel d_Il oc;

/* Do your job with the field here */

/* Get the next field and rel ease the current one */

next _field_loc = I NKM neHdr Fi el dNext (hdr_bufp, hdr_I oc,
field_loc);

| NKHandl eM_ocRel ease(hdr _bufp, hdr_loc, field_loc);
field_loc = next_field_loc;

}
Traffic Server 3.5

190 Intercepting HTTP transaction functions

INKMimeHdrFieldNextDup
Returns the next duplicate MIME field after a specified MIME field in a MIME header.

Prototype | NKMLoc | NKM neHdr Fi el dNext Dup (| NKMBuf fer bufp, | NKM.oc hdr, | NKM.oc
field)

Description MIME headers MAY contain more than one MIME field with the same name. Previous versions of
Traffic Edge joined multiple fields with the same name into one field with composite values. This
behavior comes at a performance cost, and causes inter-operability problems with some older
clients and servers. Future versions of Traffic Edge will cease coalescing duplicate fields.

Your plugins should check for the presence of duplicate fields, and iterate over duplicate fields, by
using | NKM rmeHdr Fi el dNext Dup. | NKM neHdr Fi el dNext Dup returns the location of the
next duplicated field in the list after the field located at f i el d within the marshal buffer buf p. If
the next field is not found, a NULL pointer is returned.

Returns The location of the next duplicate MIME field that follows the specified field within the specified
MIME header. Release with a call to | NKHandl eM_ocRel ease.

I NK_ERROR _PTRf error.

First release Traffic Server 3.5

INKMimeHdrFieldValueAppend
Appends a string to a specified value in a MIME field.

Prototype | NKRet ur nCode | NKM neHdr Fi el dVal ueAppend (1 NKMBuf fer bufp, | NKM.oc hdr,
I NKMLoc field, int idx, const char *value, int |ength)

Arguments buf p is the marshal buffer containing the MIME field.

hdr is the location of the parent object within the marshal buffer buf p from which fi el d was
retrieved.

fi el dis the location of the MIME field to be appended to.

i dx is the index of the field value to be appended. For example, in the MIME field Foo: bar,
car the index of the value bar is 0, and the index of car is 1.

val ue is the string to be appended to the MIME field value at i dx.
| engt h is the length of the string val ue to be appended.

Description Appends the string stored in val ue to a specific value in the MIME field located at f i el d within the marshal
buffer buf p. The effect of | NKM neHdr Fi el dVal ueAppend is as if the previous value were retrieved, the
string val ue were appended to it and this new string were stored back in the MIME field at the same position. The
i dx parameter specifies which value in the field to append to. If i dx is not between O and
I NKM meHdr Fi el dVal uesCount (buf p,hdr, field)- 1 thenno operationwill be performed.

Returns | NK_SUCCESS if the string is successfully appended.
I NK_ERRORif the hook is not added.

First release Traffic Server 3.5

Function Reference 191

INKMimeHdrFieldValueDateGet
Gets date value from a MIME field.

Prototype | NKRet ur nCode | NKM nmeHdr Fi el dVal ueDat eGet (| NKMBuf fer bufp, | NKM.oc
hdr _loc, INKM.oc field, tine_t *val ue)

Description Retrieves a date value from within the MIME field located at f i el d within the marshal buffer buf p. All values are
stored as strings within the MIME field. | NKM neHdr Fi el dVal ueDat eGet parses the string value to return
an integer date representation.

Returns The date value from the specified MIME header.
I NK_SUCCESS if the API is called successfully.
I NK_ERRORf an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

INKMimeHdrFieldValueDatelnsert
Inserts a date value into a MIME field.

Prototype | NKRet ur nCode | NKM neHdr Fi el dVal ueDat el nsert (1 NKMBuf fer bufp, | NKM.oc
hdr _loc, INKM.oc field, tinme_t value)

Description Inserts the data val ue into the MIME field located at f i el d within the marshal buffer buf p. All values are stored
as strings within the MIME field. | NKM nmeHdr Fi el dVal ueDat el nsert simply formats the date into a
string and then calls | NKM neHdr Fi el dVal uel nsert.

Returns | NK_SUCCESS if the APl is called successfully.
I NK_ERRORf an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

INKMimeHdrFieldValueDateSet
Sets a date value in a MIME field.

Prototype | NKRet ur nCode | NKM neHdr Fi el dVal ueDat eSet (| NKMBuf fer bufp, | NKM.oc
hdr _I oc, INKM.oc field, tinme_t value)

Description Sets a value in the MIME field located at f i el d within the marshal buffer buf p to the date val ue. All values are
stored as strings within the MIME field. | NKM meHdr Fi el dVal ueDat eSet simply formats the date into a
string and then calls | NKM neHdr Fi el dVal ueSt ri ngSet .

This API has been deprecated by .

Returns | NK_SUCCESS if the API is called successfully.
I NK_ERRORf an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

192 Intercepting HTTP transaction functions

INKMimeHdrFieldValueDelete
Deletes a specified value from a MIME field.

Prototype | NKRet ur nCode | NKM neHdr Fi el dVal ueDel et e (1 NKMBuf fer bufp, | NKM.oc hdr,
I NKMLoc field, int idx)

Description Removes and deletes a value from the MIME field located at f i el d within the marshal buffer buf p. The i dx
parameter specifies which value should be deleted. If i dx is not between O and
I NKM meHdr Fi el dVal uesCount (buf p,hdr, fiel d)- 1 thenno operationwill be performed.

Returns | NK_SUCCESS if successful.
I NK_ERRORf an error occurs.

First release Traffic Server 3.5

INKMimeHdrFieldValuelntGet
Gets an integer field value in a MIME field.

Prototype | NKRet ur nCode | NKM nmeHdr Fi el dVal uel nt Get (| NKMBuf f er bufp, | NKM.oc
hdr _I oc, INKMeoc field, int idx, int *val ue)

Description Retrieves an integer value from within the MIME field located at f i el d within the marshal buffer buf p. The i dx
parameter specifies which value within the field to retrieve. The fields are numbered from O to
I NKM meHdr Fi el dVal uesCount (buf p,hdr, field)- 1.Ifi dx does not lie within that range,
I NKM nmeHdr Fi el dVal uel nt Get returns (i nt) 0. Allvalues are stored as strings within the MIME field.
I NKM nmeHdr Fi el dVal uel nt Get parses the string value to return an integer.

Returns The interger value from the specified MIME field.
I NK_SUCCESS if the API is called successfully.
I NK_ERRORIf an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

INKMimeHdrFieldValuelntinsert
Inserts an integer value into a MIME field.

Prototype | NKRet ur nCode | NKM neHdr Fi el dVal uel ntlnsert (1 NKMBuffer bufp, | NKM.oc
hdr _loc, INKM.oc field, int value, int idx)

Description Inserts the integer val ue into the MIME field located at f i el d within the marshal buffer buf p.
The i dx parameter specifies where the inserted value should be put with respect to the other
values already in the MIME field. If i dx is O then the value is prepended to the list of values in the
field. Increasing values of i dx places the value further down the list of values. If i dx is - 1 then
the value is appended to the list of values. Normal usage is to specify - 1 for i dx so that the value
is appended to the list of values. All values are stored as strings within the MIME field.

I NKM meHdr Fi el dVal uel nt 1 nsert simply formats the integer into a string and then calls
I NKM neHdr Fi el dval uel nsert.

Returns | NK_SUCCESS if the API is called successfully.
I NK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

Function Reference 193

INKMimeHdrFieldValuelntSet
Sets an integer value within a MIME field.

Prototype | NKRet ur nCode | NKM meHdr Fi el dVval uel nt Set (| NKMBuf fer bufp, | NKM.oc
hdr _loc, INKM.oc field, int idx, int value)

Description Sets a value in the MIME field located at f i el d within the marshal buffer buf p to the integer val ue. Thei dx
parameter specifies which value in the field to change. If i dx is not between O and
I NKM meHdr Fi el dVal uesCount (buf p,hdr, fi el d)- 1 thenno operation will be performed. All
values are stored as strings within the MIME field. | NKM neHdr Fi el dVal uel nt Set simply formats the
integer into a string and then calls | NKM meHdr Fi el dVal ueSet .

Returns | NK_SUCCESS if the API is called successfully.
I NK_ERRORIf an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

INKMimeHdrFieldValueStringGet
Gets a specified field value from a MIME header.

Prototype | NKRet ur nCode | NKM nmeHdr Fi el dVal ueStri ngGet (I NKMBuffer bufp, | NKMoc
hdr _loc, INKM.oc field, int idx, const char **value, int *value_len)

Description Retrieves a string value from within the MIME field located at f i el d within the marshal buffer buf p. The i dx
parameter specifies which field to retrieve. The fields are numbered from O to
I NKM meHdr Fi el dval uesCount (buf p,hdr, field)- 1.Ifi dx doesnot lie within that range then
NULL will be returned. The length of the returned string is placed inthe val ue_| en argument. If val ue_| en
is NULL then no attempt is made to dereference it.

Returns A pointer to the specified field value in the MIME header. Release with a call to | NKHandl eSt r i ngRel ease.
I NK_SUCCESS if the API is called successfully.
I NK_ERRORf an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

INKMimeHdrFieldValueStringlnsert
Inserts a value into a specified location within a MIME field.

Prototype | NKRet urnCode | NKM meHdr Fi el dval ueStringl nsert (1 NKMBuffer bufp,
I NKMLoc hdr _l oc, INKMeoc field, const char *value, int len, int idx)

Description Inserts the string val ue into the MIME field located at f i el d within the marshal buffer buf p. If| enis- 1 then
I NKM meHdr Fi el dval ueSt ri ngl nsert assumes that val ue is null-terminated. Otherwise, the length
of the string val ue is takento be | engt h. 1 NKM meHdr Fi el dVal ueStri ngl nsert copies the string
to within buf p, so it is okay to modify or delete val ue after calling
I NKM meHdr Fi el dVal ueStri ngSet . Thei dx parameter specifies where the inserted value should be put
with respect to the other values already in the MIME field. If i dx is O then
I NKM nmeHdr Fi el dVal ueStri ngl nsert prepends the value to the list of values in the field. Increasing
values of i dx place the value further down the list of values. Ifi dx is- 1,

I NKM meHdr Fi el dVal ueStri ngl nsert appends the value to the list of values. Normal usage is to
specify - 1 fori dx so that the value is appended to the list of values.

194 Intercepting HTTP transaction functions

Returns | NK_SUCCESS if the API is called successfully.
I NK_ERRORIf an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

INKMimeHdrFieldValueStringSet
Sets a value in a MIME field.

Prototype | NKRet ur nCode | NKM nmeHdr Fi el dVal ueStri ngSet (I NKMBuffer bufp, | NKM.oc
hdr_l oc, INKMoc field, int idx, const char *value, int |en)

Description Sets a value in the MIME field located at f i el d within the marshal buffer buf p to the string val ue. Ifl enis
- 1 then itis assumed that val ue is null-terminated. Otherwise, the length of the string val ue is taken to be
| en. The string is copied to within buf p, so it is okay to modify or delete val ue after calling
I NKM meHdr Fi el dVal ueSt ri ngSet . Thei dx parameter specifies which value in the field to change. If
i dx is not between O and | NKM meHdr Fi el dval uesCount (buf p,hdr, field)- 1thenno
operation will be performed. If i dx is set to - 1 then all the mime field values are returned. For instance, suppose the
mime field is MyFi el d: val uel, val ue2, val ue3.Ifl NKM meHdr Fi el dGet is called with i dx
setto - 1, it will return a pointer to “val uel, val ue2, val ue3”.

Note that like for other mime header manipulation APIs, the string is not null terminated.

First release Traffic Server 3.5

INKMimeHdrFieldValueUintGet
Gets unsigned integer field value in a MIME field.

Prototype | NKRet ur nCode | NKM neHdr Fi el dval ueUi nt Get (I NKMBuf fer bufp, | NKM.oc
hdr _I oc, INKM.oc field, int idx, unsigned int *val ue)

Description Retrieves an unsigned integer value from within the MIME field located at f i el d within the marshal buffer buf p.
The i dx parameter specifies which field to retrieve. The fields are numbered from O to
I NKM meHdr Fi el dVal uesCount (buf p,hdr, field)- 1.Ifi dx does not lie within that range,
I NKM meHdr Fi el dVal ueGet Uni t returns (unsi gned i nt) 0. All values are stored as strings within
the MIME field. | NKM neHdr Fi el dVal ueUi nt Get parses the string value to return an unsigned integer.

It is not possible to determine if | NKM neHdr Fi el dVal ueUi nt Get is returning an unsigned int value in
error. If you need to check for errors in MIME header field values, you can fetch the header as a string and examine it.
Here is some sample code that fetches MIME headers from marshal buffers into strings using

I NKM nmeHdr Fi el dVal ueGet instead. The context of this example is that the plugin is processing an HTTP
transaction and has access to a transaction.

Returns The unsigned integer value from the specified MIME field.
I NK_SUCCESS if the API is called successfully.
I NK_ERRORf an error occurs while calling the API or if an argument is invalid.

Function Reference 195

Example static void

handl e_string (I NKHttpTxn txnp, | NKCont contp) {
I NKMBUf f er buf p;
I NKMLoc hdr _| oc;
| NKMLoc field;
int len;
char* output_string;
const char* val ue;

/* Fetch the transaction's client request header into a marshal buffer.

*/
if ('INKHtpTxnCient ReqGet (txnp, &bufp, &hdr_loc)) {
INKError ("couldn't retrieve client request header\n");
goto done;
}
fi el d=I NKM nmeHdr Fi el dFi nd(bufp, hdr_I oc,
I NK_M ME_FI ELD_CONTENT_LENGTH) ;
if (!field) {
INKError ("Content-Length field not found.\n");
I NKHandl eM_ocRel ease (bufp, | NK_NULL_M.OC, hdr_loc);
goto done;
}
/* Obtain the value of the content length (normally an
* unsigned int) as a string. */
val ue=l NKM neHdr Fi el dval ueGet (bufp, hdr_loc, field, 0, & en);
if ((!value) || (len<=0))}
I NKHandl eM_ocRel ease (bufp, hdr_loc, field);
I NKHandl eM_ocRel ease (bufp, | NK_NULL_M.OC, hdr_loc);
got o done;
}
/* Allocate the string with an extra byte for the string term nator.
*/

out put _string = (char*) INKnalloc(len + 1);

/* Copy the value. */
strncpy (output_string, value, len);

/* Termnate the string */
out put _string[len] ="'\0";

/* Now that you have the MME fields as a string, you can do
what ever you want to do with it, for exanple, print it, or
make sure it's an unsigned integer: either by using the
atol C function or by scanning each ASCII character. */

196 Intercepting HTTP (aneBeidqr MncHPRgi n*, " %", out put_string);

/* Rel ease handl es and al | ocated nmenory. */
I NKHandl eStri ngRel ease (bufp, field, value);

T RN 7 " " " N\

First release Traffic Server 3.5

INKMimeHdrFieldValueUIntinsert
Inserts an unsigned integer value into a MIME field.

Prototype | NKRet ur nCode | NKM neHdr Fi el dVal ueUl ntlnsert (1 NKMBuffer bufp, | NKM.oc
hdr _I oc, I NKM.oc field, unsigned int value, int idx)

Description Inserts the unsigned integer val ue into the MIME field located at f i el d within the marshal
buffer buf p. The i dx parameter specifies where the inserted value should be put with respect to
the other values already in the MIME field. If i dx is O then the value will be prepended to the list
of values in the field. Increasing values of i dx will place the value further down the list of values.
If i dx is - 1 then the value will be appended to the list of values. Normal usage is to specify - 1 for
i dx so that the value will be appended to the list of values. All values are stored as strings within
the MIME field. | NKM neHdr Fi el dVal ueUl nt I nsert simply formats the unsigned integer
into a string and then calls | NKM neHdr Fi el dVal ueStri ngl nsert.

Returns | NK_SUCCESS if the API is called successfully.
I NK_ERRCOR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

INKMimeHdrFieldValueUintSet
Sets a value in a MIME field to a specified unsigned integer.

Prototype | NKRet ur nCode | NKM neHdr Fi el dVal ueUi nt Set (1 NKMBuf fer bufp, | NKM.oc
hdr _I oc, INKM.oc field, int idx, unsigned int value)

Description Sets a value in the MIME field located at f i el d within the marshal buffer buf p to the unsigned integer val ue.
The i dx parameter specifies which value in the field to change. If i dx is not between O and
I NKM meHdr Fi el dVal uesCount (bufp,hdr, field) - 1 thenno operation will be performed. All
values are stored as strings within the MIME field. | NKM meHdr Fi el dVal ueU nt Set simply formats the
unsigned integer into a string and then calls | NKM neHdr Fi el dVal ueSt ri ngSet .

Returns | NK_SUCCESS if the API is called successfully.
I NK_ERRORf an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

INKMimeHdrFieldValuesClear
Clears all values in a MIME field.

Prototype | NKRet ur nCode | NKM neHdr Fi el dval uesd ear (I NKMBuf f er buf p, | NKMLoc hdr,
I NKM_oc fi el d)

Description Removes and destroys all of the values within the MIME field located at f i el d within the marshal buffer buf p.

Make sure you release any corresponding | NKMLoc or string handles using | NKHandl eM_ocRel ease or
I NKHandl eStri ngRel ease.

Returns | NK_SUCCESS if successful.
I NK_ERRORf an error occurs.

First release Traffic Server 3.5

Function Reference 197

INKMimeHdrFieldValuesCount
Counts the values in a MIME field.

Prototype int | NKM meHdr Fi el dval uesCount (I NKMBuf f er buf p, | NKM_.oc hdr, | NKM.oc
field)

Description Retrieves a count of the number of values in the MIME field located at f i el d within the marshal buffer buf p.

Returns The number of values in the specified MIME field.
I NK_ERRORIf error.

First release Traffic Server 3.5

INKMimeHdrClone
Copies a MIME header and returns the location of the copy.

Prototype | NKMLoc | NKM neHdr Cl one(| NKMBuf f er dest _bufp, | NKMBuffer src_bufp,
I NKMLoc src_hdr_I oc)

Description Copies the contents of the MIME header located at src_hdr _| oc within the marshal buffer
sr c_buf p to the marshal buffer dest _buf p.

Returns The | NKMLoc location of the copied header. Release the returned handle with a call to
| NKHandl eM_ocRel ease.

I NK_ERROR _PTRIif error.

First release Traffic Server 3.5

INKMimeHdrCopy
Copies a MIME header to a specified MIME header location.

Prototype | NKRet ur nCode | NKM neHdr Copy (1 NKMBuf f er dest _bufp, | NKM.oc
dest _hdr_l oc, | NKMBuffer src_bufp, INKMLoc src_hdr_I oc)

Description Copies the contents of the MIME header located at src_hdr _| oc within the marshal buffer
sr c_buf p to the MIME header located at dest _hdr _I oc within the marshal buffer
dest _buf p.I NKM meHdr Copy works correctly even if src_buf p and dest _buf p point to
different marshal buffers.

Note: Make sure that the destination marshal buffer and destination MIME header location have

been created before copying. See the example below, illustrating copying a response MIME
header.

Returns | NK_SUCCESS if successful.
I NK_ERRCRif an error occurs.

198 Intercepting HTTP transaction functions

Example static void
copyResponseM neHdr (1 NKCont pCont, | NKHttpTxn pTxn)

{

I NKMBuUf f er respHdr Buf, tnpBuf;

I NKMLoc respHt t pHdr Loc, tnpM neHdr Loc;

if ('INKHttpTxnd ient RespGet (pTxn, & espHdrBuf, &respHttpHdrLoc))
{

INKError ("couldn't retrieve client response header\n");

| NKHandl eM_ocRel ease (respHdrBuf, | NK_NULL_M.CC,
respH t pHdr Loc) ;

goto done;

}
t npBuf = | NKMBuf ferCreate ();

t npM neHdr Loc = | NKM nmeHdr Cr eat e(t npBuf) ;

I NKM meHdr Copy(t npBuf, tnpM nmeHdrLoc, respHdrBuf, respHttpHdrLoc);

I NKHandl eM_ocRel ease (tnmpBuf, | NK_NULL_M.OC, tnpM nmeHdrLoc);
| NKHandl eM_ocRel ease (respHdrBuf, | NK_NULL_M.OC, respHttpHdrLoc);

I NKMBuf f er Dest r oy (t npBuf) ;

done:
I NKHt t pTxnReenabl e(pTxn, | NK_EVENT_HTTP_CONTI NUE) ; }

First release Traffic Server 3.0

INKMimeHdrCreate
Creates a MIME header.

Prototype | NKMLoc | NKM neHdr Create (| NKMBuffer bufp)
Description Creates a new MIME header within the marshal buffer buf p.

Returns Location of the newly created MIME header. Release with a call to | NKHandl eM_ocRel ease.
| NK_ERROR_PTRIf error.

First release Traffic Server 3.0

Function Reference 199

INKMimeHdrDestroy
Destroys a MIME header.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKM meHdr Destroy (1 NKMBuf fer bufp, | NKM.oc hdr_I oc)

Destroys the MIME header located at hdr _| oc within the marshal buffer buf p.
Release the | NKMLoc handle hdr _| oc withacall to | NKHandl eM_ocRel ease.

I NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

INKMimeHdrFieldFind
Finds fields in a MIME header.

Prototype

Description

Returns

First release

I NKMLoc | NKM neHdr Fi el dFi nd (| NKMBuUf f er buf p, const char*

nane, int |ength)

| NKMLoc | oc,

Retrieves a MIME field from within the MIME header located at | oc within the marshal buffer buf p. The name and
| engt h parameters specify which field to retrieve. For each MIME field in the MIME header, a case insensitive
string comparison is done between the field name and name. The | engt h parameter specifies how long the string
pointed to by name is. If | engt h is- 1, then nane is assumed to be null-terminated. If the requested field cannot
be found then O is returned.

The location of the retrieved MIME header. Release with a call to | NKHandl eM_ocRel ease.
I NK_ERROR_PTRIf error.

Traffic Server 3.0

INKMimeHdrFieldGet
Gets a field in a MIME header.

Prototype

Description

Returns

First release

I NKMLoc | NKM neHdr Fi el dGet (I NKMBuf f er buf p, | NKM.oc hdr _| oc, int idx)

Retrieves a MIME field from within the MIME header located at hdr _I oc within the marshal buffer buf p. The
i dx parameter specifies which field to retrieve. The fields are numbered from O to

I NKM meHdr Fi el dsCount (buf p, hdr _I oc)- 1.Ifi dx does not lie within that range then O will be
returned.

The location of the MIME field from within the MIME header. Release with a call to | NKHandl eM_ocRel ease.
I NK_ERROR_PTRif error.

Traffic Server 3.0

200

Intercepting HTTP transaction functions

INKMimeHdrFieldRemove
Removes a field in a MIME header.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKM meHdr Fi el dRenove (| NKMBuUf f er
I NKMLoc fi el d)

buf p, I NKML.oc hdr_I oc,

Removes the MIME header located at f i el d within the marshal buffer buf p from the MIME header located at
hdr _| oc within the marshal buffer buf p. If the specified field cannot be found in the list of fields associated with
the header then nothing is done.

After the call to | NKM meHdr Fi el dDest r oy, you must release the | NKMLoc handle f i el d with a call to
I NKHandl eM_ocRel ease.

Note: removing the MIME field doesn't destroy the field, it only detaches it, hiding it from the printed output.The field
can be reattached by calling | NKM neHdr Fi el dAppend.

I NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

INKMimeHdrFieldsClear
Clears all the fields of a MIME header.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKM meHdr Fi el dsCl ear (| NKMBuf fer bufp, | NKM.oc hdr_| oc)

Removes and destroys all the MIME fields within the MIME header located at hdr _| oc within the marshal buffer
buf p.

Make sure you release any corresponding | NKMLoc or string handles using | NKHandl eM_ocRel ease or

I NKHandl eStri ngRel ease.

I NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

INKMimeHdrFieldsCount
Counts the fields in a MIME header.

Prototype

Description

Returns

First release

int | NKM neHdr Fi el dsCount (I NKMBuffer bufp, I NKM.oc hdr_| oc)

Obtains a count of the number of MIME fields within the MIME header located at hdr _| oc within the marshal
buffer buf p.

The number of fields within the specified MIME header.
I NK_ERRORIf error.

Traffic Server 3.0

Function Reference

201

INKMimeHdrLengthGet
Gets the length of a MIME header.

Prototype int | NKM meHdrLengt hGet (I NKMBuffer bufp, | NKM.oc hdr_I oc)

Description Calculates the length of the MIME header located at hdr _| oc within the marshal buffer buf p if it were returned
as a string. This is the length of the MIME header in its unparsed form.

Returns The length of the specified MIME header.
I NK_ERRORIf error.

First release Traffic Server 3.0

INKMimeHdrParse
Parses a MIME header.

Prototype int | NKM meHdr Parse (I NKM neParser parser,
I NKMBuf f er bufp, |1 NKM.oc hdr_| oc,
const char **start, const char *end)

Description Parses a MIME header. The MIME header must have already been allocated and both buf p and hdr _I oc must
point within that header. The st ar t argument points to the current position of the buffer being parsed and the end
argument points to one byte after the end of the buffer. On return, st ar t is modified to point past the last character
parsed. It is possible to parse a MIME header a single byte at a time using repeated calls to | NKM meHdr Par se.
As long as an error does not occur, the | NKM meHdr Par se function will consume that single byte and ask for
more.

Returns | NK_PARSE_ERRORIs returned on error.

I NK_PARSE_DONE is returned when a\ r \ n\ r \ n pattern is encountered, indicating the end of the header.
I NK_PARSE_CONT is returned if parsing of the header stopped because the end of the buffer was reached.

First release Traffic Server 3.0

INKMimeParserClear
Clears a MIME header parser so it may be reused.

Prototype | NKRet urnCode | NKM neParser d ear (I NKM nmePar ser parser)
Description Clears the specified MIME par ser so it may be used again.

Returns | NK_SUCCESS if successful.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

202 Intercepting HTTP transaction functions

INKMimeParserCreate
Creates a parser for MIME headers.

Prototype | NKM neParser | NKM neParser Create (void)

Description Creates a MIME parser. The parser’s data structure contains information about the header being parsed. A single
MIME parser can be used multiple times, though not simultaneously. Before being used again, the parser must be
cleared by callingl NKM nePar ser Cl ear.

Returns A pointer to the newly created MIME parser.
I NK_ERROR_PTRIf error.

First release Traffic Server 3.0

INKMimeParserDestroy
Destroys a MIME header parser.

Prototype | NKRet ur nCode | NKM nePar ser Destroy (1 NKM meParser parser)
Description Destroys the specified MIME parser and frees the associated memory.

Returns | NK_SUCCESS if the parser is successfully destroyed.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKMimeHdrPrint
Prints a MIME header to an IO buffer.

Prototype | NKRet ur nCode | NKM neHdr Print (1 NKMBuf fer bufp, |INKM.oc hdr_|I oc,
I NKI OBuf f er i obuf p)

Description Formats the MIME header located at hdr _| oc within the marshal buffer buf p into the 10 buffer i obuf p. See
10 buffers, on page 128 for information on allocating an |0 Buffer and retrieving data from within one.

Returns | NK_SUCCESS if successful.
I NK_ERRCORif an error occurs.

First release Traffic Server 3.0

Mutex functions

INKMutexCreate
Creates a new | NKMut ex.

Prototype | NKMut ex | NKMut exCreate (void)

Description Creates a new | NKMut ex.

Function Reference 203

Returns

First release

A handle to the newly created mutex.
I NK_ERROR_PTRf error.

Traffic Server 3.0

INKMutexLock

Locks an | NKMut ex.

Prototype

Description

Returns

Example

First release

I NKRet ur nCode | NKMut exLock (| NKMut ex nmut exp)

Locks the | NKMut ex rrut exp. If mut exp is already locked then | NKMut exLock will block until
the mutex is unlocked. An | NKMut ex will be recursively locked if | NKMut exLock is called on the
same mutex twice from the same thread. That is, the following example will succeed and not
block on the second call to | NKMut exLock.

I NK_SUCCESS if the mutex is successfully locked.

I NK_ERRORif an error occurs.

I NKMut exLock (some_nmut ex) ;
I NKMut exLock (some_nmut ex);
I NKMut exUnl ock (sone_rmut ex);
I NKMut exUnl ock (sone_mut ex) ;

Traffic Server 3.0

INKMutexLockTry
Tries to lock an | NKMut ex.

Prototype

Description

Returns

I NKRet ur nCode | nkMut exLockTry (I NKMutex nutex, int *|ock)

Tries to lock the | NKMut ex nut ex. Information as to whether the lock was grabbed or not is set
ini nt *I ock. | NKRet ur nCode will tell you if the call was successful or not, but does not
indicate whether or not the lock was grabbed.

In general, use | nkMut exLockTry to obtain a mutex. See the example below.

If the mutex was successfully locked, 1 will be returned.
If mut ex is already locked then O will be returned.

204 Mutex functions

Example

First release

int handl er (INKCont contp, |NKEvent event, void *edata)
{
//this continuation tries to grab a nutex
int retval, lock = 0;
retvak = I nkMiut exLockTry (mutex, & ock);
if (!lock)
{
/* Schedule a retry; RETRY_TIME should be 10 ns or |onger. */
I NKCont Schedul e (contp, RETRY_TI ME);
return | NK_EVENT_| MVEDI ATE;

/1 Now the nutex is grabbed
do_sone_job ...
I NKMut exUnl ock (rmut exp) ;

}
Traffic Server 3.0

INKMutexUnlock
Unlocks an | NKMut ex.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKMut exUnl ock (1 NKMut ex mut exp)

Unlocks the | NKMut ex rmut exp. If mut exp was recursively locked then | NKMut exUnl ock will
not actually unlock the mutex but simply decrement the recursion count.

I NK_SUCCESS if the mutex is successfully unlocked.
I NK_ERRCRif an error occurs.

Traffic Server 3.0

INKContCall

Continuation functions

Calls a continuation.

Prototype

Description

Returns

First release

int I NKContCall (1NKCont contp, |INKEvent event, void *edata)

Sends event and edat a to the cont p’s handler function. It is an error to call a continuation
without holding the continuation’s lock.

The values returned by the continuation cont p event handler.

Traffic Server 3.0

Function Reference 205

INKContCreate
Creates a continuation.

Prototype | NKCont | NKCont Create (I NKEvent Func funcp, | NKMitex nutexp)

Description Creates a new | NKCont . The continuation’s handler function is f uncp, and its mutex is nut exp.
As mentioned previously, a continuation’s mutex can be NULL. This is accomplished by
specifying NULL for mut exp.

Note: If you specify a NULL mutex, a mutex is created for the continuation and this mutex is held
when the continuation is called back.

Returns A handle to the newly created continuation.
I NK_ERROR_PTRif | NKCont object is not successfully created.

First release Traffic Server 3.0

INKContDataGet
Gets a data pointer from a continuation.

Prototype voi d* | NKCont Dat aGet (| NKCont contp)

Description Retrieves the data pointer from cont p. The data pointer can be set via a call to
| NKCont Dat aSet . It is up to the plugin to allocate/deallocate the pointer.

Returns The pointer on the continuation cont p data, or
I NK_ERROR_PTR if error.

First release Traffic Server 3.0

INKContDataSet
Sets a data pointer for a specified continuation.

Prototype | NKRet ur nCode | NKCont Dat aSet (1 NKCont contp, void *data)

Description Sets the data pointer of cont p to dat a. The data can later be retrieved by a call to
| NKCont Dat aCet .

Returns | NK_SUCCESS if the pointer is successfully set.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKContDestroy
Destroys a continuation.

Prototype | NKRet ur nCode | NKCont Destroy (1 NKCont contp)

Description Destroys the continuation cont p. | NKCont Dest r oy is used to destroy both continuations and
vconnections (see Vconnections, on page 121). The internal continuation data structures are
destroyed, but no attempt is made to guarantee that there are no outstanding references to this
continuation.

206 Continuation functions

Returns | NK_SUCCESS if the continuation is successfully destroyed.
I NK_ERRCRif an error occurs.

First release Traffic Server 3.0

INKContMutexGet
Gets the mutex for a specified continuation.

Prototype | NKMut ex | NKCont Mut exGet (I NKCont cont p)
Description Gets the mutex for cont p.

Returns A handle to the mutex for the specified continuation.
I NK_ERROR_PTRif error.

First release Traffic Server 3.0

INKContSchedule
Schedules a continuation to receive an event.

Prototype | NKActi on | NKCont Schedul e (1 NKCont contp, unsigned int timeout)

Description Schedules the continuation represented by cont p to receive an event. The ti neout refers to a
time in milliseconds from the present at which to send the event. When the cont p is called back
and if t i meout is 0, then the event sent will be | NK_EVENT_| MVEDI ATE. If t i meout is greater
than 0 then the event sent will be | NK_EVENT_TI MEQUT.

Returns An | NKAct i on object.
I NK_ERROR_PTRif error.

First release Traffic Server 3.0

Plugin configuration functions

INKConfigDataGet
Gets confi gur ati on data.

Prototype voi d* | NKConfi gDat aGet (|1 NKConfi g configp)

Description Retrieves the data pointer from within the configuration pointer conf i gp. Before you use
I NKConf i gDat aGet , you must give the configuration data an identifier with | NKConf i gSet
and then retrieve the | NKConf i g pointer conf i gp with a call to | NKConf i gGet . See the code
snippet in the previous section.

First release Traffic Server 3.0

Function Reference 207

INKConfigGet

Returns a pointer to the Traffic Edge configuration.

Prototype

Description

Returns

First release

I NKConfi g | NKConfigGet (unsigned int id)

Retrieves the current configuration pointer associated with the configuration identifier i d. The
function | NKConf i gDat aGet can then be used to retrieve the data pointer from within the
configuration. | NKConf i gGet increments the reference count inside the configuration. It is
important to call | NKConf i gRel ease to decrement the reference count when the user is done
with the configuration pointer.

Before you call | NKConf i gGet , you must set the identifier i d to some plugin configuration data
using | NKConf i gSet . See the code snippet in the previous section.

A pointer to the current Traffic Edge configuration.

Traffic Server 3.0

INKConfigRelease
Releases a configuration pointer.

Prototype

Description

First release

voi d | NKConfi gRel ease (unsigned int id, INKConfig configp)

Releases the configuration pointer conf i gp on the configuration associated with the identifieri d.
It is possible thatconf i gp is no longer the current configuration in which case

I NKConf i gRel ease may end up calling the configuration’s destroy function. See the code
shippet in the previous section.

Traffic Server 3.0

INKConfigSet

Assigns an identifier to plugin configuration data.

Prototype

Arguments

Returns

unsi gned int | NKConfigSet (unsigned int id, void *data,
I NKConf i gDest r oyFunc f uncp)

unsi gned int id isthe identifier that is assigned to configuration data. Do not use 1 or 2 for
i d. Traffic Edge internally assigns these IDs to parent and HTTP configurations. You can enter O
asi d, and | NKConf i gSet will allocate an identifier for you (with a value of 3 or greater). There
is an internal upper limit of 100 on i d.

voi d *dat a points to the data that you are associating to i d.
I NKConf i gDest r oyFunc f uncp is a pointer to a destroy function that is called when Traffic

Edge determines that there are no more references to dat a. The only argument of f uncp is
dat a.

The unsi gned i nt that was assigned to the data. If the input i d is O then a new configuration
identifier is allocated (of value 3 or larger). If the input i d is 0, the return value is the available
identifier allocated by Traffic Edge. If i d is non-zero, the return value is i d.

208 Plugin configuration functions

Description Sets the opaque data pointer dat a to be associated with the configuration identifieri d. Ifi d is O
then Traffic Edge allocates a new configuration identifier, and | NKConf i gSet returns this value.
Ifi d is non-zero, | NKConf i gSet returnsi d. To make sure that the configuration identifier stays
within the recommended range of 3 to 100, follow the code example in the previous section.
Caution: Never pick a configuration identifier yourself. When you need a new config i d, you
MUST always pass 0 as i d to the | NKConf i gSet API which will return a new valid i d. It is not
safe to pick up a randomly selected id because there might be some conflict with i ds already in
use by Traffic Edge. This can cause severe memory corruption as the | NKConf i g mechanism is
also used internally by Traffic Edge.

The f uncp parameter is a pointer to a destroy function which will be called with dat a as its only
parameter when Traffic Edge determines that there are no more references to dat a.

Note: dat a will not be destroyed while it is the current piece of configuration data since the
current data always has a reference count of at least 1.

See the code snippet in the previous section for usage.

First release Traffic Server 3.0

Action functions

INKActionCancel
Cancels an action.

Prototype | NKRet ur nCode | NKActi onCancel (1 NKAction actionp)

Description Cancels an | NKAct i on. If a NULL argument is passed to | NKAct i onCancel , Traffic Edge will
crash and will not return | NK_ERROR. Note that it is the programmer’s responsibility to ensure
that a non-null value is passed to | NKAct i onCancel .

Returns | NK_SUCCESS if the action is successfully cancelled.
I NK_ERRORif an error occurs.

First release Traffic Server 3.0

Function Reference 209

INKActionDone

Tells you if an action is completed.

Prototype

Description

Returns

First release

int | NKActi onDone (I NKAction actionp)

Is acti onp a completed action. If a NULL argument is passed to | NKAct i onDone, Traffic Edge
will crash and will not return | NK_ERROR. Note that it is the programmer’s responsibility to ensure
that a non-null value is passed to | NKAct i onDone.

Important: Always use | NKAct i onDone immediately after the call that assigns the action. For
example:

actionp = | NKCont Schedul e(cont p, SOVE_TI MEQUT_VALUE) ;
i f (I NKActionDone(actionp)){
/levent has already occurred

}

If you call | NKAct i onDone(act i onp) some time later or some where else, it always returns
false, and therefore does not accurately reflect whether the action is completed.

0 if the action has not completed.
1 if the action has completed
I NK_ERRORif an error has occurred.

Traffic Server 3.0

Host Lookup Functions

INKHostLookup
Asks Traffic Edge to do a DNS lookup of a host name.

Prototype

Arguments

Description

I NKActi on | NKHost LookupResult (1 NKCont contp, char *hostnane,

int nanel en)

I NKCont cont p is the continuation that Traffic Edge calls back when the DNS lookup occurs.
char *host nane is the name to look up. Null terminated.
i nt nanel en is the length of hostname +1 (add one to account for null termination).

Initiates a DNS lookup of host name. When the lookup occurs, Traffic Edge sends cont p

I NK_EVENT_DNS_LOOKUR If the lookup is successful (IP address resolved), the void * data
passed to the handler of the continuation cont p is a data of type | NKHost LookupResul t . You
can then use | NKHost LookupResul t | PGet to convert this information to an unsigned int
representing the IP address.

If the lookup fails (IP address not resolved), the voi d * dat a passed to the handler of
continuation cont p is a null pointer.

You have the option to cancel the action returned by | NKHost Lookup by using

I NKAct i onCancel .

Note that reentrant calls are possible, i.e. the cache can call back the user (cont p) in the same
call.

210

Host Lookup Functions

Returns An | NKAct i on object if successful.
I NK_ERROR_PTRif an argument is incorrect or if the AP fails.

First Release Traffic Server 5.2

INKHostLookupResultIPGet
Gets the IP address of a host name that Traffic Edge has looked up.

Prototype | nkRet urnCode | NKHost LookupResul t|PGet (I NKHostLookupResul t
| ookup_result, unsigned int *ip)

Arguments | NKHost LookupResul t | ookup_r esul t is information returned by
| NKHost LookupResul t .

unsi gned i nt *i pis set to the value of the IP address, in network byte order.

Description Converts the information retrieved by | NKHost LookupResul t to an unsigned int representing
the IP address.

Returns | NK_SUCCESS if the API is called successfully.
I NK_ERRORif an error occurs while calling the API or if an argument is invalid.

First Release Traffic Server 5.2

Vconnection functions

INKVConnAbort
Closes a vconnection and specifies that the operations it was performing were aborted.

Prototype | NKRet ur nCode | NKVConnAbort (I NKVConn connp, int error)

Description Closes the vconnection connp and specifies that the operations it was performing were aborted.
The vconnection will be de-allocated at some point in the near future after having
I NKVConnAbort called upon it. After calling | NKVConnCl ose, a user will not receive any more
events from connp. For most vconnections, | NKVConnCd ose and | NKVConnAbort perform
identical operations. A potential difference is that when a vconnection is aborted the vconnection
implementor can decide to do something special. For instance, a vconnection writing a file to disk
might decide to delete the file.

Returns | NK_SUCCESS if the connection is successfully aborted.
I NK_ERRORif an error occurs.

First release Traffic Server 3.0

INKVConnClose
Closes a vconnection.

Prototype | NKRet ur nCode | NKVConnC ose (I NKVConn connp)

Description Closes the vconnection connp. The vconnection will be de-allocated at some point in the near
future after having | NKVConnd ose called upon it. After calling | NKVConnd ose, a user will
not receive any more events from connp.

Function Reference 211

Returns | NK_SUCCESS if the connection is successfully closed.
I NK_ERRCRif an error occurs.

First release Traffic Server 3.0

INKVConnClosedGet
Gets a closed vconnection.

Prototype | NKRet ur nCode | NKVConnCl osedGet (I NKVConn connp)

Description Retrieves the closed status for a vconnection.

I NKVConnCl osedGCet is intended to be used by vconnection implementors and not by
vconnection users. It is not safe for a vconnection user to call | NKVConnCl osedGet since if the
vconnection actually is closed then it is possible (and likely) for it to be de-allocated at any time.

Note: This API can be used ONLY on transformation VConnections. NEVER use it on Cache
VConnections, Net VConnections or any other type of VConnections.

Returns | NK_SUCCESS if successful.
I NK_ERRCRif an error occurs.

First release Traffic Server 3.0

INKVConnRead
Reads a vconnection.

Prototype | NKVI O | NKVConnRead (I NKVConn connp, | NKCont contp, | NKI OBuffer bufp,
int nbytes)

Description Initiates a read operation on the vconnection connp. The read operation writes into the buffer
buf p. The continuation cont p will be called back with either | NK_EVENT_ERROR,
I NK_EVENT_VCONN_READ_READY, | NK_EVENT_VCONN_READ_COWPLETE or
I NK_EVENT_VCONN_EGS. Refer to The vconnection user’s view, on page 121 for more
information about these events. The number of bytes to read is specified by the nbyt es
parameter.

Returns A handle to the vconnection.
I NK_ERROR_PTRif an error occurs.

First release Traffic Server 3.0

INKVConnReadVIOGet
Obtains the output VIO for a vconnection.

Prototype | NKVI O | NKVConnReadVIl CGet (| NKVConn connp)

Description Retrieves the read VIO for a vconnection. | NKVConnReadVI OCet is intended to be used by
vconnection implementors and not by vconnection users.
Note that this API can only be used for transformations. It is not used for NetvVConn or
CacheVConn.

212 Vconnection functions

Returns A handle to the vconnection.
I NK_ERROR_PTRif an error occurs.

First release Traffic Server 3.0

INKVConnShutdown
Shuts down a vconnection.

Prototype | NKRet ur nCode | NKVConnShut down (I NKVConn connp, int read, int wite)

Description Shuts down a portion of the vconnection connp. If r ead is non-zero, then the read portion of
connp is shutdown indicating that the user does not want to be called back regarding any more
read events on this vconnection. If wr i t e is non-zero, then the write portion of connp is
shutdown indicating that the user does not want to be called back regarding any more write
events on this vconnection.

Returns | NK_SUCCESS if the connection is successfully shutdown.
I NK_ERRORf an error occurs.

First release Traffic Server 3.0

INKVConnWrite
Writes a vconnection.

Prototype | NKVI O | NKVConnWite (I NKVConn connp, | NKCont contp, | NKI OBufferReader
readerp, int nbytes)

Description Initiates a write operation on the vconnection connp. The write operation reads from the buffer
reader r eader p. The continuation cont p will be called back with either | NK_EVENT_ERROR,
I NK_EVENT_VCONN_WRI TE_READY, or | NK_EVENT_VCONN_WRI TE_COVPLETE. Refer to The
vconnection user’s view, on page 121 for more information about these events. The number of
bytes to write is specified by the nbyt es parameter.

Returns A handle to the vconnection.
I NK_ERROR_PTRif an error occurs.

First release Traffic Server 3.0

INKVConnWriteVIOGet
Obtains the input VIO for a vconnection.

Prototype | NKVI O | NKVConnW it eVl OGet (1 NKVConn connp)

Description Retrieves the write VIO for a vconnection. | NKVConnW i t eVl OGet is intended to be used by
vconnection implementors and not by vconnection users.

Note that this APl can only be used for transformations.

Returns A handle to the vconnection.
I NK_ERROR_PTRf error.

First release Traffic Server 3.0

Function Reference

213

INKNetAccept
Accepts a TCP/IP connection on a specified port.

Netvconnection functions

Prototype

Arguments

Description

Returns

First Release

I NKAction | NKNet Accept (I NKCont contp, int port)

I NKCont cont p is the continuation that is called back when a connection is accepted.
i nt port is the port to listen to for incoming TCP/IP connections.

Accepts a TCP/IP connection on por t . When Traffic Edge receives a connection on a specified
port, it calls back cont p with the event | NK_EVENT_NET_ACCEPT or
I NK_EVENT_NET_ACCEPT_FAI LED

If event is | NK_EVENT_NET_ACCEPT, the voi d * dat a passed to the handler of the
continuation cont p is a data of type NetVConnection representing the connection.

If event is | NK_EVENT_NET_ACCEPT_FAI LED, it means an attempt of connection was aborted
or failed. The plugin should just return from the continuation's handler.

The user (cont p) has the option to cancel the action returned by | NKNet Accept by using
I NKAct i onCancel .

An | NKAct i on object if successful.
I NK_ERROR_PTRif an argument was incorrect or if the API failed.

Traffic Server 5.2

INKNetConnect
Initiate a network connection to a server.

Prototype

Arguments

Description

Returns

First release

I NKActi on | NKNet Connect (I NKCont contp, unsigned int ip, int port)

I NKCont cont p is the continuation to be associated with the connection.

int ip isthe P address, in network byte order, of the host to connect to.
i nt port isport number for the host, specified in network byte order.

Opens up a network connection to the host specified by i p on the port specified by port . T If the
connection is successfully opened, cont p will be called back with the event

I NK_EVENT_NET_CONNECT and the new network vconnection will be passed in the event data
parameter. If the connection is not successful, cont p will be called back with the event

I NK_EVENT_NET_CONNECT_FAI LED.

Note: It's possible to receive | NK_EVENT_NET_CONNECT even if the connection failed, because
of the implementation of network sockets in the underlying operating system. There is an
exception: if a plugin tries to open a connection to a port on its own host machine, then

I NK_EVENT_NET_CONNECT is sent only if the connection is successful. In general, however,
your plugin needs to look for | NK_EVENT_VCONN_WRI TE_READY or

I NK_EVENT_VCONN_READ_ READY to make sure that the connection is successfully opened.

Note that reentrant calls are possible, i.e. the net processor can call back the user (cont p) in the
same call.

An | NKAct i on object.

Traffic Server 3.0

214

Netvconnection functions

INKNetVConnRemotelPGet
Retrieves the remote host’s IP address.

Prototype

Arguments

Description

Returns

First release

I NKRet ur nCode | NKNet VConnRenot el PGet (1 NKVConn vc, unsigned int *ip)

I NKVConn vc is the connection between Traffic Edge and the other end of the connection (can
be remote client or server).

unsi gned int *i pis set to the remote IP address in network byte order.
Obtains the remote IP address in network byte order.

I NK_SUCCESS if APl is called successfully.
I NK_ERRORif an error occurs while calling the API or if an argument is invalid.
Note this returns IP in IP Version 4.

Traffic Server 5.2

INKNetVVConnRemotePortGet
Retrieves the remote host’s port number.

Prototype

Arguments

Description

Returns

First release

I nkRet ur nCode | NKNet VConnRenot ePort Get (I NKVConn vc, int *port)

I NKVConn vc is the connection between Traffic Edge and the other end of the connection (can
be remote client or server).

i nt *port is setto the remote port value in host byte order.

Obtains the port number of the remote host for the specified connection. The port is returned in
host byte order.

I NK_SUCCESS if APl is called successfully.
I NK_ERROR if an error occurs while calling the API or if an argument is invalid.

Traffic Server 5.2

Cache interface functions

INKCacheKeyCreate
Creates a new cache key to be assigned to an object to be cached.

Prototype
Arguments

Description

Returns

First Release

I NKRet ur nCode | NKCacheKeyCr eat e(| nkCacheKey *new_key)
| NKCacheKey *new_key is set to the allocated key.

Creates (allocates memory for) a new cache key. The key can then be generated and assigned
to an object using | NKCacheKeyDi gest Set .

I NK_SUCCESS if success.
I NK_ERROR if cache key could not be allocated.

Traffic Server 5.2

Function Reference

215

INKCacheKeyDigestSet
Generates and assigns a cache key to an object to be cached.

Prototype

Arguments

Description

Returns

Example

First Release

I NKRet ur nCode | NKCacheKeyDi gest Set (| NKCacheKey key,

const unsigned char *input, int |ength)

I NKCacheKey key is the key to be associated to the cached object. Before calling

| NKCacheKeyDi gest Set you must create the key with | NKCacheKeyCr eat e. Note that in
order to generate unigue keys, you must use unique input strings. In other words, if the input
strings are identical, INKCacheKeyCreate will generate identical keys.

const unsigned char *i nput is a character string that uniquely identifies the object. In most
cases, it is the URL of the object.

i nt | engt h is the length of the string i nput .
Generates and assigns a cache key to an object to be cached.

I NK_SUCCESS if the cache key was successfully generated.
I NK_ERROR if digest could not be set.

const char *digest_string = "mydigest"

INKCacheKey mykey;

INKCacheKeyCreate(&mykey);
INKCacheKeyDigestSet(mykey,digest_string, strlen(digest_string);

Traffic Server 5.2

INKCacheKeyHostNameSet
Associates a host name to a cache key. Use if you want to support cache partitioning by host name.

Prototype

Arguments

Description

Returns

First Release

I NKRet ur nCode | NKCacheKeyHost NaneSet (| NKCacheKey key,
const unsigned char *hostnane, int host_|en;
I NKCacheKey key is the key to the cached object.

const unsi gned char *host nane is the host name you are associating to the cache key.
i nt host _| en is the length of the string host nare.

Associates a host name to a cache key. The host name setting is used in conjunction with the TS
config file partition. confi g and hosti ng. confi g that allows you to specify under which
cache partition the object should be stored.

I NK_SUCCESS if the host name was successfully associated with the cache key.
I NK_ERROR if hostname could not be set or is invalid.

Traffic Server 5.2

INKCacheKeyDestroy
Destroys a cache key.

Prototype

Arguments

I NKRet ur nCode | NKCacheKeyDest r oy(| NKCacheKey key)

I NKCacheKey key is the key to be destroyed.

216 Cache interface functions

Description Destroys a cache key (deallocate memory). You must destroy cache keys when you are finished
with them (after all reads and writes are completed).

Returns | NK_SUCCESS if the cache key was successfully destroyed.
I NK_ERROR if key could not be deallocated or was not valid.

First Release Traffic Server 5.2

INKCacheRead
Initiates a cache read or lookup of an object in the Traffic Edge cache.

Prototype | NKAction | NKCacheRead (| NKCont contp, | NKCacheKey key)

Arguments | NKCont cont p is the continuation that the cache calls back (telling it either the object exists
and can be read or not).

I NKCacheKey key is the cache key corresponding to the object to be read.

Description Asks the Traffic Edge cache if the object corresponding to key exists in the cache and can be
read.

You can do a cache lookup to determine whether or not an object is in the cache. To do a cache
lookup, call | NKCacheRead on a continuation cont p. If the object can be read, the cache calls
cont p back with the event | NK_EVENT_CACHE_OPEN_READ. In this case, the cache also passes
cont p a cache vconnection and cont p can then initiate a read operation on that vconnection
using | NKVConnRead. | NKVConnCacheObj ect Si zeGet can be used to determine the size of
the object in the cache.

If the object cannot be read (if, for instance, it is not in the cache), the cache calls cont p back
with the event | NK_EVENT_CACHE_OPEN_READ_FAI LED An error code is passed in the void
*edata argument of cont p. The error code can be:

INK_CACHE_ERROR_NOT_READY: Trying to access to the cache while it's not yet initialized.
INK_CACHE_ERROR_NO_DOC: Document does not exist in cache.
INK_CACHE_ERROR_DOC_BUSY: Trying to read a document while another continuation is
writing on it.

Any other value: unknown read failure

Finally, once you have performed a cache lookup, you can write into cache with INKCacheWrite.
The user (cont p) also has the option to cancel the action returned by | NKCacheRead by using
I NKAct i onCancel .

Note: Itis up to the user to read the data from the cache vc i obuf f er and consume it. The
cache does not bufferize the data. The cache will not call the user back unless all the data from
the cache i obuf f er is consumed.

Note that reentrant calls are possible; in other words, the cache can call back the user (cont p) in
the same call.

Returns An | NKAct i on object if successful.
I NK_ERROR_PTRif an argument is incorrect or if the API failed.

First Release Traffic Server 5.2

Function Reference 217

INKCacheReady
Determines if the Traffic Edge cache is initialized and ready to accept requests for the specified data type.

Prototype | NKRet ur nCode | NKCacheReady (int *is_ready)
Arguments int *is_ready is the argument set to non-zero if cache ready and 0 if cache not ready.

Description Asks the Traffic Edge cache if it is initialized and ready to accept requests. If the cache is not
initialized, any attempt to read, write or remove document will fail.

When a plugin starts (its | NKPI ugi nl ni t function is called), there is no guarantee that the
cache is already initialized. This APl is useful if a plugin needs to access to the cache from the
I NKPI ugi nl ni t function. If the cache is not ready, the plugin should retry later.

Returns | NK_SUCCESS if API is called successfully.
I NK_ERROR if cache ready could not be set or is invalid.

First Release Traffic Server 5.2

INKCacheWrite
Initiates writing an object to the Traffic Edge cache.

Prototype | NKAction | NKCacheWite (I NKCont contp, |NKCacheKey key)

Arguments | NKCont cont p is the continuation that the cache calls back (telling it whether the write
operation can proceed or not).

I NKCacheKey key is the cache key corresponding to the object to be cached.

Description Asks the Traffic Edge cache if cont p can start writing the object (corresponding to key) to the
cache.
If the object can be written, the cache calls cont p back with the event
I NK_EVENT_CACHE_OPEN_WRI TE. In this case, the cache also passes cont p a cache
vconnection in the voi d *edat a argument and cont p can then initiate a write operation on that
vconnection using | NKVConnW i t e. The object is not committed to the cache until the
vconnection is closed.
If the object cannot be written, the cache calls cont p back with the event
I NK_EVENT_CACHE_OPEN_WRI TE_FAI LED. This can happen, for example, if there is another
object with the same key being written to the cache. An error code is passed in the void *edata
argument of contp. The error code can be:
I NK_CACHE_ERRCR_NOT_READY: Trying to access to the cache while it's not yet initialized.

I NK_CACHE_ERRCR_DOC_BUSY: Trying to write a document while another continuation is writing
or reading it.

Any other value: unknown write failure.
The user (cont p) has the option to cancel the action returned by | NKCacheW i t e.

The actual data is written/read to the cache through the cache vconnection. When the cache calls
the user back with OPEN_READ or OPEN_WRI TE, it passes a | NKVConn to the user. The user
uses this vconnection for any data transfer. When all data has been transferred, the user must do
a | NKVConndCl ose. In case of any errors, the user must do an | NKVConnAbort (contp, 0).

Note: reentrant calls are possible; in other words, the cache can call back the user (cont p) in the
same call.

Note: | NKCacheW i t e does not overwrite content already stored in the cache under the same
cache key. If you try to do so, the cache returns | NK_EVENT_CACHE_OPEN _WRI TE_FAI LED To
overwrite content, first call | NKCacheRenopve to remove the content, then call | NKCacheW i t e.

218 Cache interface functions

Returns An | NKAct i on object if successful.
I NK_ERROR_PTRif an argument is incorrect or the API fails.

First Release Traffic Server 5.2

INKCacheRemove
Removes an object from the Traffic Edge cache.

Prototype | NKAction | NKCacheRenobve (I NKCont contp, | NKCacheKey key)

Arguments | NKCont cont p is the continuation that the cache calls back reporting the success or failure of
the remove.

I NKCacheKey key is the cache key corresponding to the object to be removed.

Description Removes the object corresponding to key from the cache.

If the object was removed successfully, the cache calls cont p back with the event
I NK_EVENT_CACHE_REMOVE.

If the object was not found in the cache, the cache calls cont p back with the event
I NK_EVENT_CACHE_REMOVE_FAI LED. An error code is passed in the voi d *edat a argument
of cont p. The error code can be:

INK_CACHE_ERROR_NOT_READY: Trying to access to the cache while it's not yet initialized.
INK_CACHE_ERROR_NO_DOC: Doc doesn't exist in cache
any other value: unknown remove failure

In both of these callbacks, the user does not have to do anything. The user does not get any
vconnection from the cache, since no data needs to be transferred. When the cache calls the
user back with | NK_EVENT_CACHE_REMOVE, the remove has already been committed.

Note that reentrant calls are possible, i.e. the cache can call back the user (cont p) in the same
call.

Returns An | NKAct i on object if successful.
I NK_ERROR_PTRif an argument is incorrect or if the API fails.

First Release Traffic Server 5.2

INKCacheKeyPinnedSet

Pins the document corresponding to the specified key in the cache so that the garbage collection process will not
delete the document from the cache for the specified number of seconds.

Prototype | NKRet ur nCode | NKCacheKeyPi nnedSet (| NKCacheKey key, tine_t
pi n_i n_cache)
Arguments | NKCacheKey key is the cache key for the document to be pinned.

ti me_t pi n_i n_cache represents the number of seconds the document is to be pinned in the
cache.

Function Reference 219

Description Pins the document corresponding to the specified key in the cache for the specified number of
seconds specified in pi n_i n_cache. Once the document is pinned, the garbage collection will
not delete this document from the specifed number of seconds and the document can even
persist across Traffic Edge re-runs. However, after the pi n_i n_cache interval has expired, the
cache may delete the document at any time in order to reclaim space.

To delete this document before the pi n_i n_cache interval expires, call the
I NKCacheRenove() function with the document’s cache key.

I nkCacheKeyPi nnedSet () should be used after a key is created and before writing the
document to cache using | NKCacheWite().

By default, a document is not pinned in the cache and so can be garbage collected at anytime.

Note that it is important that the r ecor ds. confi g variable
proxy. config. cache. perm t. pi nni ng be setto 1inrecords. confi g to enable pinning.

Returns | NK_SUCCESS if the specified object was successfully pinned in the cache.
I NK_ERROR if the pin could not be set or is invalid.

First Release Traffic Server 5.2

INKVConnCacheObjectSizeGet
Gets the size of the object in the cache.

Prototype | NKRet ur nCode | NKVConnCacheObj ect Si zeCGet (1 NKVConn connp, int
*obj _si ze)

Arguments | NKConn connp is the vconnection to the cache.
i nt *obj _si ze is set to the object size.

Description When a cached object is requested from the cache (using INKCacheRead), and if the cache
open was successful, this function can be called to get the size of the object in the cache.

Returns | NK_SUCCESS if APl is called successfully.
I NK_ERROR if an error occurs while calling the API or if an argument is invalid.

First Release Traffic Edge 4.0

Transformation functions

INKTransformCreate
Creates a transformation vconnection.

Prototype | NKVConn | NKTransfornCreate (I NKEvent Func event _funcp, INKHttpTxn txnp)

Description Creates a new transformation | NKVConn. The vconnection’s handler function is f uncp and its
mutex is taken from t xnp.

Returns The newly created transformation connection.
Example See The sample null transform plugin, on page 43.

First release Traffic Server 3.0

220 Transformation functions

INKTransformOutputVConnGet
Retrieves the downstream (output) vconnection for a transformation.

Prototype

Description

Returns

First release

I NKVConn | NKTr ansf or mout put VConnGet (| NKVConn connp)

Retrieves the output vconnection for the transformation connp. The output
vconnection may be NULL if | NKTr ansf or mout put VConnGet s called
before the write operation is initiated on connp. This is normally not an issue
since a transformation would not want to output data until it has data input into
it.

The downstream vconnection for the transformation.
I NK_ERROR_PTRif error.

Traffic Server 3.0

VIO functions

INKVIOBufferGet

Gets a VIO buffer.

Prototype

Description

Returns

First release

I NKI OBuf fer 1 NKVI OBuf ferGet (INKVIO viop)

Gets the buffer for the 10 operation described by vi op. | NKVI OBuf f er Get is used by
vconnections performing read operations. Read operations write into their buffers.

The buffer for the specified 10 operation.
I NK_ERROR_PTRif an error occurs.

Traffic Server 3.0

IINKVIOVConnGet
Gets a VIO connection.

Prototype

Description

Returns

First release

I NKVConn | NKVI OVConnGet (| NKVI O vi op)

Gets the vconnection associated with the 10 operation described by vi op. This is the
vconnection passed to | NKVConnRead or | NKVConnW i t e.

The vconnection for the specified 10 operation.
I NK_ERROR_PTRif an error occurs.

Traffic Server 3.0

Function Reference

221

INKVIOContGet

Gets an | NKVI OCont .

Prototype

Description

Returns

First release

I NKCont | NKVI OCont Get (1 NKVI O vi op)

Gets the continuation (user) for the 10 operation described by vi op. This is the continuation that
the vconnection will call back when progress is made on the 10 operation.

The continuation for the specified 10 operation.
I NK_ERROR_PTRif an error occurs.

Traffic Server 3.0

INKVIOMutexGet
Returns the mutex for the specified IO operation.(

Prototype

Description

Returns

First release

I NKMut ex | NKVI OVut exGet (| NKVI O vi op)

Gets the mutex for the 10 operation described by vi op. The mutex for the IO operation protects
the buffer and continuation and other VIO members from simultaneous access. The vconnection
implementor must obtain the mutex for a VIO before accessing any of its members. Since the
VIO mutex is the same as the continuation’s mutex, the vconnection user already holds the
mutex whenever he is running and does not have to worry about grabbing it. For information on
why vconnection transformations do not have to worry about grabbing the VIO mutex before
accessing their write VIO, see Transformations, on page 124.

The mutex for the specified IO operation.
I NK_ERROR_PTRif an error occurs.

Traffic Server 3.0

INKVIONBytesGet
Returns the number of bytes associated with a specified IO operation.

Prototype

Description

Returns

First release

int 1 NKVI ONByt esGet (I NKVI O vi op)

Gets the number of bytes to be performed by the 10 operation described by vi op. This is the
nbyt es parameter passed to | NKVConnRead or | NKVConnW i t e.

The number of bytes associated with the specified 10 operation.
I NK_ERRORif an error occurs.

Traffic Server 3.0

222 VIO functions

INKVIONBYytesSet
Sets the number of bytes for the specified IO operation.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKVI ONByt esSet (1 NKVI O vi op, int nbytes)

Sets the number of bytes to be performed by the IO operation described by vi op. Only the user
of a vconnection should call | NKVI ONByt esSet and then, only carefully. | NKVI ONByt es Set
should only be used to set the number of bytes to be done by the 10 operation to a value that is
greater than or equal to | NKVI ONDoneGet . The common usage of this function is to indicate to a
vconnection that enough IO has been performed. By setting nbyt es to the number done and re-
enabling the operation, the user can indicate to the vconnection that the operation has
completed.

I NK_SUCCESS if the number of bytes associated with the IO operation is successfully set.
I NK_ERRORif an error occurs.

Traffic Server 3.0

INKVIONDoneGet
Returns the number of bytes completed for the specified 10 operation.

Prototype

Description

Returns

First release

i nt 1 NKVI ONDoneGet (| NKVI O vi op)

Gets the number of bytes that have been completed on the IO operation described by vi op. The
number of completed bytes is also the number of bytes consumed out of or produced into the
buffer passed to the 10 operation.

The number of bytes that have been completed in the specified 10 operation.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

INKVIONDoNeSet
Sets the number of bytes completed for the specified 10 operation.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKVI ONDoneSet (1 NKVI O vi op, int ndone)

Sets the number of bytes that have been completed on the IO operation described by vi op to
ndone. Only vconnection implementors should call | NKVI ONDoneSet .

I NK_SUCCESS if the number of completed bytes associated with the 10 operation is successfully
set.

I NK_ERRORIf an error occurs.

Traffic Server 3.0

Function Reference

223

INKVIONTodoGet
Returns the number of bytes remaining for the specified 10 operation.

Prototype

Description

Returns

Example

First release

int 1 NKVI ONTodoGet (I NKVI O vi op)

Gets the number of bytes left to do on the 10 operation described by vi op. The number of bytes
left to do is equal to the total number of bytes to perform on the 10 operation minus the number
that have been done.

I NKVI ONTodoGet is a convenience function.

The number of bytes left that are associated with the specified 10 operation.
I NK_ERRORif an error occurs.

I NKVI ONTodoGet (vi op) == (viop) - | NKVI ONDoneGet

(viop);
Traffic Server 3.0

I NKVI ONByt esGet

INKVIOReaderGet
Obtains the buffer reader for the specified 10 operation.

Prototype

Description

Returns

First release

I NKI OBuf f er Reader | NKVI OReader Get (1 NKVI O vi op)

Gets a buffer reader for the 10 operation described by vi op. | NKVI OReader Cet is used by
vconnections performing write operations. Write operations read from their buffers.

The buffer reader for the specified 10 operation.
I NK_ERROR_PTRif an error occurs.

Traffic Server 3.0

INKVIOReenable

Re-enables a VIO.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKVI OReenabl e (1 NKVI O vi op)

Re-enables the vconnection associated with vi op. Re-enabling the vconnection means that the
vconnection will wake up and be able to determine that the buffer being used in its 10 operation
has changed.

I NK_SUCCESS if the vconnection successfully re-enables.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

224

VIO functions

IO buffer interface

INKIOBufferBlockNext
Gets next |0 buffer block.

Prototype | NKI OBuf f er Bl ock | NKI OBuf f er Bl ockNext (1 NKI OBuffer Bl ock bl ockp)
Description Gets the next block in the buffer block chain.

Returns The next |O buffer block.
I NK_ERROR_PTRif an error occurs.

First release Traffic Server 3.0

INKIOBufferBlockReadAvail
Indicates the number of 10 buffer bytes available for reading.

Prototype int | NKI OBufferBl ockReadAvai |l (1 NKI OBufferBl ock bl ockp,
I NKI OBuf f er Reader readerp)

Description Obtains the number of bytes available for reading in the 10 buffer block bl ockp. The r eader p
parameter is needed since each IO buffer reader maintains its own current offset.

Returns The number of bytes available for reading in the 10 buffer block.
I NK_ERRORif an error occurs.

First release Traffic Server 3.0

INKIOBufferBlockReadStart
Starts reading 10 buffer block.

Prototype const char* | NKI OBufferBl ockReadStart (1 NKI OBufferBlock bl ockp,
I NKI OBuf f er Reader readerp, int *avail)

Description Gets the start point for reading from the 10 buffer block bl ockp. The r eader p parameter is
needed since each 10 buffer reader maintains its own current offset.
| NKI OBuf f er Bl ockReadSt art stores the amount of data available for reading in the
parameter avai | . This is the same value that | NKI OBuf f er Bl ockReadAvai | returns. If
avai | is NULL then no attempt is made to de-reference it.

Note: The avai | parameter stores the amount of data available for reading on the specified
I NKI OBuf f er Bl ock. If you need to read all available data in an | NKI OBuf f er, make sure that
your code keeps checking | NKI OBuf f er Bl ocks until all the available data is read.

Returns A pointer to the starting point for reading from the specified 10 buffer block.
I NK_ERROR_PTRin case of an error.

Function Reference 225

Example Here is a sample routine, t r ansf or m r ead_st at us_event (modified from ser ver -
t ransf or m c). It attempts to read a certain number of bytes. It calls
I NKI OBuf f er Bl ockReadSt ar t to determine the number of bytes available to read (and get
the start point within the | NKI OBuf f er Bl ock to start reading). However,
I NKI OBuf f er Bl ockReadsSt art returns the available bytes within the current block only. The
| NKI OBuf f er data structure contains a linked list of | NKI OBuf f er Bl ocks, and so the
available data within the | NKI OBuf f er could span more than one | NKI OBuf f er Bl ock. The
correct way to code this subroutine is to keep checking | NKI OBuf f er Bl ocks for available data
until all of the available | NKI OBuf f er data is read.

static int
transformread_status_event (INKCont contp, TransfornmData *data,
| NKEvent event, void *edata)

switch (event) {
case | NK_EVENT_ERRCR:
case | NK_EVENT_VCONN_ECS:
return transformbypass (contp, data);
case | NK_EVENT_VCONN_READ COWVPLETE:
i f (1 NKIOBufferReaderAvail (data->output_reader) ==
sizeof (int)) {
| NKI OBuf f er Bl ock bl k;
char *buf;
voi d *buf _ptr;
int avail;
int read_nbytes = sizeof (int);

int read_ndone = 0;

buf _ptr = &data->content_| ength;
while (read_nbytes > 0) {
bl k = | NKI OBuf f er Reader St art (dat a->out put _reader);
buf = (char *)I NKI OBufferBl ockReadStart (blk,
dat a- >out put _r eader,
&avail);
read_ndone = (avail >= read_nbytes)? read_nbytes : avail;
nmencpy (buf _ptr, buf, read_ndone);
if (read_ndone > 0) {
I NKI OBuf f er Reader Consune (dat a- >out put _r eader,
read_ndone);
read_nbytes -= read_ndone;
/* move ptr frwd by read_ndone bytes */
buf _ptr = (char*)buf_ptr + read_ndone;

}
}

dat a- >content _| ength = ntohl (data->content_|ength);

) return transformread (contp, data);
226 10 buffer interface
return transformbypass (contp, data);
defaul t:
br eak;

First release Traffic Server 3.0

INKIOBufferBlockWrite Avail
Indicates the number of 10 buffer bytes available for writing.

Prototype int | NKIOBufferBl ockWiteAvail (INKIOBufferBlock bl ockp)
Description Returns the number of bytes available for writing in the 10 buffer block bl ockp.

Returns The number of bytes available for writing.
I NK_ERRORIf an error occurs.

First release Traffic Server 3.0

INKIOBufferBlockWriteStart
Starts to write 10 buffer block.

Prototype char* | NKI OBufferBl ockWiteStart (INKI OBufferBlock blockp, int *avail)

Description Gets the start point for writing into the 10 buffer block bl ockp. The amount of data available for
writing is stored in the parameter avai | . This is the same value as would be returned by. If
avai | is NULL then no attempt is made to de-reference it.

Returns A pointer to the starting point for writing to the specified 10 buffer block.
I NK_ERROR_PTRif an error occurs.

First release Traffic Server 3.0

INKIOBufferCopy
Copies an 10 buffer.

Prototype int | NKI OBufferCopy (INKIOBuffer bufp, |NKIOBufferReader readerp, int
length, int offset)

Description Copies | engt h bytes of data from the 10 buffer reader r eader p to the 10O buffer buf p. As
described above, | NKI OBuf f er Copy does not actually copy the data but simply copies pointers
and adjusts reference counts appropriately. The parameter of f set specifies the offset from
r eader p's current position to start copying from.

Returns The number of bytes actually copied.
I NK_ERRORif an error occurs.

First release Traffic Server 3.0

INKIOBufferCreate
Creates an |0 buffer.

Prototype | NKI OBuffer | NKI OBufferCreate (void)

Description Creates a new 10 Buffer. The 10 buffer is initially empty.

Function Reference 227

Returns

First release

A handle to the newly created 10 buffer.

I NK_ERROR_PTRif an error occurs.

Traffic Server 3.0

INKIOBufferDestroy
Destroys an 10 buffer.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKI OBuf f er Destroy (I NKI OBuffer bufp)

Destroys the 10 buffer buf p. Since two 10 buffers can share data this does not necessarily free
all of the data associated with the 10 buffer but simply decrements the appropriate reference
counts.

I NK_SUCCESS if the 10 buffer is successfully destroyed.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

INKIOBufferProduce
Makes a specified number of bytes of data available for reading.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKI OBuf f er Produce (I NKI Gouffer bufp, int nbytes)

Makes nbyt es of data available for reading in the buffer buf p. A common paradigm for writing
to a buffer is to copy data into a buffer block and then call | NKI OBuf f er Pr oduce to make the
new data visible to any readers.

I NK_SUCCESS if the operation completes successfully.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

INKIOBufferReaderAlloc
Allocates an 10 buffer reader.

Prototype | NKI OBuf f er Reader | NKI OBuf f er Reader Al | oc (| NKI OBuf f er buf p)
Description Allocates an 10 buffer reader for the 10 buffer buf p.
Returns A handle to the newly allocated 1O buffer.
I NK_ERROR_PTRif an error occurs.
First release Traffic Server 3.0
INKIOBufferReaderAvail
Gets the number of bytes available for reading.
Prototype int | NKI OBufferReader Avail (I NKI OBuffer Reader readerp)
Description Gets the total number of bytes available for reading by the 10 buffer reader r eader p.

228

10 buffer interface

Returns

First release

The number of bytes available for reading.
I NK_ERRCRif an error occurs.

Traffic Server 3.0

INKIOBufferReaderClone
Clones an 10 buffer reader.

Prototype

Description

Returns

First release

I NKI OBuf f er Reader | NKI OBuf f er Reader G one (I NKI OBuf f er Reader readerp)

Makes a clone of the 10 buffer reader r eader p. The cloned reader will point to the same 10
buffer and initially have the same read offset as r eader p.

A handle to the cloned IO buffer.
I NK_ERROR_PTRif an error occurs.

Traffic Server 3.0

INKIOBufferReaderConsume
Consumes an |0 buffer reader.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKI OBuf f er Reader Consune (| NKI OBuf f er Reader
nbyt es)

r eader p,
int

Moves the read offset for the 10 buffer reader r eader p ahead by nbyt es. Caution: once a
reader moves its offset ahead it can never move it back. When a reader moves its offset the data
it has moved passed is potentially freed at that moment.

I NK_SUCCESS if the operation completes successfully.
I NK_ERRCRif an error occurs.

Traffic Server 3.0

INKIOBufferReaderFree
Frees an |0 buffer reader.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKI OBuf f er Reader Free (1 NKI OBuf f er Reader readerp)

Frees an IO buffer reader. The 10 buffer maintains a reference to each reader accessing it and
will free those references when the buffer gets destroyed making it unnecessary to call

I NKI OBuf f er Reader Fr ee. It is sometimes useful to free an 10 buffer reader if the reader is no
longer being used to allow the buffer data to automatically be de-allocated when other readers
have consumed it.

I NK_SUCCESS if the 10 buffer is successfully freed.
I NK_ERRORIf an error occurs.

Traffic Server 3.0

Function Reference

229

INKIOBufferReaderStart
Starts an IO buffer reader.

Prototype

Description

Returns

First release

I NKI OBuf f er Bl ock | NKI OBuf f er Reader Start (1 NKI OBuf f er Reader readerp)

Gets the read start block for the 10 buffer reader. | NKI OBuf f er Reader St art may return NULL
if there is no data available for reading. It may also return an 10 buffer block with no data
available for reading. Both conditions need to be checked for.

The read start block for the 10 buffer reader.
I NK_ERROR_PTRif an error occurs.

Traffic Server 3.0

INKIOBufferSizedCreate
Creates an | NKI OBuf f er with specified size index.

Prototype

Arguments

Description

Returns

First release

I NKI OBuf fer | NKI OBufferSizedCreate (I NKIOBufferSizelndex index)

I NKI OBuf f er Si zel ndex i ndex is the size of the new | OBuf f er to create and should be
one of the following values:

| NK_| OBUFFER_SI ZE_| NDEX_128
| NK_| OBUFFER_SI ZE_| NDEX_256
| NK_| OBUFFER_SI ZE_| NDEX_512
| NK_I OBUFFER_SI ZE_| NDEX_1K
| NK_| OBUFFER_SI ZE_| NDEX_2K
| NK_I OBUFFER_SI ZE_| NDEX_4K
| NK_| OBUFFER_SI ZE_| NDEX_8K
| NK_| OBUFFER_SI ZE_| NDEX_16K
| NK_| OBUFFER_SI ZE_| NDEX_32K

Creates an | NKI CBuf f er of the specifed size.

An |OBuffer object if the API call is successful.
I NK_ERROR_PTRif an error occurs while calling the API or if an argument is invalid.

Traffic Server 5.2

INKIOBufferStart

Starts an |0 buffer.

Prototype

Description

Returns

First release

I NKI OBuf f er Bl ock | NKI CBufferStart (I NKIOBuffer bufp)

Gets the write start block for the 10 buffer buf p. | NKI OBuf f er St ar t will always return a block
with some non-zero amount of space available for writing. A new block will be added if necessary
to accomplish this.

The write start block for the 10 buffer writer.
I NK_ERROR_PTRif an error occurs.

Traffic Server 3.0

230

10 buffer interface

INKIOBufferWaterMarkGet
Gets the current watermark for the specified buffer.

Prototype | nkRet urnCode | NKI CBuf f er Wat er Mar kGet (1 NKI OBuf fer bufp, int
*wat er mar k)

Arguments | NKI OBuf f er buf p is the IOBuffer whose water_mark is to be obtained.
i nt *wat er mar k is set to the watermark value.
Description Gets the current watermark for the specified buffer. A water mark applies only to a

NetVConnection and should be used only when reading data from a NetVC. Note that this is only
applicable for NetVC.

When water mark is set to N, and after having called INKVConnRead, the Net processor calls
back the reader (with an event INK_VCONN_READ_READY) only when at least N bytes of data
are available for reading.

Returns | NK_SUCCESS if API call is successful.
I NK_ERRORif an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 5.2

INKIOBufferWaterMarkSet
Sets the current watermark for the specified buffer.

Prototype | NKRet ur nCode | NKI OBuf f er Wat er Mar kSet (1 NKI OBuf f er bufp,int water_mark)

Arguments | NKI OBuf fer buf p is the | OBuf f er whose watermark is to be set.
i nt wat er _nar k is the watermark value to set for buf p.

Description Sets the current watermark of the specified buffer.

A water mark applies only to a NetVConnection and should be used only when reading data from
a NetVC. When water mark is set to N, and after having called INKVConnRead, the Net
processor calls back the reader (with an event INK_VCONN_READ_READY) only when at least
N bytes of data are available for reading.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERROR if an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 5.2

INKIOBufferWrite
Appends the specified number of bytes from a buffer to the 10 buffer.

Prototype int INKIOBufferWite (INKIOBuffer bufp, const char *buf, int |en)

Arguments | NKI OBuf f er buf p is the target | OBuf f er to receive the data.
const char *buf is the buffer which contains the data.
i nt | enis the length of the data to write.

Description This function appends data from *buf to | OBuf f er buf p, the length of data being appended is
given in | en. The returned value is the actual length of data being appended.

Function Reference 231

Returns

Example

First release

The length of data copied if APl call is successful.

I NK_ERRORif an error occurs while calling the API or if an argument is invalid.
INKIOBufferWite offers the same functionality as the deprecated
functions | NKI OBuf f er Append, | NKI OBufferDataCreate and

I NKI OBuf f er Bl ockCreate. To append the content of a buffer buf of size

len into an | CBuffer, we recomend using | NKIOBufferWite which has the
foll owi ng prototype:

int INKIOBufferWite (INKIOBuffer bufp, const char *buf, int len);

The equivalent of this APl in SDK2.0 is the foll owi ng sni ppet of code:
| NKI OBuf f er Bl ock bl ock;

int avail, ndone, ntodo, towite;

char *ptr_bl ock;

ndone 0;
ntodo = | en;
while (ntodo > 0) {
/* INKIOBufferStart allocates nore blocks if required */
bl ock = | NKI CBufferStart (bufp);
ptr_block = I NKI OBuf ferBl ockWiteStart (block, &avail);
towite = mn(ntodo, avail);
mencpy (ptr_block, buf+ndone, towite);
I NKI OBuf f er Produce(bufp, towite);
ntodo -= towite;

ndone += towrite;

Traffic Server 5.2

232

10 buffer interface

Management interface function

INKMgmtUpdateRegister
Sets up a plugin’s management interface.

Prototype | NKRet ur nCode | NKMgnt Updat eRegi ster (I NKCont contp,
const char *plugi n_nane, const char *path)
Arguments cont p is the continuation to be called back if the plugin’s configuration is changed. The handler
function for this continutation must handle the event | NK_EVENT_MaMI_UPDATE.

pl ugi n_narme is the name of the plugin. This name must match the name of the plugin specified
in your CGI form submission for | NK_PLUG N_NAME.

pat h is the location of the plugin's interface, relative to the Traffic Edge plugin directory (as
specified in the r ecor ds. confi g variable pr oxy. confi g. pl ugi n. pl ugi n_di r). If your
plugin has a web user interface, then pat h must be located under the Traffic Edge config
directory. This is because Traffic Manager derives the root of all of its web interfaces from the
Traffic Edge config directory.

For example, pat h could be Bl ackl i st/ ui /i ndex. htm orBl acklist/ui/index.cgi.
The Traffic Edge administrator can view the interface at the following URL:
http://traffic_manager: 8081/ pl ugi ns/ Bl ackl i st/ ui/index. htm
Alternatively the administrator can access the interface in the Traffic Manager Ul, through the
Plugin icon in the Configure tab.

Description Informs Traffic Manager about your plugin’s interface (in the path argument).

Sets up a callback to your plugin when configuration changes are submitted. Your CGI program
must set | NK_PLUG N_NAME to be the name of your plugin, so that Traffic Manager knows who
to tell Traffic Edge to call. Traffic Edge calls back the continuation with the event

I NK_EVENT_MGMI_UPDATE. (The handler function for the continuation must handle the event

I NK_EVENT_MGMTI_UPDATE.) See the blacklist-1.c, on page 245 for an example.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRORif an error occurs.

First release Traffic Server 3.5

Traffic Edge Configuration Read Functions

INKMgmtCounterGet
Getarecords. confi g variable of type count er.

Prototype int | NKMgnt Counter Get (const char *var_nane, | NKWMgnt Counter *result)

Arguments var _nane is the name of the variable you want from r ecor ds.conf i g.
resul t is a pointer to the value of the variable. This value is of type | NKMgnt Count er.

Description | NKMgnt Count er Get obtains the value of the specified r ecor ds. conf i g variable of type
count er, and stores the value inresul t .

Function Reference 233

Returns If | NKMgnt Count er Get could not get the variable, it returns zero. If successful, a nonzero
value is returned.

First release Traffic Server 3.5

INKMgmtFloatGet
Getarecords. confi g variable of type f | oat .

Prototype int | NKwgnt Fl oat Get (const char *var_name, | NKMgmt Fl oat *result)

Arguments var _nane is the name of the variable you want from r ecor ds.confi g.
resul t is a pointer to the value of the variable. This value is of type | NKMgnt Fl oat .

Description | NKMgnt Fl oat Get obtains the value of the specified r ecor ds. conf i g variable of type
f1 oat, and stores the value inresul t .

Returns If | NKMgnt Fl oat Get could not get the variable, it returns zero. If it was successful, a nonzero
value is returned.

First release Traffic Server 3.5

INKMgmtintGet
Getarecords. confi g variable of type i nt .

Prototype int INKMgntlntGet (const char *var_nane, |NKMgntlInt *result)

Arguments var _nane is the name of the variable you want from r ecor ds.confi g.
resul t is a pointer to the value of the variable. This value is of type | NKMgnt | nt .

Description | NKMgnt | nt Get obtains the value of the specified r ecor ds. conf i g variable of type i nt, and
stores the value inresul t .

Returns If | NKMgnt | nt Get could not get the variable, it returns zero. If it was successful, a nonzero
value is returned.

Example The following code fragment does something if keepalive is enabled on Traffic Edge:
I NKMgnt I nt result;
if (I NKMgntlntGet(“proxy.config.http.keep_alive_enabled‘, &esult)) {
if (result){
/'l keepalive is enabled, do sonething

}
}

el se INKError (“could not retrieve value\n”);

First release Traffic Server 3.5

INKMgmtStringGet
Getarecords. confi g variable of type St ri ng.

Prototype int INKMgnt StringGet (const char *var_name, |INKMgntString *result)

Arguments var _nane is the name of the variable you want from r ecor ds.confi g.
resul t is a pointer to the value of the variable. This value is of type | NKMgnt St ri ng.

234 Traffic Edge Configuration Read Functions

Description | NKMgnt St ri ngGet obtains the value of the specified r ecor ds. confi g variable of type
Stri ng, and stores the value inresul t .

When done with the result, your plugin must deallocate the result string with a call to INKfree.

Returns If | NKMgmt St ri ngGet could not get the variable, it returns zero. If it was successful, a nonzero
value is returned.

First release Traffic Server 3.5

Customer installation and licensing functions

INKInstallDirGet
Gets Traffic Edge’s install directory.

Prototype const char * I NKlnstallDirGet(void)
Description Get Traffic Edge’s installation directory.
Returns A pointer to a string containing the Traffic Edge’s installation directory.

First release Traffic Server 3.5

INKPIuginDirGet
Gets the plugin directory.

Prototype const char * | NKPI ugi nDi r Get (voi d)

Description Get the plugin directory relative to Traffic Edge’s install directory. This path (relative to the Traffic
Edge install directory) is stored in the r ecor ds. conf i g variable
proxy. config. pl ugin. plugin_dir
The default value is conf i g/ pl ugi n.

Returns A pointer to a string containing the plugin directory.

Example To open the file Bl ackl i st/ ui /bl acklist_config.txt, use

I NKf open (“INKInstallDirGet()/1NKPluginbirGet()/Blacklist/uil/
bl ackl i st _config.txt”);

First release Traffic Server 3.5

INKPluginLicenseRequired
Lets Traffic Edge know that a license key is required for the plugin.

Prototype int | NKPl ugi nLi censeRequi red(voi d)

Description Determines if a license is required and, if so, Traffic Edge looks at the pl ugi n. db file for the
license key. If this function is not defined, a license is not required for the plugin.

Returns Returns zero if no license is required.
Returns 1 if a license is required.

Function Reference 235

Example #include <stdio. h>
#i ncl ude "1 nkAPI . h"

void I NKPluginlnit (int argc, const char *argv[])

{
printf ("hello world\n");
}
int | NKPI ugi nLi censeRequi r ed(voi d)
{
return 1;
}

First release Traffic Server 3.5

Statistics functions

Uncoupled statistics

INKStatFloatGet
Obtains the value of a float stat.

Prototype | NKRet ur nCode | NKSt at Fl oat Get (I NKSt at stat, float *val ue)

Returns | NK_SUCCESS if the API is called successfully.
I NK_ERRORf an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

INKStatintGet
Obtains the value of an integer stat.

Prototype | NKReturnCode | NKStatlntGet (I NKStat stat, |NK64 *val ue)

Returns | NK_SUCCESS if the API is called successfully.
I NK_ERRORIf an error occurs while calling the API or if an argument is invalid.

First release Traffic Server 3.5

INKStatFloatAddTo
Adds a float value to a float statistic.

Prototype | NKRet urnCode | NKSt at Fl oat AddTo (I NKStat the_stat, float anount)

Description Adds a float value to a float statistic.

236 Statistics functions

Returns

First release

I NK_SUCCESS if the operation completes successfully.
I NK_ERRCRif an error occurs.

Traffic Server 3.5

INKStatintAddTo

Adds an INK64 value to an integer statistic.

Prototype
Description

Returns

First release

I NKRet ur nCode | NKSt at | nt AddTo (INKStat the_stat, |NK64 anount)
Adds an I NK64 value to an integer statistic

I NK_SUCCESS if the operation completes successfully.
I NK_ERRORIf an error occurs.

Traffic Server 3.5

INKStatCreate

Creates a new | NKSt at .

Prototype

Description

Returns

First release

I NKStat | NKStat Create (const char * the_nane, |NKStatTypes the_type)

Creates a new INKStat. The value pointed to byt he_nane is the name you use to view the
statistic using Traffic Line. See Viewing statistics using Traffic Line, on page 139. There are two
I NKSt at Types: | NKSTAT_TYPE_| NT64, and | NKSTAT_TYPE_FLOAT.

A handle to the newly created | NKSt at .
I NK_ERROR_PTRif an error occurs.

Traffic Server 3.5

INKStatDecrement

Decrements a stat.

Prototype
Description

Returns

First release

I NKRet ur nCode | NKSt at Decr enent (1 NKSt at the_stat)
Decrenents a stat.

I NK_SUCCESS if the operation completes successfully.
I NK_ERRORIf an error occurs.

Traffic Server 3.5

INKStatincrement

Increments a stat.

Prototype

Description

I NKRet ur nCode | NKSt at | ncrenent (1 NKStat the_stat)

Increments a stat.

Function Reference 237

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRCRif an error occurs.

First release Traffic Server 3.5

INKStatFloatSet
Sets the value of a float stat to a particular value.

Prototype | NKRet urnCode | NKSt at Fl oat Set (I NKStat the_stat , float the_value)
Description Sets the value of a float stat to the specified val ue.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRCRif an error occurs.

First release Traffic Server 3.5

INKStatintSet
Sets the value of an integer stat to a particular value.

Prototype | NKRet urnCode | NKStatlntSet (1 NKStat the_stat , |NK64 the_val ue)
Description Sets the value of a integer stat to a particul ar val ue.

Returns | NK_SUCCESS if the operation completes successfully.
I NK_ERRCRif an error occurs.

First release Traffic Server 3.5

Coupled statistics

INKStatCoupledGlobalAdd
.Creates a global coupled stat.

Prototype | NKStat | NKStat Coupl edd obal Add (I NKCoupl edSt at gl obal _copy ,
const char * the_nanme , |INKStatTypes the_type)
Description gl obal _copy is the name of the global coupled stat category to which your new coupled stat
belongs.

t he_nanme is the name you use to view the statistic using Traffic Line. See Viewing statistics
using Traffic Line, on page 139. There are two | NKSt at Types: | NKSTAT_TYPE_| NT64, and
| NKSTAT_TYPE_FLOAT.

See To add coupled statistics:, on page 138.

Returns A handle to the newly created global coupled stat.
I NK_ERROR_PTRif an error occurs.

First release Traffic Server 3.5

238 Statistics functions

INKStatCoupledLocalAdd
Creates a local copy of a global coupled stat.

Prototype | NKStat | NKStat Coupl edLocal Add (| NKCoupl edStat | ocal _copy ,
const char * the_nanme , |INKStatTypes the_type)
Description | coal _copy is the name of the local coupled stat category to which your new coupled stat
belongs.

t he_nanme is the name you use to view the statistic using Traffic Line. See Viewing statistics
using Traffic Line, on page 139. There are two | NKSt at Types: | NKSTAT_TYPE_| NT64, and
| NKSTAT_TYPE_FLOAT.

See To add coupled statistics:, on page 138.

Returns A handle to a local copy of the global coupled stat.
I NK_ERROR_PTRif an error occurs.

First release Traffic Server 3.5

INKStatCoupledGlobalCategoryCreate
Creates a global coupled stat category.

Prototype | NKCoupl edStat | NKSt at Coupl edd obal Cat egoryCreate (
const char * the_nane)
Description Returns a new global coupled stat category. Use this function in I NKPI ugi nl ni t . The name

argument is the name you use to access this stat in Traffic Line. See Viewing statistics using
Traffic Line, on page 139.

See To add coupled statistics:, on page 138.

Returns A handle to a the newly created global coupled stat category.
I NK_ERROR_PTRif an error occurs.

First release Traffic Server 3.5

INKStatCoupledLocalCopyCreate
.Creates a local copy of a global coupled stat category.

Prototype | NKCoupl edSt at | NKSt at Coupl edLocal CopyCreate (const char * the_nane ,
I NKCoupl edSt at gl obal _copy)

Description Returns a new local coupled stat category. Use this function in any routine where you need to
modify local copies of global statistics. The name argument is the name you use to access this
stat in Traffic Line. See Viewing statistics using Traffic Line, on page 139.

See To add coupled statistics:, on page 138.

Returns A handle to the local copy of the global coupled stat category.
I NK_ERROR_PTRif an error occurs.

First release Traffic Server 3.5

Function Reference 239

INKStatCoupledLocalCopyDestroy
.Destroys a local category of statistics.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKSt at Coupl edLocal CopyDestroy (
I NKCoupl edSt at | ocal _copy)

Destroys a local statistics category. Always destroy the local category when you are done with it.
See To add coupled statistics:, on page 138.

I NK_SUCCESS if the operation completes successfully.
I NK_ERRCRif an error occurs.

Traffic Server 3.5

INKStatsCoupledUpdate
Updates a category of coupled statistics.

Prototype

Description

Returns

First release

I NKRet ur nCode | NKSt at sCoupl edUpdat e (1 NKCoupl edSt at | ocal _copy)

Updates all of the coupled stats belonging to the category | ocal _copy. See To add coupled
statistics:, on page 138.

I NK_SUCCESS if the operation completes successfully.
I NK_ERRCRif an error occurs.

Traffic Server 3.5

Logging functions

INKTextLogObjectCreate
Creates a new custom log for your plugin.

Prototype

Arguments

I NKRet ur nCode | NKText LogChj ect Create (const char *filenane, int node,
| NKText LogObj ect *new_| ogobj)

Const char *fil enane is the name of the new log file. The new log file is created in the log
directory. You can specify a path to a subdirectory within the log directory (e.g. subdi r/

fi | ename) but make sure you create the subdirectory first. If you do not specify a file name
extension, the extension . | og is automatically added.

The logs you create are treated like ordinary logs; they are rolled if log rolling is enabled. (Log
collation is not supported though).

i nt node is one (or both) of the following (can be 0):
| NK_LOG MODE_ADD T MESTAMP

Whenever the plugin makes a log entry using | NKText LogObj ect Wi t e (see below), it
prepends the entry with a timestamp.

| NK_LOG_MODE_DO_NOT_RENAMVE

This means that if there is a filename conflict, Traffic Edge should not attempt to rename the
custom log. The consequence of a name conflict is that the custom log is not created.

I NKText LogCbj ect *new_| ogobj is set to the newly created log object.

240 Logging functions

Description Creates a custom log for your plugin. Once log object is created, APIs
| NKText LogObj ect Rol | i ngEnabl edSet ,
I NKText LogObj ect Rol | i ngl nt erval SecSet,
I NKTExt LogObj ect Rol | i ngOf f set Hr Set can be used on it to set properties.

If the value of mode is not a valid value, then the behavior of the API cannot be predicted.

Returns | NK_SUCCESS if APl is called successfully.
I NK_ERRORif an error occurs while calling the API or if an argument is invalid.

Example Example: suppose you call
| NKText LogCbj ect Create ("squid® , node, NULL, & oQ);

If rode is | NK_LOG_MODE_DO_NOT_RENAME, you will NOT get a new log (you'll get an error) if
squid.log already exists.

If rode is not | NK_LOG_MODE_DO_NOT_RENAME, Traffic Edge tries to rename the log to a new
name (it will try squi d_1. | 0g).

If a log object is created with | NK_LOG_MODE_DO_NOT_RENAME mode and a log with the same
file name pre-exists, then the signature (type of log file) is compared. If the signature log files
match, the pre-existing file is opened and logging is resumed at the end of the file. IF the
signatures do not match, an error is returned.

If a log object is created without | NK_LOG_MODE_DO_NOT_RENAME mode and a log with the
same file name pre-exists, then the signature (type of log file) is compared. If the signatures of
the log files match, the pre-existing file is opened and logging is resumed at the end of the file. If
the signature does not match, another file with fi | enane_1. | og is tried and so on.

Signature of log file is a type of log file. Log files can be structured/fixed format log files or
unstructured/free format log files. All free format log files have the same signature, while structure
log files have the structure/fixed format of the log file as its signature.

First Release Traffic Server 5.2

INKTextLogObjectHeaderSet
Sets a log file header.

Prototype | NKRet ur nCode | NKText LogOhbj ect Header Set (| NKText LogObj ect the_obj ect,
const char *header)

Arguments | NKText LogObj ect t he_obj ect is the log object you want to set the header.
const char *header is alog file header.

Description A header for a log object is the banner (a text line) which is printed at the top of the log file. This
API must be used once the object is created (using | NKText LogQbj ect Cr eat e) and before
writing into logs (using | NKText LogQObj ect Wi t e). By default a null header (empty line) is
used.

Returns | NK_SUCCESS if APl is called successfully.
I NK_ERRORif an error occurs while calling the API or if an argument is invalid.

First Release Traffic Server 5.2

Function Reference 241

INKTextLogObjectRollingEnabledSet
Enable/disable rolling for a log object..

Prototype

Arguments

Description

Returns

Example

First Release

I NKRet ur nCode | NKText LogCbj ect Rol | i ngEnabl edSet (
t he_object, int *rolling_enabl ed)

| NKText LogQhbj ect

| NKText LogObj ect t he_obj ect is the log object you want to enable/disable rolling.
int rolling_enabl ed 1to enable rolling, O to disable.

This APl must be used once the object is created (using | NKText LogCbj ect Cr eat e) and
before writing into logs (using | NKText LogCbj ect Wit e). If

I NKText LogObj ect Rol | i ngEnabl edSet is not called, the default value as specified in
recor ds. confi g by parameter pr oxy. confi g. | 0og2.rol | i ng_enabl ed is used.

The rolling interval and offset can be specified using the APIs
| NKText LogCbj ect Rol I i ngl nt erval SecSet and
| NKText LogObj ect Rol | i ngOf f set Hr Set .

I NK_SUCCESS if APl is called successfully.
I NK_ERRORif an error occurs while calling the API or if an argument is invalid.

Rolling example:

If rolling is enabled, the rolling interval set to 21600 sec (6 hours) and the offset hour set to 0
(midnight). Then the logs will be rolled at 0:00am, 06:00am, 12:00pm and 18:00pm each day.

Note: If the maximum amount of disk space reserved for logs is exhausted and if parameter
proxy.config.log2.auto_delete_rolled_fil esisenabledinrecords. confi g, rolled
files are automatically deleted by Traffic Edge to free up some space.

Traffic Server 5.2

INKTextLogObjectRollingintervalSecSet
Sets the rolling interval for a log object.

Prototype

Arguments

Description

Returns

First Release

I NKRet ur nCode | NKText LogQhj ect Rol |'i ngl nt erval SecSet (
the_object, int rolling_interval _sec)

| NKText LogChj ect

I NKText LogCbj ect t he_obj ect is the log object you want to set the rolling interval.
int rolling_interval _sec istherolling interval, in seconds.

This APl must be used once the object is created (using | NKText LogCbj ect Cr eat e) and
before writing into logs (using | NKText LogCbj ect Wi t). By default a null header is used.

If | NKText LogObj ect Rol |'i ngl nt er val SecSet is not called, the defaut value as specified in
records. confi g by parameter pr oxy. confi g.l og2.rol li ng_i nterval _sec is used.

The rolling offset can be specified using the API | NKText LogQhbj ect Rol | i ngOf f set Hr Set .

I NK_SUCCESS if APl is called successfully.
I NK_ERROR if an error occurs while calling the API or if an argument is invalid.

Traffic Server 5.2

242

Logging functions

INKTextLogObjectRollingOffsetHrSet
Sets Set the rolling offset for a log object.

Prototype | NKRet ur nCode | NKText LogChj ect Rol |'i ngOf f set Hr Set (| NKText LogChj ect
the_object, int rolling_offset_hr)

Arguments | NKText LogObj ect t he_obj ect is the log object you want to set the rolling offset.
int rolling_offset_hr istherollinginterval, in seconds.
Description This API must be used once the object is created (using | NKText LogQhj ect Cr eat e) and

before writing into logs (using | NKText LogCbj ect Wi t e). By default a null header is used.

If | NKText LogQhj ect Rol | i ngOf f set Hr Set is not called, the defaut value as specified in
records. confi g by parameter pr oxy. confi g.1 0g2.rol | i ng_of fset _hr is used.

The rolling interval can be specified using the API
| NKText LogObj ect Rol | i ngl nt erval SecSet .

Returns | NK_SUCCESS if APl is called successfully.
I NK_ERRORif an error occurs while calling the API or if an argument is invalid.

First Release Traffic Server 5.2

INKTextLogObjectWrite
Writes a text entry to a custom log file.

Prototype | nkRet urnCode | NKText LogObj ect Wite (I NKTextLogChject the_object, char
*format, ...)

Arguments t he_obj ect is the log object to write to. You must first create this log file with
| NKText LogCbj ect Creat e.
char *fornmat is a printf-style formatted statement to be printed.

. are the parameters in the formatted statement. A newline is automatically added to the end.
Description Writes a text entry to a custom log file.

Returns | NK_SUCCESS if APl is called successfully.
I NK_ERRORif an error occurs while calling the API or if an argument is invalid.

Example Suppose you call:
int my_value = 2001;
I NKText LogCbj ect Wite (log, “my value: %", my_val ue);
If mode is set to ADD_TI MESTAM®, the log should look like:
<timestanp> ny val ue: 2001

First Release Traffic Server 5.2

INKTextLogObjectFlush
Flushes the contents of a specified log file’s log write buffer to disk.

Prototype | NKRet ur nCode | NKText LogQhj ect Fl ush (| NKText LogChj ect the_object)

Arguments | NKText LogObj ect t he_obj ect s the log file whose write buffer you want to flush. You have
to first create this object with | NKText LogObj ect Cr eat e.

Function Reference 243

Description

Returns

First Release

This immediately flushes the contents of the log write buffer for t he_obj ect to disk. Use this call
only if you want to make sure that log entries are flushed immediately. This call has a
performance cost. Traffic Edge flushes the log buffer automatically about every 1 second.

I NK_SUCCESS if the API is called successfully.
I NK_ERROR if an error occurs while calling the API or if an argument is invalid.

Traffic Server 5.2

INKTextLogObjectDestroy
Destroys a custom log file created by | NKText LogObj ect Cr eat e.

Prototype

Arguments

Description

Returns

First Release

I NKRet ur nCode | NKText LogChj ect Destroy (| NKText LogQhj ect the_obj ect)

I NKText LogObj ect the_obj ect isthe custom log file you want to destroy. You have to first
create this object with | NKText LogChj ect Cr eat e.

Destroys a log object (a plugin’s custom log file) and releases the memory allocated to it. Use this
call if done with the log.

I NK_SUCCESS if the API is called successfully.
I NK_ERROR if an error occurs while calling the API or if an argument is invalid.

Traffic Server 5.2

244 Logging functions

APPENDIX A

Sample Source Code

This appendix provides several source code examples. In the PDF and HTML formats of
this book, function calls are linked to their references in the previous chapters. The
following sample plugins are provided:

m blacklist-1.c, on page 245

blacklist-1.c

The sample blacklisting plugin included in the Traffic Edge SDK is bl ackl i st-1. c. This

plugin checks every incoming HTTP client request against a list of blacklisted web sites. If
the client requests a blacklisted site, the plugin returns an “access forbidden” message to

the client.

This plugin illustrates:

m An HTTP transaction extension

m How to examine HTTP request headers
m How to use the logging interface

m How to use the plugin configuration management interface

/* blacklist-1.c: an exanple programthat denies client access
* to blacklisted sites. This plugin illustrates
how to use configuration infornation froma
* configuration file (blacklist.txt) that can be

* updat ed through the Traffic Manager Ul .

* Copyright (c) 1999/2000 Inktom Corporation. All Rights Reserved.
* Aut hori zed possession and use of this software is only pursuant

* to the terms of a witten |license agreenent.

* Usage:
* (NT) : BlackList.dll
* (Solaris) : blacklist-1.so

*

*/

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude "1 nkAPI . h"

#defi ne MAX_NSI TES 500

static char* sites[MAX_NSI TES];
static int nsites;

static | NKMutex sites_nutex;
static | NKText LogObj ect | og;

static void

handl e_dns (I NKHtt pTxn txnp, | NKCont contp)
{

I NKMBuUf f er buf p;

I NKM_oc hdr _| oc;

I NKM.oc url _I oc;

const char *host;

int i;

int host_| ength;

if (I NKHt pTxndientReqGet (txnp, &bufp, &hdr_loc)) {
INKError ("couldn't retrieve client request header\n");
got o done;

}

url _loc = INKHtt pHdr Url Get (bufp, hdr_loc);

if (lurl_loc) {
INKError ("couldn't retrieve request url\n");
| NKHandl eM_ocRel ease (bufp, I NK_NULL_M.QOC, hdr_loc);
goto done;

}

host = I NKUr | Host Get (bufp, url_loc, &host_length);

if ('host) {
INKError ("couldn't retrieve request hostname\n");
I NKHandl eM.ocRel ease (bufp, hdr_loc, url_loc);
| NKHandl eM_ocRel ease (bufp, I NK_NULL_M.OC, hdr_loc);
got o done;

}

I NKMut exLock(si t es_nut ex);

for (i =0; i <nsites; i++) {
if (strncnp (host, sites[i], host_length) == 0) {
if (log) {
| NKText Loghj ect Wite(log, "blacklisting site: %", sites[i]);

246 Dblacklist-1.c

} else {
printf ("blacklisting site: %\n", sites[i]);
}
I NKHt t pTxnHookAdd (t xnp,
I NK_HTTP_SEND_RESPONSE_HDR_HOCK,
cont p);
I NKHandl eSt ri ngRel ease (bufp, url_loc, host);
I NKHandl eM_ocRel ease (bufp, hdr_loc, url_loc);
| NKHandl eM_ocRel ease (bufp, | NK_NULL_M.OC, hdr_|oc);
I NKHt t pTxnReenabl e (txnp, | NK_EVENT_HTTP_ERRCR) ;
I NKMut exUnl ock(sites_mutex);

return;

I NKMut exUnl ock(sites_mutex);

| NKHandl eSt ri ngRel ease (bufp, url_loc, host);

| NKHandl eM_ocRel ease (bufp, hdr_loc, url_loc);

| NKHandl eM_ocRel ease (bufp, I NK_NULL_M.QOC, hdr_loc);

done:
I NKHt t pTxnReenabl e (txnp, | NK_EVENT_HTTP_CONTI NUE) ;

static void
handl e_response (I NKH t pTxn txnp)
{

I NKMBuUf f er buf p;

I NKM_oc hdr _| oc;

I NKM_oc url _I oc;

char *url _str;

char *buf;

int url_length;

if (' NKH tpTxnd i ent RespGet (txnp, &bufp, &hdr_loc)) {
INKError ("couldn't retrieve client response header\n");

got o done;

I NKHt t pHdr St at usSet (buf p, hdr I oc, | NK_HTTP_STATUS FORBI DDEN) ;
| NKHt t pHdr ReasonSet (bufp, hdr_I oc,
| NKHt t pHdr ReasonLookup (| NK_HTTP_STATUS_FORBI DDEN) ,
strlen (I NKHt t pHdr ReasonLookup (| NK_HTTP_STATUS FORBI DDEN)));

if (' NKHtpTxndient ReqGet (txnp, &bufp, &hdr_loc)) {
INKError ("couldn't retrieve client request header\n");

Sample Source Code 247

I NKHandl eM_ocRel ease (bufp, I NK_NULL_M.QOC, hdr_loc);

got o done;

url _loc = INKHtt pHdr Url Get (bufp, hdr_loc);
if (lurl_loc) {
INKError ("couldn't retrieve request url\n");
| NKHandl eM_ocRel ease (bufp, I NK_NULL_M.OC, hdr_loc);

goto done;

buf = (char *)INKmal |l oc (4096);

url _str = INKU I StringGet (bufp, url_loc, &url _length);

sprintf (buf, "You are forbidden fromaccessing \"%\"\n", url_str);
I NKfree (url_str);
| NKHandl eM_ocRel ease (bufp, hdr_loc, url_loc);
| NKHandl eM_ocRel ease (bufp, | NK_NULL_M.OC, hdr_|oc);
I NKHt t pTxnError BodySet (txnp, buf, strlen (buf), NULL);
done:

I NKHt t pTxnReenabl e (txnp, | NK_EVENT_HTTP_CONTI NUE) ;

}

static void

read_bl ackl i st (void)

{
char blacklist_file[1024];
INKFile file;
sprintf (blacklist file, "%/blacklist.txt", INKPluginDirGet());

file = INKfopen(blacklist_file, "r");

I NKMut exLock (sites_nutex);

nsites = 0;

if (file !I'= NULL) {
char buffer[1024];

while (INKfgets (file, buffer, sizeof(buffer)-1) !'= NULL &&

nsites < MAX_NSI TES) {
char* eol;
if ((eol = strstr(buffer, "\r\n")) !'= NULL) {

/* To handl e newl i nes on Wndows */

248

blacklist-1.c

*eol ="'\0";

} else if ((eol = strchr(buffer, *\n")) !'= NULL) {
*eol ='\0";

} else {

/* Not a valid line, skipit */

conti nue;

}

if (sites[nsites] != NULL) {
INKfree (sites[nsites]);

}

sites[nsites] = INKstrdup (buffer);
nsit es++;

I NKf cl ose (file);

} else {

I NKError ("unable to open %\n", blacklist _file);
INKError ("all sites will be allowed\n", blacklist_file);

}

I NKMut exUnl ock (sites_mutex);

static int

bl ackl i st_plugin (I NKCont contp, |INKEvent event, void *edata)

{
INKHt t pTxn txnp = (I NKHtt pTxn) edat a;
switch (event) {
case | NK_EVENT_HTTP_OS_DNS:
handl e_dns (txnp, contp);
return O;
case | NK_EVENT HTTP_SEND RESPONSE_HDR:
handl e_r esponse (txnp);
return O;
case | NK_EVENT_MGMI_UPDATE:
read_bl acklist ();
return O;
defaul t:
br eak;
}
return O;
}
int

Sample Source Code 249

check_ts_version() {

const char* ts_version = | NKTrafficServerVersionCet();

int result = 0;

if (ts_version) {

int major_ts_version 0;

int mnor_ts_version 0;

int patch_ts_version 0;

if (sscanf(ts_version, "%. %l. %", &major_ts_version,
&mi nor _ts_version, &patch_ts_version) != 3) {
return O;

}

/* Since this is an TS-SDK 2.0 plugin, we need at
| east Traffic Server 3.5.2 to run */
if (major_ts_version > 3) {
result = 1;
} else if (mpjor_ts_version == 3) {
if (mnor_ts_version > 5) {
result = 1;
} else if (mnor_ts_version == 5) {
if (patch_ts_version >= 2) {
result = 1;

}

return result;

voi d
I NKPl uginlnit (int argc, const char *argv[])
{

int i;

I NKCont cont p;

I NKPI ugi nRegi strationlnfo info;

int error;

info.plugin_name = "blacklist-1";

i nfo. vendor _nane = "M/Conpany";

info.support_email = "ts-api-support @¥Conpany. cont;

250 blacklist-1.c

if (!1NKPluginRegister (INK SDK VERSION 2_0 , & nfo)) {
INKError ("Plugin registration failed.\n");

if (!check_ts_version()) {
INKError ("Plugin requires Traffic Server 3.5.2 or later\n");

return;

}

/* create an | NKText LogObject to log blacklisted requests to */

l og = | NKText Loghj ect Create("bl acklist", | NK LOG MODE_ADD Tl MESTAWP,
NULL, &error);

if ('1og) {

printf("Blacklist plugin: error % while creating log\n", error);

}

sites_mutex = I NKMutexCreate ();

nsites = 0;

for (i =0; i < MAX_NSITES; i++) {
sites[i] = NULL;

}

read_bl acklist ();

contp = I NKCont Create (bl acklist_plugin, NULL);

| NKH: t pHookAdd (1 NK_HTTP_OS_DNS_HOOK, cont p);

I NKMymt Updat eRegi ster (contp, "Inktom Blacklist Plugin", "blacklist.cgi");

Sample Source Code

251

252 blacklist-1.c

APPENDIX B

Deprecated Functions

This appendix lists the functions that are deprecated in SDK 5.2 and newer.

Deprecated MIME header functions
The following MIME field functions are deprecated in SDK 3.0.

INKMimeFieldCopy
Copies a MIME field from one location to another.

Prototype

Description

First release

voi d | NKM neFi el dCopy (1 NKMBuf f er dest _buf p, | NKMLoc
dest _of fset, | NKMBuffer src_bufp, | NKM.oc src_offset)

Copies the contents of the MIME field located at sr ¢ _of f set within the marshal buffer sr c_buf p to the MIME
field located at dest _of f set within the marshal buffer dest _buf p. | NKM neFi el dCopy works
correctly even if sr ¢ _buf p and dest _buf p point to different marshal buffers. Note: you must first create the
destination MIME field before copying into it.

Traffic Server 3.0

INKMimeFieldCopyValues
Copies MIME field values from one location to another.

Prototype

Description

First release

voi d | NKM neFi el dCopyVal ues (I NKMBuf fer dest_bufp, | NKM.oc
dest _of fset, | NKMBuffer src_bufp, | NKM.oc src_offset)

Copies the values contained within the MIME field located at sr c_of f set within the marshal buffer sr c_buf p
to the MIME field located at dest _of f set within the marshal buffer dest _buf p.

I NKM neFi el dCopyVal ues works correctly even if sr ¢_buf p and dest _buf p point to different
marshal buffers. | NKM MEFi el dCopyVal ues does not copy the field’s name.

Traffic Server 3.0

INKMimeFieldCreate
Creates a new MIME field within a specified marshal buffer.

Prototype

Description

First release

I NKMLoc | NKM neFi el dCreate (| NKMBuffer bufp)

Creates a new MIME field with the marshal buffer buf p. Returns the offset location of the new MIME field.
Release the created | NKMLoc with a call to | NKHandl eM_ocRel ease.

Traffic Server 3.0

INKMimeFieldDestroy
Deletes a specified MIME field from a marshal buffer.

Prototype void | NKM neFi el dDestroy (I NKMBuf fer bufp, | NKM.oc of f set)

Description Destroys the MIME field located at of f set within the marshal buffer buf p.
Release the handle with a call to INKHandleMLocRelease.

First release Traffic Server 3.0

INKMimeFieldLengthGet
Calculates the length of a string representation of a specified MIME field.

Prototype int | NKM neFi el dLengt hGet (I NKMBuffer bufp, | NKM.oc of fset)

Description Calculates the length of the MIME field located at of f set within the marshal buffer buf p if it were returned as a
string. This is the length of the MIME field in its unparsed form.

First release Traffic Server 3.0

INKMimeFieldNameGet
Gets the name and length of a specified MIME field.

Prototype const char* | NKM neFi el dNameGet (1 NKMBuf f er bufp, | NKMLoc of fset, int
*| engt h)

Description Returns the name of the field located at of f set within the marshal buffer buf p.
I NKM meFi el dNaneGet places the length of the returned string in the | engt h argument. If
| engt h is NULL then no attempt is made to de-reference it.

Release the returned string with a call to | NKHandl eSt ri ngRel ease.

First release Traffic Server 3.0

INKMimeFieldNameSet
Sets a specified MIME field’s name.

Prototype void | NKM neFi el dNameSet (1 NKMBuf f er bufp, | NKMLoc of fset, const char
*nane, int |ength)

Description Sets the name of the field located at of f set within the marshal buffer buf p to the string nane. If | engt his -
1 then | NKM meFi el dNaneSet assumes thatnanme is null-terminated. Otherwise, the length of the string
nane is takento be | engt h. 1 NKM meFi el dNaneSet copies the string to within buf p, so it is okay to
modify or delete nare after calling | NKM nreFi el dNaneSet .

First release Traffic Server 3.0

254 Deprecated MIME header functions

INKMimeFieldNext
Returns the next MIME field after a specified MIME field in a MIME header.

Prototype | NKMLoc | NKM neFi el dNext (| NKMBuf fer bufp, | NKM.oc of f set)

Description Conceptually, there are a list of MIME fields in a MIME header (see “About HTTP headers” on page 83).
I NKM neFi el dNext returns the location of the next field in the list after the field located at of f set within
the marshal buffer buf p.

Release the returned | NKMLoc with a call to | NKHandl eM_ocRel ease.

First release Traffic Server 3.0

INKMimeFieldValueAppend
Appends a string to a specified value in a MIME field.

Prototype voi d | NKM neFi el dval ueAppend (| NKMBuf fer bufp, I NKMLoc of fset, int idx,
const char *value, int |ength)

Arguments buf p is the marshal buffer containing the MIME field.
of f set is the location of the MIME field within the marshal buffer buf p.

i dx is the index of the field value to be appended. For example, in the MIME field
Foo: bar, car theindex of the value bar is 0, and the index of car is 1.
val ue is the string to be appended to the MIME field value at i dx.

| engt h is the length of the string val ue to be appended.

Description Appends the string stored in val ue to a specific value in the MIME field located at of f set within the marshal
buffer buf p. The effect of | NKM meFi el dVal ueAppend is as if the previous value were retrieved, the string
val ue were appended to it and this new string were stored back in the MIME field at the same position. The i dx
parameter specifies which value in the field to append to. If i dx is not between O and
I NKM mreFi el dVal uesCount (buf p, of f set)- 1 then no operation will be performed.

First release Traffic Server 3.0

INKMimeFieldValueDelete
Deletes a specified value from a MIME field.

Prototype void | NKM neFi el dVal ueDel ete (1 NKMBuf fer bufp, | NKM.oc of fset, int idx)

Description Removes and deletes a value from the MIME field located at of f set within the marshal buffer buf p. The i dx
parameter specifies which value should be deleted. If i dx is not between O and
I NKM neFi el dVal uesCount (buf p, of f set)- 1 then no operation will be performed.

Release the handle of f set withacall to | NKHandl eM_ocRel ease.

First release Traffic Server 3.0

Deprecated Functions 255

INKMimeFieldValueGet
Gets a specified field value from a MIME header.

Prototype const char* | NKM meFi el dVal ueGet (| NKMBuf f er buf p,
I NKMLoc offset, int idx, int *|length)

Description Retrieves a string value from within the MIME field located at of f set within the marshal buffer buf p. The i dx
parameter specifies which field to retrieve. The fields are numbered from O to | NKM meFi el dVal uesCount
(buf p,of f set)- 1.Ifi dx does not lie within that range then NULL will be returned. The length of the returned
string is placed in the | engt h argument. If | engt h is NULL then no attempt is made to dereference it.

Release the returned string with a call to | NKHandl eSt ri ngRel ease.

First release Traffic Server 3.0

INKMimeFieldValueGetDate
Gets date value from a MIME field.

Prototype tinme_t | NKM neFi el dVal ueGet Date (1 NKMBuffer bufp, |INKM.oc offset, int
i dx)

Description Retrieves a date value from within the MIME field located at of f set within the marshal buffer buf p. The i dx
parameter specifies which field to retrieve. The fields are numbered from O to | NKM neFi el dVal uesCount
(buf p,of fset)- 1.Ifi dx does not lie within that range, | NKM neFi el dVal ueGet Dat e returns
(time_t) O.Allvalues are stored as strings within the MIME field. | NKM meFi el dVal ueGet Dat e
parses the string value to return an integer date representation.

First release Traffic Server 3.0

INKMimeFieldValueGetint
Gets an integer field value in a MIME field.

Prototype int | NKM neFi el dval ueGetInt (I NKMBuffer bufp, |INKM.oc offset, int idx)

Description Retrieves an integer value from within the MIME field located at of f set within the marshal buffer buf p. The i dx
parameter specifies which value within the field to retrieve. The fields are numbered from O to
I NKM reFi el dVal uesCount (buf p, of f set)- 1.Ifi dx does not lie within that range,
I NKM reFi el dVal ueGet | nt returns (i nt) 0. All values are stored as strings within the MIME field.
I NKM neFi el dVal ueGet | nt parses the string value to return an integer.

First release Traffic Server 3.0

INKMimeFieldValueGetUint
Gets unsigned integer field value in a MIME field.

Prototype unsigned i nt | NKM nmeFi el dVal ueGet Ui nt (| NKMBuf fer bufp, | NKMLoc of fset,
int idx)

256 Deprecated MIME header functions

Description Retrieves an unsigned integer value from within the MIME field located at of f set within the marshal buffer buf p.
The i dx parameter specifies which field to retrieve. The fields are numbered from O to
I NKM neFi el dVal uesCount (buf p,of fset)- 1.Ifi dx does not lie within that range,
I NKM neFi el dVal ueGet Uni t returns (unsi gned i nt) 0. Allvalues are stored as strings within the
MIME field. | NKM nmeFi el dVal ueGet Ui nt parses the string value to return an unsigned integer.

First release Traffic Server 3.0

INKMimeFieldValuelnsert
Inserts a value into a specified location within a MIME field.

Prototype | NKM.oc | NKM neFi el dVval uel nsert (1 NKMBuf fer bufp, | NKM.oc of fset, const
char *value, int length, int idx)

Description Inserts the string val ue into the MIME field located at of f set within the marshal buffer buf p. If | engt his -
1 then | NKM meFi el dVal uel nsert assumes that val ue is null-terminated. Otherwise, the length of the
stringval ue istakentobe | engt h.1 NKM nmeFi el dVal uel nsert copies the string to within buf p, so it
is okay to modify or delete val ue after calling | NKM meFi el dVal ueSet . The i dx parameter specifies
where the inserted value should be put with respect to the other values already in the MIME field. If i dx is O then
I NKM mreFi el dVal uel nsert prepends the value to the list of values in the field. Increasing values of i dx
place the value further down the list of values. If i dx is- 1,1 NKM meFi el dVal uel nsert appends the value
to the list of values. Normal usage is to specify - 1 fori dx so that the value is appended to the list of values.

Release the returned | NKMLoc with a call to | NKHandl eM_ocRel ease.

First release Traffic Server 3.0

INKMimeFieldValuelnsertDate
Inserts a date value into a MIME field.

Prototype | NKM.oc | NKM neFi el dVal uel nsert Dat e (1 NKMBuf f er bufp, | NKM.oc of fset,
time_t value, int idx)

Description Inserts the date val ue into the MIME field located at of f set within the marshal buffer buf p. The i dx
parameter specifies where the inserted value should be put with respect to the other values already in the MIME field.
Ifi dx is O then the value is prepended to the list of values in the field. Increasing values of i dx places the value
further down the list of values. If i dx is - 1 then the value is appended to the list of values. Normal usage is to
specify - 1 fori dx so that the value is appended to the list of values. All values are stored as strings within the MIME
field. | NKM nmeFi el dVal uel nsert Dat e simply formats the date into a string and then calls
I NKM reFi el dVal uel nsert.

Release the returned | NKMLoc with a call to | NKHandl eM_ocRel ease.

First release Traffic Server 3.0

Deprecated Functions 257

INKMimeFieldValuelnsertint
Inserts an integer value into a MIME field.

Prototype

Description

First release

I NKMLoc | NKM neFi el dVal uel nsertint (1 NKMBuf fer bufp, | NKMoc of fset, int
val ue, int idx)

Inserts the integer val ue into the MIME field located at of f set within the marshal buffer buf p.
The i dx parameter specifies where the inserted value should be put with respect to the other
values already in the MIME field. If i dx is O then the value is prepended to the list of values in the
field. Increasing values of i dx places the value further down the list of values. If i dx is - 1 then
the value is appended to the list of values. Normal usage is to specify - 1 for i dx so that the value
is appended to the list of values. All values are stored as strings within the MIME field.

I NKM reFi el dVal uel nsert | nt simply formats the integer into a string and then calls

I NKM rreFi el dVal uel nsert.

Release the returned | NKMLoc with a call to | NKHandl eM_ocRel ease.

Traffic Server 3.0

INKMimeFieldValuelnsertUint
Inserts an unsigned integer value into a MIME field.

Prototype

Description

First release

I NKMLoc | NKM neFi el dVal uel nsert Ui nt (1 NKMBuf f er buf p, | NKM_oc of f set,
unsi gned int value, int idx)

Inserts the unsigned integer val ue into the MIME field located at of f set within the marshal
buffer buf p. The i dx parameter specifies where the inserted value should be put with respect to
the other values already in the MIME field. If i dx is O then the value will be prepended to the list
of values in the field. Increasing values of i dx will place the value further down the list of values.
If i dx is - 1 then the value will be appended to the list of values. Normal usage is to specify - 1 for
i dx so that the value will be appended to the list of values. All values are stored as strings within
the MIME field. | NKM neFi el dVal uel nsert Ui nt simply formats the unsigned integer into a
string and then calls | NKM neFi el dval uel nsert.

Release the returned | NKMLoc with a call to | NKHandl eM_ocRel ease.

Traffic Server 3.0

INKMimeFieldValuesClear
Clears all values in a MIME field.

Prototype

Description

First release

void | NKM neFi el dval uesC ear (I NKMBuf f er buf p, | NKM.oc of f set)
Removes and destroys all of the values within the MIME field located at of f set within the marshal buffer buf p.

Traffic Server 3.0

INKMimeFieldValuesCount
Counts the values in a MIME field.

Prototype

i nt 1 NKM meFi el dval uesCount (I NKMBuf f er buf p, 1 NKMLoc of f set)

258 Deprecated MIME header functions

Description Returns a count of the number of values in the MIME field located at of f set within the marshal buffer buf p.

First release Traffic Server 3.0

INKMimeFieldValueSet
Sets a value in a MIME field.

Prototype voi d | NKM neFi el dVal ueSet (I NKMBuffer bufp, | NKM.oc of fset, int idx,
const char *value, int |ength)

Description Sets a value in the MIME field located at of f set within the marshal buffer buf p to the string val ue. If
| engt his- 1 thenitis assumed that val ue is null-terminated. Otherwise, the length of the string val ue is
taken to be | engt h. The string is copied to within buf p, so it is okay to modify or delete val ue after calling
I NKM mreFi el dVal ueSet . The i dx parameter specifies which value in the field to change. If i dx is not
between O and | NKM neFi el dVal uesCount (buf p, of f set)- 1 then no operation will be performed.

First release Traffic Server 3.0

INKMimeFieldValueSetDate
Sets a date value in a MIME field.

Prototype void | NKM neFi el dVal ueSet Dat e (1 NKMBuf f er buf p, | NKMLoc of fset, int idx,
time_t val ue)

Description Sets a value in the MIME field located at of f set within the marshal buffer buf p to the data val ue. Thei dx
parameter specifies which value in the field to change. If i dx is not between O and
I NKM neFi el dVal uesCount (buf p, of f set)- 1 then no operation will be performed. All values are
stored as strings within the MIME field. | NKM rmeFi el dVal ueSet Dat e simply formats the date into a string
and then calls | NKM neFi el dVal ueSet.

First release Traffic Server 3.0

INKMimeFieldValueSetint
Sets an integer value in a MIME field.

Prototype void | NKM neFi el dVal ueSetInt (1 NKMBuffer bufp, | NKMoc of fset, int idx,
int val ue)

Description Sets a value in the MIME field located at of f set within the marshal buffer buf p to the integer val ue. Thei dx
parameter specifies which value in the field to change. If i dx is not between O and
I NKM neFi el dVal uesCount (buf p, of fset)- 1 then no operation will be performed. All values are
stored as strings within the MIME field. | NKM neFi el dVal ueSet | nt simply formats the integer into a string
and then calls | NKM neFi el dVal ueSet .

First release Traffic Server 3.0

Deprecated Functions 259

INKMimeFieldValueSetUint
Sets an unsigned integer value in a MIME field.

Prototype void | NKM neFi el dVal ueSet Ui nt (I NKMBuf f er bufp, | NKMLoc of fset, int idx,
unsi gned int val ue)

Description Sets a value in the MIME field located at of f set within the marshal buffer buf p to the unsigned integer val ue.
The i dx parameter specifies which value in the field to change. If i dx is not between O and
I NKM neFi el dVal uesCount (buf p,of fset) - 1 then no operation will be performed. All values are
stored as strings within the MIME field. | NKM neFi el dVal ueSet Ui nt simply formats the unsigned integer
into a string and then calls | NKM meFi el dVal ueSet .

First release Traffic Server 3.0

INKMimeHdrFieldValueGet
Gets a specified field value from a MIME header.

Prototype const char* | NKM neHdr Fi el dVal ueGet (I NKMBuf fer bufp, | NKM.oc hdr_| oc,
I NKMLoc field, int idx, int *value_len_ptr)

Description Retrieves a string value from within the MIME field located at f i el d within the marshal buffer buf p. The i dx
parameter specifies which field to retrieve. The fields are numbered from O to
I NKM meHdr Fi el dVal uesCount (buf p,hdr, field)- 1.Ifi dx does not lie within that range then
NULL will be returned. The length of the returned string is placed in the val ue_I en_ptr argument. If
val ue_l en_ptr is NULL then no attempt is made to dereference it.

This API has been deprecated by | NKM meHdr Fi el dval ueStri ngGet.
Returns A pointer to the specified field value in the MIME header. Release with a call to | NKHandl eSt r i ngRel ease.

First release Traffic Server 3.5

INKMimeHdrFieldValueGetDate
Gets date value from a MIME field.

Prototype tinme_t | NKM neHdr Fi el dVal ueGet Date (| NKMBuffer bufp, | NKM.oc hdr,
I NKMLoc field, int idx)

Description Retrieves a date value from within the MIME field located at f i el d within the marshal buffer buf p. The i dx
parameter specifies which field to retrieve. The fields are numbered from O to
I NKM rmeHdr Fi el dval uesCount (buf p, hdr, fiel d)-1.Ifidxdoes not lie within that range,
I NKM meHdr Fi el dVal ueGet Dat e returns (t i me_t) 0. All values are stored as strings within the MIME
field. | NKM meHdr Fi el dVal ueGet Dat e parses the string value to return an integer date representation.

This API has been deprecated by | NKM meHdr Fi el dVal ueDat eGCet .
Returns The date value from the specified MIME header.

First release Traffic Server 3.5

260 Deprecated MIME header functions

INKMimeHdrFieldValueGetint
Gets an integer field value in a MIME field.

Prototype int | NKM nmeHdr Fi el dVal ueGet | nt (1 NKMBuf fer bufp, | NKM.oc hdr, | NKM.oc
field, int idx, int *value_len-ptr)

Description Retrieves an integer value from within the MIME field located at f i el d within the marshal buffer buf p. The i dx
parameter specifies which value within the field to retrieve. The fields are numbered from O to
I NKM meHdr Fi el dVal uesCount (buf p,hdr, field)- 1.Ifi dx does not lie within that range,
I NKM meHdr Fi el dVal ueGet I nt returns (i nt) 0. All values are stored as strings within the MIME field.
I NKM meHdr Fi el dVal ueGet | nt parses the string value to return an integer.

This API has been deprecated by | NKM meHdr Fi el dVval uel nt Get .
Returns The interger value from the specified MIME field.

First release Traffic Server 3.5

INKMimeHdrFieldValueGetUInt
Gets unsigned integer field value in a MIME field.

Prototype unsigned int | NKM meHdr Fi el dvVal ueGet Ul nt (1 NKMBuf f er bufp, | NKM.oc hdr,
I NKMLoc field, int idx)

Description Retrieves an unsigned integer value from within the MIME field located at f i el d within the marshal buffer buf p.
The i dx parameter specifies which field to retrieve. The fields are numbered from O to
I NKM meHdr Fi el dval uesCount (buf p,hdr, field)- 1.Ifi dx doesnot lie within that range,
I NKM nmeHdr Fi el dVal ueGet Uni t returns (unsi gned i nt) 0. All values are stored as strings within
the MIME field. | NKM neHdr Fi el dVal ueGet Ul nt parses the string value to return an unsigned integer.
It is not possible to determine if | NKM meHdr Fi el dVal ueGet Ul nt is returning an unsigned int value in
error. If you need to check for errors in MIME header field values, you can fetch the header as a string and examine it.
Here is some sample code that fetches MIME headers from marshal buffers into strings using
I NKM meHdr Fi el dVal ueGet instead. The context of this example is that the plugin is processing an HTTP
transaction and has access to a transaction.

This API has been deprecated by | NKM meHdr Fi el dval ueUl nt Get .

Returns The unsigned integer value from the specified MIME field.

Deprecated Functions 261

Example static void

handl e_string (I NKHttpTxn txnp, | NKCont contp) {
I NKMBUf f er buf p;
I NKMLoc hdr _| oc;
| NKMLoc field;
int len;
char* output_string;
const char* val ue;

/* Fetch the transaction's client request header into a marshal buffer.

*/
if ('INKHtpTxnCient ReqGet (txnp, &bufp, &hdr_loc)) {
INKError ("couldn't retrieve client request header\n");
goto done;
}
fiel d=I NKM neHdr Fi el dRetri eve(bufp, hdr_I oc,
I NK_M ME_FI ELD_CONTENT_LENGTH) ;
if ('field) {
INKError ("Content-Length field not found.\n");
I NKHandl eM_ocRel ease (bufp, | NK_NULL_M.OC, hdr_loc);
goto done;
}
/* Obtain the value of the content length (normally an
* unsigned int) as a string. */
val ue=l NKM neHdr Fi el dVal ueGet (bufp, hdr_loc, field, 0, & en);
if ((!value) || (len<=0))}
I NKHandl eM_ocRel ease (bufp, hdr_loc, field);
I NKHandl eM_ocRel ease (bufp, | NK_NULL_M.OC, hdr_loc);
got o done;
}
/* Allocate the string with an extra byte for the string term nator.
*/

out put _string = (char*) INKnalloc(len + 1);

/* Copy the value. */
strncpy (output_string, value, len);

/* Terminate the string */
out put _string[len] ="'\0";

/* Now that you have the MME fields as a string, you can do
what ever you want to do with it, for exanple, print it, or
make sure it's an unsigned integer: either by using the
atol C function or by scanning each ASCII character. */

262 Deprecated MIME RRBEBUB(ICHYOD! ugi n*, "9%", output_string);

/* Rel ease handl es and al |l ocated nmenory. */
I NKHandl eStri ngRel ease (bufp, field, value);

T RN 7 " " " N\

First release Traffic Server 3.5

INKMimeHdrFieldValuelnsert
Inserts a value into a specified location within a MIME field.

Prototype | NKMLoc | NKM nmeHdr Fi el dval uel nsert (1 NKMBuf fer bufp, | NKM.oc hdr,
I NKMLoc field, const char *value, int length, int idx)

Description Inserts the string val ue into the MIME field located at f i el d within the marshal buffer buf p.Ifl engt his- 1
then| NKM neHdr Fi el dVal uel nsert assumes that val ue is null-terminated. Otherwise, the length of the
string val ue istakentobel engt h.1 NKM neHdr Fi el dVal uel nsert copies the string to within buf p,
so it is okay to modify or delete val ue after calling | NKM neHdr Fi el dval ueSet . Thei dx parameter
specifies where the inserted value should be put with respect to the other values already in the MIME field. If i dx is
0 then | NKM meHdr Fi el dVal uel nsert prepends the value to the list of values in the field. Increasing
values of i dx place the value further down the list of values. If i dx is- 1,
I NKM meHdr Fi el dVal uel nsert appends the value to the list of values. Normal usage is to specify - 1 for
i dx so that the value is appended to the list of values.

This API has been deprecated by | NKM meHdr Fi el dVal ueStri ngl nsert.

First release Traffic Server 3.5

INKMimeHdrFieldValuelnsertDate
Inserts a date value into a MIME field.

Prototype | NKM.oc | NKM nmeHdr Fi el dVal uel nsert Date (1 NKMBuf fer bufp, | NKM.oc hdr,
I NKMLoc field, time_t value, int idx)

Description Inserts the data val ue into the MIME field located at f i el d within the marshal buffer buf p. Thei dx parameter
specifies where the inserted value should be put with respect to teh other values already in the MIME field. If i dx is
0 then the value is prepended to the list of values in the field. Increasing values of i dx places the value further down
the list of values. If i dx is - 1 then the value is appended to the list of values. Normal usage is to specify - 1 fori dx
so that the value is appended to the list of values. All values are stored as strings within the MIME field.
I NKM meHdr Fi el dVal uel nser t Dat e simply formats the date into a string and then calls
I NKM neHdr Fi el dVal uel nsert.

Note: do not use the return value (INKMLoc) of this function. Future versions will be changed to void.
This API has been deprecated by | NKM rmeHdr Fi el dVal ueDat el nsert.

First release Traffic Server 3.5

Deprecated Functions 263

INKMimeHdrFieldValuelnsertint
Inserts an integer value into a MIME field.

Prototype

Description

First release

I NKMLoc | NKM nmeHdr Fi el dVal uel nsert I nt (I NKMBuffer bufp, | NKM.oc hdr,
I NKMLoc field, int value, int idx)

Inserts the integer val ue into the MIME field located at f i el d within the marshal buffer buf p.
The i dx parameter specifies where the inserted value should be put with respect to the other
values already in the MIME field. If i dx is O then the value is prepended to the list of values in the
field. Increasing values of i dx places the value further down the list of values. If i dx is - 1 then
the value is appended to the list of values. Normal usage is to specify - 1 for i dx so that the value
is appended to the list of values. All values are stored as strings within the MIME field.

I NKM meHdr Fi el dVal uel nsert | nt simply formats the integer into a string and then calls

I NKM meHdr Fi el dval uel nsert.

This APl has been deprecated by | NKM meHdr Fi el dval uel ntlnsert.

Traffic Server 3.5

INKMimeHdrFieldValuelnsertUInt
Inserts an unsigned integer value into a MIME field.

Prototype

Description

First release

I NKMLoc | NKM rmeHdr Fi el dVal uel nsert Ul nt (I NKMBuf f er bufp, | NKM.oc hdr,
I NKMLoc field, unsigned int value, int idx)

Inserts the unsigned integer val ue into the MIME field located at f i el d within the marshal
buffer buf p. The i dx parameter specifies where the inserted value should be put with respect to
the other values already in the MIME field. If i dx is O then the value will be prepended to the list
of values in the field. Increasing values of i dx will place the value further down the list of values.
If i dx is - 1 then the value will be appended to the list of values. Normal usage is to specify - 1 for
i dx so that the value will be appended to the list of values. All values are stored as strings within
the MIME field. | NKM neHdr Fi el dVal uel nsert Ul nt simply formats the unsigned integer
into a string and then calls | NKM neHdr Fi el dVal uel nsert.

This API has been deprecated by | NKM meHdr Fi el dval ueUl nt I nsert.

Traffic Server 3.5

INKMimeHdrFieldValueSet
Sets a value in a MIME field.

Prototype

Description

First release

voi d | NKM nmeHdr Fi el dval ueSet (| NKMBuf fer bufp, |1 NKM.oc hdr, | NKM.oc
field, int idx, const char *value, int |ength)

Sets a value in the MIME field located at f i el d within the marshal buffer buf p to the string val ue. If

| engt h is- 1 thenitisassumed that val ue is null-terminated. Otherwise, the length of the string val ue is
taken to be | engt h. The string is copied to within buf p, so it is okay to modify or delete val ue after calling

I NKM nmeHdr Fi el dVal ueSet . Thei dx parameter specifies which value in the field to change. If i dx is not
between 0 and | NKM neHdr Fi el dVal uesCount (buf p,hdr, fiel d)- 1 thennooperation will be
performed.

This API has been deprecated by | NKM nmeHdr Fi el dVal ueStri ngSet .

Traffic Server 3.5

264 Deprecated MIME header functions

INKMimeHdrFieldValueSetDate
Sets a date value in a MIME field.

Prototype voi d | NKM nmeHdr Fi el dVal ueSet Dat e (1 NKMBuf fer bufp, | NKM.oc hdr, | NKM-.oc
field, int idx, tine_t val ue)

Description Sets a value in the MIME field located at f i el d within the marshal buffer buf p to the date val ue. Thei dx
parameter specifies which value in the field to change. If the i dx is not between 0 and
I NKM meHdr Fi el dVal uesCount (buf p, hdr, fi el d)- 1 thennooperationwill be performed. All
values are stored as strings within the MIME field. | NKM meHdr Fi el dVal ueSet Dat e simply formats the
date into a string and then calls | NKM neHdr Fi el dVal ueSet .

This API has been deprecated by .

First release Traffic Server 3.5

INKMimeHdrFieldValueSetint
Sets an integer value within a MIME field.

Prototype void | NKM neHdr Fi el dVal ueSet I nt (I NKMBuf fer bufp, 1 NKM.oc hdr, | NKM.oc
field, int idx, int value)

Description Sets a value in the MIME field located at f i el d within the marshal buffer buf p to the integer val ue. The i dx
parameter specifies which value in the field to change. If i dx is not between O and
I NKM meHdr Fi el dval uesCount (buf p,hdr, fi el d)- 1 then no operation will be performed. All
values are stored as strings within the MIME field. | NKM neHdr Fi el dVal ueSet | nt simply formats the
integer into a string and then calls | NKM meHdr Fi el dVal ueSet .

This API has been deprecated by | NKM meHdr Fi el dVval uel nt Set .

First release Traffic Server 3.5

INKMimeHdrFieldValueSetUInt
Sets a value in a MIME field to a specified unsigned integer.

Prototype void | NKM nmeHdr Fi el dval ueSet Ul nt (| NKMBuf f er bufp, | NKM.oc hdr, | NKM.oc
field, int idx, unsigned int value)

Description Sets a value in the MIME field located at f i el d within the marshal buffer buf p to the unsigned integer val ue.
The i dx parameter specifies which value in the field to change. If i dx is not between O and
I NKM meHdr Fi el dVal uesCount (bufp,hdr, field) - 1 thenno operation will be performed. All
values are stored as strings within the MIME field. | NKM neHdr Fi el dVal ueSet Ul nt simply formats the
unsigned integer into a string and then calls | NKM meHdr Fi el dVal ueSet .

This API has been deprecated by | NKM meHdr Fi el dval ueUl nt Set .

First release Traffic Server 3.5

Deprecated Functions 265

INKMimeHdrFieldDelete
Destroys a MIME header field.

Prototype void | NKM meHdr Fi el dDel ete (1 NKMBuf fer bufp, | NKM.oc hdr_I oc, | NKM.oc
field)

Description Deletes the MIME field located at f i el d within the MIME header located at hdr _| oc in the marshal buffer
buf p.
Make sure you release the | NKMLoc handle f i el d withacall to | NKHandl eM_ocRel ease.
This API has been deprecated by | NKM meHdr Fi el dDest r oy.

First release Traffic Server 3.0

INKMimeHdrFieldInsert
Appends a field in a MIME header.

Prototype void | NKM neHdr Fi el dl nsert (I NKMBuf fer bufp, | NKM.oc hdr_l oc, | NKM.oc
field, int idx)

Description Appends the MIME field located at f i el d within the marshal buffer buf p into the MIME header located at
hdr _I oc within the marshal buffer buf p. The i dx parameter specifies where the inserted field should be put
with respect to the other fields already in the MIME header.

This API has been deprecated by | NKM nmeHdr Fi el dAppend

First release Traffic Server 3.0

INKMimeHdrFieldRetrieve
Retrieves a MIME header field.

Prototype | NKMLoc | NKM neHdr Fi el dRetrieve (I NKMBuffer bufp, | NKM.oc hdr_| oc,
const char* *retrieved_str)

Description Retrieves a MIME field from within the MIME header located at hdr _| oc within the marshal buffer buf p. The
retrieved_str parameter specifies which field to retrieve. For each MIME field in the MIME header, a pointer
comparison is done between the field name and r et r i eved_st r. This is a much quicker retrieval function than
I NKM nmeHdr Fi el dFi nd since it obviates the need for a string comparision. However, r et ri eved_str
must be one of the pre-defined field names listed above of the form | NK_M ME_FI ELD_XXX for the call to
succeed. If the requested field cannot be found then O is returned.

Release with a call to | NKHandl eM_ocRel ease.
This API has been deprecated by | NKM meHdr Fi el dFi nd.

First release Traffic Server 3.0

266 Deprecated MIME header functions

Other Deprecated Functions

Statistic Functions

INKStatFloatRead
Obtains the value of a float stat.

Prototype float | NKStatFl oat(INKStat the_stat)
This API has been deprecated by | NKSt at FI oat Get .

First release Traffic Server 3.5

INK StatintRead
Obtains the value of an integer stat.

Prototype | NK64 | NKStatl|ntRead(lI NKStat the_stat)
This API has been deprecated by | NKSt at | nt Get .

First release Traffic Server 3.5

IO Buffer Interface

INKIOBufferAppend
Appends to an 10 buffer.

Prototype | NKRet ur nCode | NKI OBuf f er Append (| NKI OBuf f er buf p,
I NKI OBuf f er Bl ock bl ockp)

Description Appends a block to the 10 buffer buf p. The data in the appended block is made available for
reading.

Returns | NK_SUCCESS if the block was successfully appended to the specified 10 buffer.
I NK_ERRORif an error occurred.

First release Traffic Server 3.0

Deprecated Functions

267

INKIOBufferBlockCreate
Creates an |10 buffer block.

Prototype | NKI OBuf f er Bl ock | NKI OBuf f er Bl ockCreate (I NKI OBufferData datap, int
size, int offset)

Description Creates a new 1O buffer block and initializes it with the 10 buffer data dat ap. The si ze
parameter is the amount of data that is initially available for reading in this new buffer block. The
of f set parameter is the offset into dat ap at which will be used as the start for the block. The
two common uses for | NKI CBuf f er Bl ockCr eat e are to create an empty block by specifying
si ze as 0 and to create a full block by specifying si ze as the total size of dat ap. The newly
created block should be added almost immediately to an 1O buffer by a call to
I NKI OBuf f er Append since there is no function for destroying a buffer block other than relying
on it automatically being destroyed by an 1O buffer.

Returns The newly created IO buffer block.

First release Traffic Server 3.0

INKIOBufferDataCreate
Creates |0 buffer data.

Prototype | NKI OBuf f er Dat a | NKI OBuf f er Dat aCreate (void* data, int size,
I NKI OBuf f er Dat aFl ags f | ags)

Description Creates a new IO buffer data and initialize it with dat a, si ze. The f | ags parameter specifies
how to interpret dat a.

I NK_DATA_ALLOCATE

The dat a pointer is NULL and the data associated with the | NKI OBuf f er Dat a should be
allocated. | NKI OBuf f er Dat aCr eat e rounds si ze to a power of 2 less than or equal to 32K.

| NK_DATA_MALLOCED

The dat a pointer was allocated by | NKnal | oc and will be freed when the last reference to the
new | NKI OBuf f er Dat a is released by a call to | NKf r ee.

I NK_DATA_CONSTANT

The dat a pointer is data that should not be freed when the last reference to the new
I NKI OBuf f er Dat a is released.

Returns A handle to the newly created IO buffer.

First release Traffic Server 3.0

Mutex function

InkMutexTryLock
Tries to lock an | NKMut ex.

Prototype | NKRet urnCode | nkMutexTryLock (I NKMutex mutex, int *is_mutex_| ock)

Description Tries to lock the | NKMut ex nut ex.
In general, use | nkMut exTr yLock to obtain a mutex. See the example below.
This APl has been deprecated by | NKMut exLockTry.

268 Other Deprecated Functions

Returns

Example

First release

If the mutex was successfully locked, 1 will be returned.
If mut ex is already locked then O will be returned.

int handl er (INKCont contp, |NKEvent event, void *edata)

{

}

//this continuation tries to grab a nutex
int lock = I nkMutexTryLock (nutex);

if (!lock)

{

/* Schedule a retry; RETRY_TIME should be 10 ns or |onger.

I NKCont Schedul e (contp, RETRY_TI ME);
return | NK_EVENT_| MVEDI ATE;

/1 Now the nutex is grabbed
do_sone_job ...
I NKMut exUnl ock (rmut exp);

Traffic Server 3.0

*/

Deprecated Functions

269

270 Other Deprecated Functions

APPENDIX C

Unix
example

Caution

HPUX
example

Compiling
for Windows
NT

Troubleshooting Tips

This appendix lists the following troubleshooting tips.
= Unable to Compile Plugins, on page 271

= Unable to Load Plugins, on page 272

m Using Debug Tags, on page 272

m Using a Debugger, on page 273

m Debugging Memory Leaks, on page 273

Unable to Compile Plugins

The process you use to compile a shared library will vary from platform to platform, so
the Traffic Edge API includes makefile templates you can use to create shared libraries on
all the supported Traffic Edge platforms.

Assuming the sample program is stored in the file hel | o-wor | d. ¢, you could use the
following commands to building a shared library on Solaris using the GNU C compiler.

gcc -g -Wall -fPIC -0 hello-world.o -c hello-world.c
gcc -g -Wall -shared -0 hello-world.so hello-world.o

The first command compiles hel | o- wor | d. ¢ as Position Independent Code (PIC) and the
second command links the single hel | o-wor | d. o object file into the hel | o-wor | d. so
shared library.

Make sure that your plugin is not statically linked with system libraries.

Assuming the sample program is stored in the file hel | o_wor | d. c, you could use the
following commands to build a shared library on HPUX:

cc +z -0 hello world.o -c hello world.c

Ild -b -0 hello_world.so hello_world. o

Your PC must have the following software installed:
= Windows NT 4.0 SP4

= Microsoft Developer Studio 6.0

v

v

To compile a plugin for the Windows NT version of Traffic Edge:

1 Open Pl ugl n. dswwith Microsoft Visual C++ (MSVC++). The dswfile should be
included in the SDK CD. Inside VC++, the sample plugins are listed as separate
projects.

2 For each of the projects that need to be built, you need to tell VC++ where it can find
the Traffic Edge library: traffi c_server.|ib. This library is in your NT Traffic Edge
distribution.

You might need to update the library lookup path. Use the following procedure:

To update the library lookup path

1 Right-mouse-click on a project.

2 Select the Settings... option.

3 Click the Link tab on the dialog box.

4 Select Input in the combo-box.

5 Enter the library path in the Additional library path: text field

Now you can build your plugin.

Unable to Load Plugins

To load plugins, follow the steps below.

1 Make sure that your plugin source code contains an | NKPI ugi nl ni t initialization
function.

2 Compile your plugin source code, creating a shared library.

3 Add an entry to the pl ugi n. confi g file for your plugin.

4 Add the path to your plugin shared library to the r ecor ds. confi g file.

5 Restart Traffic Edge.

For detailed information on each step, refer to the section “A simple plugin” in Chapter 1.

Using Debug Tags

Use the APl voi d | NKDebug (const char *tag, const char *format_str,
...) toadd traces in your plugin, where:

m tag is the Traffic Edge parameter that enables Traffic Edge to print out f or mat _str.
m ... isavariable forformat_str.

| NKDebug prints out the statement f or mat _st r if debugging is enabled. There are two
ways to enable debugging:

272

Unable to Load Plugins

= On UNIX systems, run Traffic Edge with the - Tt ag option. For example, if the tag is
my- pl ugi n:
traffic_server -T"ny-plugin”
In this case, the debug output goestotraffic. out.

m On either UNIX or Windows NT systems, set the following variables in
records. confi g (in the Traffic Edge confi g directory):
proxy. confi g. di ags. debug. enabl ed I NT 1
proxy. confi g. di ags. debug. t ags STRI NGdebug-t ag- name
In this case, debug output goestotraf fi c. out on UNIX systems, and to di ags. | og
on Windows NT systems.
Exanpl e:

I NKDebug ("my-plugin”, “Starting my-plugin at %d\n”, the_time);

The statement “Starting my-plugin at <time>" appears whenever you run Traffic Edge
with the my-plugin tag:

traffic_server -T"ny-plugin”

Other useful internal debug tags

Traffic Edge provides many debug tags for internal debugging purposes. Some of the
useful HTTP debug tags are:

m http_hdrs - traces all incoming and outgoing HTTP headers.
m http.* - traces all the STTP SM debug statements.

m sdk - gives some warning concerning APl usage.

Using a Debugger

A debugger can set breakpoints in a plugin. Use a Traffic Edge debug build and compile
the plugin with the - g option. A debugger can also be used to analyze a core dump. To
generate core, set the size limit of the core files in the recor ds. confi g fileto- 1 as
follows:

CONFI G proxy.config.core_limt INT -1

Debugging Tips:

m Use a Traffic Edge debug version.

m Use assertions in your plugin (I NKAssert /I NKRel easeAssert).

Debugging Memory Leaks

Memory leaks in a plugin can be detected using a TS MRTG graph related to memory. You
can use memory dump information. Enable mem dump in r ecor ds. confi g as follows:

CONFI G proxy. config.dunmp_nem.i nfo_frequency | NT <val ue>

Troubleshooting Tips 273

This causes Traffic Edge to dump mem infointraffi c. out at <val ue> intervals will be
in secs. A zero value means disabled.

274 Debugging Memory Leaks

Concept Index

A
allocating memory 80, 148

C
code sample

see sample code 115
compiling

on HPUX 18, 271

on UNIX 18, 271

on Windows NT 19, 271
compiling plugins, examples 18
configuration

of plugins, INKConfig 115

of plugins, web Ul 131

reading Traffic Server’s 132
continuation 23, 109

mutex 110
conventions

typographic 11

D
debugging 143, 273

on NT 143, 273
deprecated functions 89
duplicate MIME fields 87

E
event system 23

F
fopen 79, 145
freeing memory 80, 148

G

gen_key 134

global hook 27, 33
global HTTP hooks 67

H

hello-world example 17
hooks 26

HTTP header 83, 95
HTTP session 69

HTTP transaction 25, 69

I
INK 240, 241

INK_EVENT_NET_ACCEPT 59, 62, 164, 165,

214

INK_HTTP_MAIJOR 175
INK_HTTP_MINOR 175
INK_HTTP_VERSION 176

INK_LOG_MODE_ADD_TIMESTAMP 251

INKHttpTxnIntercept 163
INKHttpTxnServerintercept 164
INKMimeHdrFieldLengthGet 189
INT_MAX 121

L
licensing

generating key 134
lock 101

M
memory
freeing 80, 148
tracking leaks 80, 148
memory leak
in transformation plugins 126
method (HTTP) 83
MIME field 83, 96
name 96
value 96
MIME fields 88
new functions 88
MIME header 83, 95
Backus-Naur form 96
multiple plugins 19
mutexes 101

N
NT

compiling plugins 19, 271
null-terminated strings 87

P
parent
INKMLoc 88
MIME header 88
parent continuation 32
plugin.config 16
plugin.db 134

R
read VIO 42
releasing mbuffer handles 88

S

sample code
continuation handler 111
INKAction 117
INKActionCancel 119
INKConfig interface 115
INKDebug 143, 273
INKfopen 147
INKHandleMLocRelease 190
INKIOBuffer read 226
INKMgmt interface 234
INKMimeHdrCopy 199
INKMimeHdrFieldNext 190
INKMutexLock 204
INKMutexLockTry 205
INKPIluginDirGet 235
INKPluginRegister 21
license APl 236
session hook 153
version check 20

session hook example 153

state machine 60

statistics
viewing 139

T
thread

locking 101
Traffic Edge 20
Traffic Line 139
Traffic Server 20
transaction 25, 33

getting a handle to 33
transaction hook 27, 34
transformation 41
typographic conventions 11

Vv
vconnection 41
version checking 20
VIO 41
void * data
in continuation handlers 111

w
write VIO 41

276

Constant Index

I

INK 221

INK_ERROR 150, 151, 152, 153, 154, 156,
157,158, 159, 161, 162, 163, 164, 165, 166,
167,169, 170,171,172,174, 175,176, 177,
178,179, 180, 181, 182, 184, 185, 186, 187,
188, 190, 191, 193, 194, 195, 197, 198, 200,
201, 202, 203, 204, 205, 206, 207, 209, 210,
211,212, 213, 215, 216, 217, 218, 220, 222,
223,224,225, 227, 228, 229, 231, 232, 233,
236, 237, 238, 240, 241, 242, 243, 244
INK_ERROR PTR 169, 206, 207, 211, 212,
213,214,217, 219, 221, 222, 224, 225, 227,
228, 229, 230, 237, 238, 239
INK_EVENT_CACHE_OPEN_READ 217
INK_EVENT_CACHE_OPEN_READ_FAILED 217
INK_EVENT _CACHE_OPEN WRITE 218
INK_EVENT_CACHE_OPEN WRITE_FAILED 218
INK_EVENT_CACHE_REMOVE 219
INK_EVENT_CACHE_REMOVE_FAILED 219
INK_EVENT_DNS LOOKUP 210
INK_EVENT_ERROR 122

INK_EVENT _HTTP_OS DNS 67

INK_EVENT HTTP_READ_CACHE_HDR 68
INK_EVENT_HTTP_READ_REQUEST HDR 67
INK_EVENT_HTTP_READ_RESPONSE_HDR 68
INK_EVENT_HTTP_SEND_RESPONSE_HDR 68
INK_EVENT_NET_ACCEPT 164, 165, 214
INK_EVENT _NET_ACCEPT FAILED 214
INK_EVENT _NET_CONNECT 214
INK_EVENT_NET_CONNECT_FAILED 214
INK_EVENT_VCONN_EOS 123
INK_EVENT_VCONN_READ_COMPLETE 123
INK_EVENT_VCONN_READ_READY 122
INK_EVENT _VCONN_WRITE COMPLETE 123
INK_EVENT _VCONN_WRITE READY 123
INK_HTTP_METHOD_CONNECT 92
INK_HTTP_METHOD_DELETE 92
INK_HTTP_METHOD_GET 92
INK_HTTP_METHOD_HEAD 92
INK_HTTP_METHOD_ICP_QUERY 92
INK_HTTP_METHOD_OPTIONS 92
INK_HTTP_METHOD_POST 92
INK_HTTP_METHOD_PURGE 92
INK_HTTP_METHOD_PUT 92
INK_HTTP_METHOD_TRACE 92
INK_HTTP_OS DNS HOOK 67, 111
INK_HTTP_READ_CACHE_HDR HOOK 68, 112
INK_HTTP_READ_REQUEST HDR_HOOK 67,

111

INK_HTTP_READ_RESPONSE HDR HOOK 68,
112

I:II-\12K6_HTTP_REQUEST_TRANSFORM_HOOK 68,
INK_HTTP_RESPONSE_TRANSFORM_HOOK 48,
68, 126

INK_HTTP_SELECT ALT HOOK 68, 112
INK_HTTP_SEND_REQUEST HDR_HOOK 67,
112

INK2_HTTP_SEND_RESPONSE_HDR_HOOK 68,
11

INK_HTTP_SSN_CLOSE_HOOK 68, 69, 112
INK_HTTP_SSN_START _HOOK 68, 69, 112
INK_HTTP_STATUS ACCEPTED 173
INK_HTTP_STATUS BAD_GATEWAY 173
INK_HTTP_STATUS BAD_REQUEST 173
INK_HTTP_STATUS CONFLICT 173
INK_HTTP_STATUS CONTINUE 173
INK_HTTP_STATUS CREATED 173
INK_HTTP_STATUS FORBIDDEN 173
INK_HTTP_STATUS GATEWAY_TIMEOUT 173
INK_HTTP_STATUS GONE 173

[N}é_HTTP_STATUS_HTTF’V ER_NOT_SUPPORTED
17

IJI_\I%%_HTTP_STATUS_I NTERNAL_SERVER_ERROR
INK_HTTP_STATUS LENGTH_REQUIRED 173
INK_HTTP_STATUS METHOD_NOT_ALLOWED
173

INK_HTTP_STATUS MOVED_PERMANENTLY
173

I]l-\l7I%_HTTP_STATUS_MOVED_TEM PORARILY
INK_HTTP_STATUS MULTIPLE_CHOICES 173
INK_HTTP_STATUS NO_CONTENT 173
INK_HTTP_STATUS NON_AUTHORITATIVE_INF
ORMATION 173

INK_HTTP_STATUS NONE 173
INK_HTTP_STATUS NOT_ACCEPTABLE 173
INK_HTTP_STATUS NOT_FOUND 173
INK_HTTP_STATUS NOT_IMPLEMENTED 173
INK_HTTP_STATUS NOT_MODIFIED 173
INK_HTTP_STATUS OK 173

INK_HTTP_STATUS PARTIAL_CONTENT 173
INK_HTTP_STATUS PAYMENT REQUIRED 173
INK_HTTP_STATUS PRECONDITION_FAILED
173

INK_HTTP_STATUS PROXY_AUTHENTICATION_

REQUIRED 173

|1 N7K3_HTTP_STATUS_REQU EST_ENTITY_TOO_LARGE
INK_HTTP_STATUS REQUEST TIMEOUT 173
INK_HTTP_STATUS REQUEST URI_TOO LONG 173
INK_HTTP_STATUS RESET_CONTENT 173
INK_HTTP_STATUS SEE OTHER 173
INK_HTTP_STATUS SERVICE UNAVAILABLE 173
INK_HTTP_STATUS SWITCHING PROTOCOL 173
INK_HTTP_STATUS UNAUTHORIZED 173
INK_HTTP_STATUS UNSUPPORTED_MEDIA_TYPE
173

INK_HTTP_STATUS USE_PROXY 173
INK_HTTP_TXN_CLOSE_HOOK 68, 112
INK_HTTP_TXN_START HOOK 68, 112
INK_HTTP_VALUE_BYTES 92
INK_HTTP_VALUE_CHUNKED 92
INK_HTTP_VALUE_CLOSE 92
INK_HTTP_VALUE_COMPRESS 92
INK_HTTP_VALUE_DEFLATE 92
INK_HTTP_VALUE_GZIP 92
INK_HTTP_VALUE_IDENTITY 92
INK_HTTP_VALUE_KEEP_ALIVE 92
INK_HTTP_VALUE_MAX_AGE 92
INK_HTTP_VALUE_MAX_STALE 92
INK_HTTP_VALUE_MIN_FRESH 92
INK_HTTP_VALUE_MUST REVALIDATE 92
INK_HTTP_VALUE_NO_CACHE 92
INK_HTTP_VALUE_NO_STORE 92
INK_HTTP_VALUE_NO_TRANSFORM 92
INK_HTTP_VALUE_NONE 92
INK_HTTP_VALUE _ONLY_IF CACHED 92
INK_HTTP_VALUE_PRIVATE 92
INK_HTTP_VALUE_PROXY_REVALIDATE 92
INK_HTTP_VALUE_PUBLIC 93
INK_HTTP_VALUE_S MAX_AGE 93
INK_IOBUFFER_SIZE_INDEX_128 230
INK_IOBUFFER_SIZE INDEX_16K 230
INK_IOBUFFER_SIZE INDEX_1K 230
INK_IOBUFFER_SIZE_INDEX_256 230
INK_IOBUFFER_SIZE_INDEX_2K 230
INK_IOBUFFER_SIZE_INDEX_32K 230
INK_IOBUFFER_SIZE_INDEX_4K 230
INK_IOBUFFER_SIZE INDEX_512 230
INK_IOBUFFER_SIZE INDEX_8K 230
INK_LOG_MODE_ADD_TIMESTAMP 240
INK_LOG_MODE_DO_NOT_RENAME 240
INK_MIME_FIELD_ACCEPT 97
INK_MIME_FIELD_ACCEPT_CHARSET 97
INK_MIME_FIELD_ACCEPT _ENCODING 97
INK_MIME_FIELD_ACCEPT LANGUAGE 97
INK_MIME_FIELD_ACCEPT_RANGES 97
INK_MIME_FIELD_AGE 97
INK_MIME_FIELD_ALLOW 97
INK_MIME_FIELD_APPROVED 97
INK_MIME_FIELD_AUTHORIZATION 97
INK_MIME_FIELD BYTES 97
INK_MIME_FIELD_CACHE_CONTROL 97

INK_MIME_FIELD_CLIENT_IP 97
INK_MIME_FIELD_CONNECTION 97
INK_MIME_FIELD_CONTENT_BASE 97
INK_MIME_FIELD_CONTENT_ENCODING 97
INK_MIME_FIELD_CONTENT_LANGUAGE 97
INK_MIME_FIELD_CONTENT_LENGTH 97
INK_MIME_FIELD_CONTENT_LOCATION 97
INK_MIME_FIELD_CONTENT MD5 97
INK_MIME_FIELD CONTENT RANGE 97
INK_MIME_FIELD_CONTENT_TYPE 97
INK_MIME_FIELD_CONTROL 97
INK_MIME_FIELD_COOKIE 97
INK_MIME_FIELD DATE 97

INK_MIME_FIELD DISTRIBUTION 97
INK_MIME_FIELD ETAG 97
INK_MIME_FIELD_EXPECT 97
INK_MIME_FIELD_EXPIRES 97
INK_MIME_FIELD_FOLLOWUP_TO 97
INK_MIME_FIELD_FROM 97

INK_MIME_FIELD HOST 97
INK_MIME_FIELD_IF MATCH 97
INK_MIME_FIELD_IF_MODIFIED_SINCE 98
INK_MIME_FIELD_IF_NONE_MATCH 98
INK_MIME_FIELD_IF_RANGE 98
INK_MIME_FIELD_IF_UNMODIFIED_SINCE 98
INK_MIME_FIELD _KEEP ALIVE 98
INK_MIME_FIELD_KEYWORDS 98
INK_MIME_FIELD_LAST_MODIFIED 98
INK_MIME_FIELD_LINES 98
INK_MIME_FIELD_LOCATION 98
INK_MIME_FIELD_MAX_FORWARDS 98
INK_MIME_FIELD MESSAGE ID 98
INK_MIME_FIELD_NEWSGROUPS 98
INK_MIME_FIELD_ORGANIZATION 98
INK_MIME_FIELD_PATH 98
INK_MIME_FIELD_PRAGMA 98
INK_MIME_FIELD_PROXY_AUTHENTICATE 98
INK_MIME_FIELD_PROXY_AUTHORIZATION 98
INK_MIME_FIELD_PROXY_CONNECTION 98
INK_MIME_FIELD_PUBLIC 98
INK_MIME_FIELD_RANGE 98
INK_MIME_FIELD_REFERENCES 98
INK_MIME_FIELD_REFERER 98
INK_MIME_FIELD REPLY TO 98
INK_MIME_FIELD RETRY_AFTER 98
INK_MIME_FIELD_SENDER 98
INK_MIME_FIELD_SERVER 98
INK_MIME_FIELD_SET_COOKIE 98
INK_MIME_FIELD_SUBJECT 98
INK_MIME_FIELD_SUMMARY 98
INK_MIME_FIELD TE 98
INK_MIME_FIELD_TRANSFER_ENCODING 98
INK_MIME_FIELD_UPGRADE 98
INK_MIME_FIELD_USER AGENT 98
INK_MIME_FIELD_VARY 98
INK_MIME_FIELD_VIA 99
INK_MIME_FIELD_WARNING 99
INK_MIME_FIELD_WWW_AUTHENTICATE 99

278

INK_MIME_FIELD_XREF 99

INK_NULL_MLOC 89

INK_PARSE_CONT 202

INK_PARSE_DONE 183, 202

INK_PARSE_ERROR 183, 202

INK_SuUccCess 150, 151, 152, 153, 154, 156, 157,
158, 159, 161, 162, 163, 164, 165, 166, 167,
169, 170, 171, 172, 174, 175, 176, 177, 178,
179, 180, 181, 182, 184, 185, 186, 187, 188,
190, 191, 193, 194, 195, 197, 198, 200, 201,
202, 203, 204, 205, 206, 207, 209, 211, 212,
213, 215, 216, 217, 218, 220, 223, 224, 228,
229, 231, 233, 236, 237, 238, 240, 241, 242,
243, 244

INK_URL_SCHEME FILE 94

INK_URL_SCHEME_FTP 94

INK_URL_SCHEME_GOPHER 94

INK_URL_SCHEME_HTTP 94

INK_URL_SCHEME_HTTPS 94

INK_URL_SCHEME MAILTO 94

INK_URL_SCHEME_NEWS 94

INK_URL_SCHEME_NNTP 94

INK_URL_SCHEME_PROSPERO 94
INK_URL_SCHEME_TELNET 94
INK_URL_SCHEME_WAIS 94
INKMimeHdrFieldVaueDelete 193
INKSTAT TYPE FLOAT 137
INKSTAT _TYPE_INT64 137

INT_MAX 122

279

280

Function Index

I

INKActionCancel 209
INKActionDone 210

INKAssert 144

INK CacheK eyCreate 215

INK CacheKeyDestroy 216

INK CacheKeyDigestSet 216
INK CacheK eyHostNameSet 216
INK CacheK eyPinnedSet 219
INK CacheRead 217, 218

INK CacheReady 218

INK CacheRemove 219, 220
INK CacheWrite 218

INK ConfigDataGet 207

INK ConfigGet 208

INK ConfigRelease 208
INKConfigSet 116, 117, 208
INK ContCall 205

INK ContCreate 206

INK ContDataGet 206

INK ContDataSet 206

INK ContDestroy 206

INK ContMutexGet 207

INK ContSchedule 207
INKDebug 143

INKError 144

INKfclose 146

INKfflush 146

INKfgets 146

INKfopen 146

INKfread 147

INKfree 148

INKfwrite 148

INKHandleM L ocRelease 167
INKHandleStringRelease 167
INKHostLookupResult 210
INKHostL ookupResult| PGet 211
INKHttpAltinfoCachedRegGet 165
INKHttpAltinfoCachedRespGet 166
INKHttpAltinfoClientReqGet 166
INKHttpAltinfoQualitySet 166
INKHttpHdrClone 93, 168
INKHttpHdrCopy 169
INKHttpHdrCreate 93, 169
INKHttpHdrDestroy 169

INKHttpHdrLengthGet 170
INK HttpHdrM ethodGet 93, 170
INK HttpHdrMethodSet 93, 170
INKHttpHdrParseReq 177
INKHttpHdrParseResp 93, 177
INKHttpHdrPrint 171
INKHttpHdrReasonGet 171
INK HttpHdrReasonL ookup 171
INK HttpHdrReasonSet 172
INK HttpHdrStatusGet 172

INK HttpHdrStatusSet 93, 174
INKHttpHdrTypeGet 93, 174
INKHttpHdrTypeSet 174
INKHttpHdrUrlGet 175
INKHttpHdrUrSet 93, 175
INKHttpHdrVersionGet 175
INKHttpHdrVersionSet 176
INKHttpHookAdd 151
INKHttpParserClear 176
INKHttpParserCreate 93, 176
INK HttpParserDestroy 177

INK HttpSsnHookAdd 152

INK HttpSsnReenable 153

INK HttpTxnCachedL ookupStatusGet 154

INKHttpTxnCachedRegGet 154
INKHttpTxnCachedRespGet 155

INK HttpTxnClientlncomingPortGet 155

INKHttpTxnClientl PGet 155
INK HttpTxnClientRemotePortGet 156
INKHttpTxnClientRespGet 156
INKHttpTxnErrorBodySet 157
INKHttpTxnHookAdd 157
INKHttpTxnlntercept 163
INKHttpTxnParentProxyGet 158
INK HttpTxnParentProxySet 158
INKHttpTxnReenable 159
INKHttpTxnServerintercept 164
INKHttpTxnServerReqGet 160
INKHttpTxnServerRespGet 160
INKHttpTxnSsnGet 160

INKHttpTxnTransformedRespCache 161

INKHttpTxnTransformRespGet 161

INK HttpTxnUntransformedRespCache 162

INKInstal| DirGet 235
INKIOBufferAppend//DEPR 267

INKIOBufferBlockCreate// DEPR 268
INKIOBufferBlockNext 225
INKIOBufferBlockReadAvail 225
INKIOBufferBlockReadStart 225
INKIOBufferBlockWriteAvail 227
INKIOBufferBlockWriteStart 227
INKI1OBufferCopy 227
INKIOBufferCreate 227
INK|OBufferDataCreate//DEPR 268
INKI1OBufferDestroy 228
INKIOBufferProduce 228
INKIOBufferReaderAlloc 228
INKIOBufferReaderAvail 228
INKIOBufferReaderClone 229
INKIOBufferReaderConsume 229
INKIOBufferReaderFree 229
INK|OBufferReaderStart 230
INKIOBufferSizedCreate 221, 230
INKIOBUufferStart 230
INKIOBufferWaterMarkGet 231
INKIOBufferWaterMarkSet 231
INKIOBufferWrite 231
INKIsDebugTagSet 144

INKmalloc 148
INKMBufferCompress//DEPR 89
INKMBufferCreate 91, 168
INKMBufferDataGet//DEPR 89
INKMBufferDataSet//DEPR 89
INKMBufferDestroy 168
INKMBufferLengthGet//DEPR 89
INKMBufferRef//DEPR 89
INKMBufferUnref//DEPR 89
INKMgmtCounterGet 132, 233
INKMgmtFloatGet 132, 234
INKMgmtintGet 234
INKMgmtStringGet 132, 234
INKMgmtUpdateRegister 132, 233
INKMimeFieldCopy//DEPR 253
INKMimeFieldCopyVa ues/DEPR 253
INKMimeFieldCreate//DEPR 253
INKMimeFieldDestroy//DEPR 254
INKMimeFieldNameGet//DEPR 254
INKMimeFieldNameSet//DEPR 254
INKMimeFieldNext//DEPR 255
INKMimeFieldVaueAppend/DEPR 255
INKMimeFieldValueDelete//DEPR 255
INKMimeFieldV alueGet//DEPR 256
INKMimeFieldValueGetDate//DEPR 256
INKMimeFieldVaueGetint//DEPR 256
INKMimeFieldVaueGetUint//DEPR 256
INKMimeFieldVa uel nsert//DEPR 257
INKMimeFieldVauel nsertDate//DEPR 257
INKMimeFieldVa uel nsertint//DEPR 258

INKMimeFieldVa uel nsertUint//DEPR 258
INKMimeFieldVauesClear//DEPR 258
INKMimeFieldVauesCount//DEPR 258
INKMimeFieldVaueSet//DEPR 259
INKMimeFieldVaueSetDate//DEPR 259
INKMimeFieldVaueSetint/DEPR 259
INKMimeFieldVaueSetUint//DEPR 260
INKMimeHdrClone 198

INKMimeHdrCopy 198
INKMimeHdrCreate 199
INKMimeHdrDestroy 200
INKMimeHdrFieldAppend 187
INKMimeHdrFieldClone 187
INKMimeHdrFieldCopy 188
INKMimeHdrFieldCopyVaues 188
INKMimeHdrFieldCreate 188
INKMimeHdrFieldDelete//DEPR 266
INKMimeHdrFieldDestroy 189
INKMimeHdrFieldFind 200
INKMimeHdrFieldGet 200
INKMimeHdrFieldinsert/DEPR 266
INKMimeHdrFieldLengthGet 189
INKMimeHdrFieldNameGet 189
INKMimeHdrFieldNameSet 190
INKMimeHdrFieldNext 190
INKMimeHdrFieldNextDup 88, 96, 191
INKMimeHdrFieldRemove 201
INKMimeHdrFieldRetrieve//DEPR 266
INKMimeHdrFieldsClear 201
INKMimeHdrFieldsCount 201
INKMimeHdrFieldVaueAppend 191
INKMimeHdrFieldVaueDateGet 192
INKMimeHdrFieldVaueDatel nsert 192
INKMimeHdrFieldVaueDateSet 192
INKMimeHdrFieldValueGet//DEPR 260
INKMimeHdrFieldV alueGetDate//DEPR 260
INKMimeHdrFieldVaueGetint//DEPR 261
INKMimeHdrFieldVaueGetUInt//DEPR 261
INKMimeHdrFieldV aluel nsert//DEPR 263
INKMimeHdrFieldValuel nsertDate//DEPR 263
INKMimeHdrFieldVa uelnsertint//DEPR 264
INKMimeHdrFieldValuel nsertUInt//DEPR 264
INKMimeHdrFieldVauelntGet 193
INKMimeHdrFieldValuelntinsert 193
INKMimeHdrFieldValuelntSet 194
INKMimeHdrFieldValuesClear 197
INKMimeHdrFieldValuesCount 198
INKMimeHdrFieldValueSet//DEPR 264
INKMimeHdrFieldV alueSetDate//DEPR 265
INKMimeHdrFieldValueSetInt//DEPR 265
INKMimeHdrFieldVaueSetUInt//DEPR 265
INKMimeHdrFieldValueStringGet 194
INKMimeHdrFieldValueStringlnsert 194

282

INKMimeHdrFieldValueStringSet 195
INKMimeHdrFieldValueUintGet 195
INKMimeHdrFieldValueUIntinsert 197
INKMimeHdrFieldValueUintSet 197
INKMimeHdrLengthGet 201, 202
INKMimeHdrParse 202
INKMimeHdrPrint 203
INKMimeParserClear 202
INKMimeParserCreate 203
INKMimeParserDestroy 203
INKMutexCreate 203

INKMutexLock 204
INKMutexLockTry 204
InkMutexLockTry 204

InkMutexTryL ock//DEPR 268
INKNetAccept 214

INKNetConnect 214

INKNetV ConnRemotel PGet 215
INKNetV ConnRemotePortGet 215
INKPluginDirGet 235

INKPluginlnit 142
INKPluginLicenseRequired 235
INKPluginRegister 142

INKrealloc 149

INK StatCoupledGlobalAdd 238

INK StatCoupl edGlobal CategoryCreate 239
INK StatCoupledL ocal Add 239

INK StatCoupledL ocal CopyCreate 239
INK StatCoupledL ocal CopyDestroy 240
INK StatCreate 237

INK StatDecrement 237

INK StatFloatAddTo 236

INK StatFloatGet 236

INK StatFloatRead//DEPR 267

INK StatFloatSet 238

INK StatIncrement 237

INK StatIntAddTo 237

INK StatIntGet 236

INK StatIntRead//DEPR 267

INK StatIntSet 238

INK StatsCoupledUpdate 240
INKstrdup 149

INKstrndup 149

INK TextL ogObjectCreate 240

INK TextLogObjectDestroy 244

INK TextLogObjectFlush 243

INK TextL ogObjectHeaderSet 241

INK TextL ogObjectRollingEnabledSet 242
INK TextL ogObjectRollingl nterval SecSet 242
INK TextL ogObjectRollingOffsetHrSet 243
INK TextLogObjectWrite 243

INK ThreadCreate 150

INK ThreadDestroy 150

INK Threadinit 151
INKThreadSelf 151

INK TrafficServerVersionGet 143
INK TransformCreate 220

INK TransformOutputV ConnGet 221

INKUrlClone 95, 178
INKUrlCopy 178

INKURL Create 178
INKUrlDestroy 179
INKUrlFtpTypeGet 179
INKUrlFtpTypeSet 180
INKUrIHostGet 180
INKUrIHostSet 180

INK UrlHttpFragmentGet 181
INK UrlHttpFragmentSet 95, 181
INK UrlHttpParamsGet 181
INK UrlHttpParamsSet 182
INKUrlHttpQueryGet 182
INKUrlHttpQuerySet 182
INKUrlLengthGet 183
INKUrlParse 95, 183

INK UrlPasswordGet 95, 183
INKUrlPasswordSet 184
INKUrIPathGet 95, 184
INKUrIPathSet 184
INKUrlPortGet 95, 185
INKUTrlPortSet 185
INKUTrlPrint 95, 179
INKUrISchemeGet 185
INKUrISchemeSet 186
INKUrlStringGet 186
INKUrlUserGet 186
INKUrlUserSet 187
INKVConnAbort 211

INKV ConnCachedObjectSizeGet 211

INKVConnClose 211

INKV ConnClosedGet 212
INKVConnRead 212

INKV ConnReadVI0Get 212

INKV ConnShutdown 124, 213
INKV ConnWrite 124, 213

INKV ConnWriteV10Get 124, 213
INKVIOBuUfferGet 221
INKV10OContGet 222
INKVIOMutexGet 222
INKVIONBYytesGet 222
INKVIONBYytesSet 223
INKVIONDoneGet 223
INKVIONDoneSet 223
INKVIONTodoGet 224
INKVIOReaderGet 224
INKVIOReenable 128, 224
INKVIOV ConnGet 221

283

284

285

286

Type Index

I

INKAction 117

INK CacheKey 215

INKConfig 115, 207, 208
INKCont 109, 206

INKEvent 153, 205

INK EventFunc 33, 206

INKFile 147

INKHttpAltinfo 74, 165
INKHttpHookI D 67
INKHttpParser 176

INKHttpSsn 152, 153
INKHttpStatus 172

INKHttpTxn 33, 69
INKHttpType 174

INKI1OBuffer 128
INKIOBufferBlock 128
INKIOBufferData 128
INKIOBufferReader 128
INKMBuffer 85, 178
INKMgmtCounter 233
INKMgmtFloat 234

INKMgmtint 234
INKMgmtString 234
INKMimeParser 202

INKMLoc 85, 178

INKMutex 101, 206
INKPluginRegistrationinfo 142
INKSDKVersion 142

INKStat 137

INK StatType 137

INK TextL ogObjectCreate 240
INK TextLogObjectHeaderSet 241
INK TextL ogObjectRollingEnabledSet 242
INK TextL ogObjectRollingInterval SecSet 242
INK TextL ogObjectRollingOffsetHrSet 243
INK ThreadFunc 150

INKVIO 42, 127

\%

veonnection 41

288

COPYRIGHT NOTICES

Portions of Traffic Server include third party technology used under license. One or more of the following notices
may apply in connection with the license and use of Traffic Server.

tcl-7.4 license. This software is copyrighted by the Regents of the University of California, Sun Microsystems, Inc.,
and other parties. The following terms apply to all files associated with the software unless explicitly disclaimed in
individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its documentation
for any purpose, provided that existing copyright notices are retained in all copies and that this notice is included
verbatim in any distributions. No written agreement, license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and need not follow the licensing terms described
here, provided that the new terms are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF EVEN IF THE AUTHORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN “AS-1S”
BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause as DFARS 252.227-7013
and FAR 52.227-19.

SSLeay-0.6.6 License. Copyright © 1995-1997 Eric Young (eay@mincm.oz.au). All rights reserved.

Redistribution and use in source code and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1.Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2.Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3.All advertising materials mentioning features or use of this software must display the following acknowledgement:
“This product incorporates cryptographic software written by Eric Young (eay@mincom.oz.au).” The word
‘cryptographic’ can be left out if the routines from the library being used are not cryptographic related.

4.1f you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you
must include an acknowledgement “This product includes software written by Tim Hudson (tjh@mincom.oz.au)”

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG “AS I1S” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

RSAREF (for MD5). Copyright © 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.License to
copy and use this software is granted provided that it is identified as the “RSA Data Security, Inc. MD5 Message-
Digest Algorithm” in all material mentioning or referencing this software or this function.

License to copy and use this software is granted provided that it is identified as the “RSA Data Security, Inc. MD5
Message-Digest Algorithm” in all material mentioning or referencing this software or this function.

License is also granted to make and use derivative works provided that such works are identified as “derived from the
RSA Data Security, Inc. MD5 Message-Digest Algorithm” in all material mentioning or referencing the derived
work.

RSA Data Security, Inc. makes no representations concerning either the merchantability of this software or the
suitability of this software for any particular purpose. It is provided “as is” without express or implied warranty of any
kind.

These notices must be retained in any copies of any part of this documentation and/or software.

Portions of Traffic Server include technology used under license from RSA Data Security, Inc.

5 C H U0 1 H C

EHLRYPTIOH EHEIHE

libdb-1.85 License. Copyright © 1990, 1993, 1994 The Regents of the University of California. All rights reserved.

Redistribution and use in source code and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1.Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2.Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3.All advertising materials mentioning features or use of this software must display the following acknowledgement:
This product includes software developed by the University of California, Berkeley and its contributors.

4.Neither the name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Gateway Daemon, Release 4 license. © The Regents of the University of Michigan all rights reserved. Gate
Daemon was originated and developed through release 3.0 by Cornell University and its collaborators.

Copyright notices and other restrictions as they currently appear in the GateD source files include one or more of
the following:

Copyright © 1995 The Regents of the University of Michigan. All rights reserved. Gate Daemon was originated
and developed through release 3.0 by Cornell University and its collaborators.

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Royalty-free licenses to redistribute GateD Release 2 in whole or in part may be obtained by writing to: Gate
Daemon Project, The University of Michigan, Merit, 4251 Plymouth Road, Suite C, Ann Arbor, Ml 48105-2785,
(313) 936-9430

GateD is based on Kirton’s EGP, UC Berkeley's routing daemon (routed), and DCN’s HELLO routing Protocol.
Development of GateD has been supported in part by the National Science Foundation.

Please forward bug fixes, enhancements and questions to the GateD mailing list: gated-bug@gated.merit.edu.
Cornell Authors: Jeffrey C. Honig, Scott W. Brim

Portions of this software may fall under the following copyrights: Copyright © 1988 Regents of the University of
California. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that the above copyright notice and this
paragraph are duplicated in all such forms and that any documentation, advertising materials, and other materials
related to such distribution and use acknowledge that the software was developed by the University of California,
Berkeley. The name of the University may not be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Copyright 1991 D.L.S. Associates

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby
granted without fee, provided that the above copyright notice appear in all copies and that both the copyright notice
and this permission notice appear in supporting documentation, and that the name of D.L.S. not be used in
advertising or publicity pertaining to distribution of the software without specific, written permission. D.L.S. makes
no representation about the suitability of this software for any purpose. It is provided “as is” without express or
implied warranty.

D.L.S. DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL D.L.S. BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Authors: Robert Hagens and Dan Schuh
Copyright 1989, 1990, 1991. The University of Maryland, College Park, Maryland. All rights reserved.

The University of Maryland College Park (“UMCP”) is the owner of all right, title and interest in and to UMD
OSPF (the “Software”). Permission to use, copy and modify the Software and its documentation solely for non-
commercial purposes is granted subject to the following terms and conditions:

1.This copyright notice and these terms shall appear in all copies of the Software and its supporting documentation.

2.The Software shall not be distributed, sold or used in any way in a commercial product, without UMCP's prior
written consent.

3.The origin of this Software may not be misrepresented, either by explicit claim or by omission

4.Modified or altered versions must be plainly marked as such, and must not be misrepresented as being the original
software.

5.The Software is provided “AS 1S.” User acknowledges that the Software has been developed for research purposes
only. User agrees that use of the Software is at user's own risk. UMCP disclaims all warranties, express and implied,
including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Royalty-free licenses to redistribute UMD OSPF are available from the University of Maryland, College Park. For
details contact: Office of Technology Liaison, 4312 Knox Road, University of Maryland, College Park, Maryland
20742, (301) 405-4209, (301) 314-9871 fax

This software was written by Rob Coltun. rcoltun@ni.umd.edu

gd 1.3 graphics library.

Portions copyright 1994, 1995, 1996, 1997, 1998, by Cold Spring Harbor Laboratory. Funded under Grant P41-
RR02188 by the National Institutes of Health.

Portions copyright 1996, 1997, 1998, by Boutell.Com, Inc.
GIF decompression code copyright 1990, 1991, 1993, by David Koblas (koblas@netcom.com).

Non-LZW-based GIF compression code copyright 1998, by Hutchison Avenue Software Corporation (http://
www.hasc.com/, info@hasc.com).

libregx package. Copyright 1992, 1993, 1994, 1997 Henry Spencer. All rights reserved. This software is not subject
to any license of the American Telephone and Telegraph Company or of the Regents of the University of California.

Permission is granted to anyone to use this software for any purpose on any computer system, and to alter it and
distribute it, subject to the following restrictions:

1. The author is not responsible for the consequences or use of this software, no matter how awful, even if they arise
from flaws in it.

2. The origin of this software must not be misrepresented, either by explicit claim or by omission. Since few users
ever read sources, credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be misrepresented as being the original software.
Since few users ever read sources, credits must appear in the documentation.

4. This notice may not be removed or altered.

Emanate. Licensee agrees to preserve and reproduce the copyright notices contained in the Program Source and
Software in the same form and location as any legend appearing on or in the original from which copies are made.

Portions of Traffic Server include Emanate software developed by SNMP Research International, Incorporated.
Copying and distribution is by permission of SNMP Research International, Incorporated, and relevant third parties.

INN. Portions of Traffic Server include software developed by Rich Salz. Copyright 1991 Rich Salz. All rights
reserved. Revision: 1.4

Redistribution and use in any form are permitted provided that the following restrictions are met:
1. Source distributions must retain this entire copyright notice and comment.

2. Binary distributions must include the acknowledgement “This product includes software developed by Rich Salz.”
in the documentation or other materials provided with the distribution. This must not be represented as an
endorsement or promotion without specific prior written permission.

3. The origin of this software must not be misrepresented, either by explicit claim or by omission. Credits must
appear in the source and documentation.

4. Altered versions must be plainly marked as such in the source and documentation and must not be misrepresented
as being the original software.

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

NetFactory, Inc. Portions of Traffic Server include technology used under license from NetFactory, Inc.

IP-Filter package. Portions of Traffic Server include technology used under license from Darren Reed.

	Preface
	Who should read this book
	How to use this book
	Conventions used in this manual

	Chapter 1 Getting Started
	Understanding Traffic Edge plugins
	The role of plugins
	Possible uses for plugins
	Plugin loading
	Plugin configuration
	Configuration file rules
	Plugin initialization

	A simple plugin
	hello world source
	Compiling your plugin
	Updating the plugin.config file
	Specifying the plugin’s location
	Restarting Traffic Edge

	Plugin Registration and Version Checking
	Naming conventions

	Chapter 2 Creating Traffic Edge Plugins
	The Asynchronous Event Model
	Traffic Edge HTTP State Machine
	Roadmap for creating plugins

	Chapter 3 Header-Based Plugin Examples
	Overview
	The Blacklist plugin
	Creating the parent continuation
	Setting a Global Hook
	Setting Up UI Update Callbacks
	Accessing the Transaction Being Processed
	Setting up a transaction hook
	Working with HTTP header functions

	The Basic Authorization Plugin
	Creating the plugin’s parent continuation and global hook
	Implementing the handler and getting a handle to the transaction
	Working with HTTP headers
	Setting a transaction hook

	Chapter 4 HTTP Transformation Plugins
	Writing content transform plugins
	Transformations
	VIOs
	IO buffers

	The sample null transform plugin
	The append-transform plugin
	The sample buffered null transform plugin

	Chapter 5 New Protocol Plugins
	About the sample protocol
	Protocol plugin structure
	Continuations in the Protocol plugin
	Event flow
	One way to implement a transaction state machine
	Processing a typical transaction

	Chapter 6 HTTP Hooks and Transactions
	The set of hooks
	Adding hooks
	HTTP sessions
	HTTP transactions
	Intercepting HTTP Transactions
	Initiate HTTP Connection
	HTTP alternate selection

	Chapter 7 Miscellaneous Interface Guide
	Debugging functions
	The INKfopen family
	Memory allocation
	Thread functions

	Chapter 8 HTTP Headers
	About HTTP headers
	Guide to Traffic Edge HTTP header system
	No null-terminated strings
	Duplicate MIME fields are not coalesced
	MIME fields always belong to an associated MIME header
	Release marshal buffer handles
	Deprecated functions

	Marshal buffers
	HTTP headers
	URLs
	MIME headers

	Chapter 9 Mutex Guide
	Mutexes
	Locking global data
	Protecting a continuation’s data
	How to associate a continuation to every HTTP transaction
	How to add the new continuation
	How to store data specific to each HTTP transaction
	Using locks
	Special case: continuations created for HTTP transactions

	Chapter 10 Continuations
	Mutexes and data
	How to activate continuations
	Writing handler functions

	Chapter 11 Plugin Configurations
	Plugin configurations

	Chapter 12 Actions Guide
	Actions
	Hosts Lookup API

	Chapter 13 IO Guide
	Vconnections
	The vconnection user’s view

	Net VConnections
	Transformations
	The vconnection implementor’s view
	Transformation VConnection

	VIOs
	IO buffers
	Guide to the cache API
	How to do a cache read
	How to do a cache write
	How to do a cache remove
	Errors
	Example

	Chapter 14 Plugin Management
	Setting up a plugin management interface
	Reading Traffic Edge settings and statistics
	Accessing installed plugin files
	Licensing your plugin
	Format of plugin.db
	Setting up licensing
	Example

	Generating a license key
	Guide to the logging API

	Chapter 15 Adding Statistics
	Uncoupled statistics
	Coupled statistics
	Example using the redirect-1.c sample plugin

	Viewing statistics using Traffic Line

	Chapter 16 Function Reference
	List of function groups
	Initialization functions
	Debugging functions
	The INKfopen family
	Memory allocation
	Thread functions
	HTTP functions
	Hook functions
	Session functions
	HTTP transaction functions

	Initiate Connection
	Intercepting HTTP transaction functions
	Alternate selection functions
	Handle release functions
	Marshal buffers
	HTTP header functions
	URL functions
	MIME headers

	Mutex functions
	Continuation functions
	Plugin configuration functions
	Action functions
	Host Lookup Functions
	Vconnection functions
	Netvconnection functions
	Cache interface functions
	Transformation functions
	VIO functions
	IO buffer interface
	Management interface function
	Traffic Edge Configuration Read Functions
	Customer installation and licensing functions
	Statistics functions
	Uncoupled statistics
	Coupled statistics

	Logging functions

	Appendix A Sample Source Code
	blacklist-1.c

	Appendix B Deprecated Functions
	Deprecated MIME header functions
	Other Deprecated Functions
	Statistic Functions
	IO Buffer Interface
	Mutex function

	Appendix C Troubleshooting Tips
	Unable to Compile Plugins
	Unable to Load Plugins
	Using Debug Tags
	Other useful internal debug tags

	Using a Debugger
	Debugging Tips:

	Debugging Memory Leaks

	Concept Index
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	V
	W

	Constant Index
	Function Index
	Type Index

