
JMX Federation

Requirements

Mandatory Requirements

1. Single Agent View. User should be able to monitor and manage entire distributed system
from single window - for example Jconsole

2. JMX Remote Interface for each Member. Each Member can be accessed remotely using
JConsole or any other tool over RMI.

3. Efficient SerializationAll traffic between members should be handled in a such way to avoid
in-efficient serialization.

4. Scalability. As number of member grow impact of monitoring should not increase.
5. Integration with Gemfire Security Authentication and Authorization Framework
6. Interoperability with non-java tools Can any non-java tool monitor Gemfire easily? (HTML

Adaptor and REST Interface?)
7. Linear overhead of Monitoring. As members grow impact should not follow non-linear path.

Other Desirable Requirements

1. Efficient Polling Support. Polling is very generic usecase of monitoring. hence should be
efficiently handled either by using push updates from members or using bulk requests and
cashing responses untill next poll interval

2. Push updates from managed members to managing members to reduce network traffic and
calls.

3. Dynamic and Intelligent system to optimize collection/polling based on history or request
set based on current hot-set of MBeans, Managed mbeans and managing mbean can work
together to optimize the polling.

4. Bulk Request/Response. If request set is known ahead of time(prediction) entire set can be
requested in one single request so as to avoid multiple polls.

5. Non JMX Extensions

1. Bulk Mbeans which accept multiple request and return data in bulk

2. Streaming of VSD

3. Streaming of Logs

Assumptions

Approaches

Federation

Window to Distributed system is going to be single node which will federate incoming request to all
managed nodes. There are multiple approaches to achieve this requirement.

JMX Remote RMI Connector

This approach involves having proxy connection of each mbean server located in every managed
member.

Pros

1. Simple to implement and standard compliant

2. Reliable and performant

3. Part of JDK

Cons

1. Scalability : Each remote mbean has proxy in managing node. No coarse grained
connections.

2. One more remoting system along side Gemfire.

3. Costly in terms of serialization of Composite Data

4. Communication model is JMX so very finely granular(mbean-level). No direct way of
doing bulk-request response.

5. For “Aggregate” scope Mbeans we have to take care of the threading, timeouts, and
pooling. (As plan is to gather information from members concurrently)

Gemfire Connector

This approach involves using Gemfire P2P system for getting data and invoking operations. The
communication mode uses generic request-response model similar to JSON. (See Appendix 1 for
samples snippets)

Pros

1. Complete control over message strcture which gives opportunutiy for efficient design (less-
granular, bulk-requests etc.)

2. Bulk-Requste-Response possible

3. Effficient serialization for composite and complex data.

4. Members and exachnge lot of other metadata to reduce monitoring overhead like current
hot-set of mbeans requested by JMXClient etc.

5. For “Aggregate” scope Mbeans inbuilt mechanism can be used for threading, timeouts and
pooling.

Cons

1. Version Dependency. If gemfire version changes and part of M&M change we need to do
extra round of testing for JMX Federation.

2. P2P Threads overhead. It will interfere with gemfire data requests. “Thread-owned
sockets” pattern from Wiki Page can help us to separate the resources into Admin and Data
requests helping us to avoid competition between two.

Hybrid Approach

https://wiki.gemstone.com/pages/viewpage.action?pageId=32474043

This apporach involves using gemfire p2p request-response model on top of direct RMI connection.

This approach combines advantages of gemfire P2P while avoiding dis-advantages of RMI and
gemfire p2p approach.

Pros

1. Reliability and stability of RMI

2. All benefits of gemfire p2p like bulk requests, serialization benefits

Cons

1. One more remoting system side by side of Gemfire

Comparison of Approaches

Feature RMI Gemfire Hybrid

Message Model No Control over
message model. You
can only define
Composite Attributes

Generic
Request/Response
Model. Full control

Generic
Request/Response
Model. Full control

Coarse grained Request No. At best is All
attributes from on
Mbean(getAttributes
Method)

Multi-attribute requests
over multiple mbean
across multiple
members

Multi-attribute requests
over multiple mbean
across multiple
members

Multi-attribute
Requests (Bulk
Requests)

No Directly supported
by JMX Standards but
possible using
SuperMBean

Yes Yes

Aggreage
Requests(Across
Members)

No. Aggregation need
to implement

Yes Yes

Overhead on Gemfire
Data requests/Separate
Channel of
Communication

Clear separation of
resources

No separation. With
separate processType it
can be separated to
some extend

No separation. With
separate processType it
can be separated to
some extend

Serialization of
Composite Data

No Control. Gemfire
DataSerizlizable is
used

Gemfire
DataSerizlizable is
used

Architectural/Design Description

Block Diagram

Terms

• Managed Node : Gemfire distributed system members

• Managing Node : Gemfire distributed system member who acts as proxy for external JMX
client and forwards request to approapriate managed members

• Bridge : It is component which extracts all monitoring related information from Gemfire

Gemfire
Resources

PlatformMBeanServer

Bridge

Connector

Transport
(RMI/GP2P/GFPR)

Gemfire
Resources

PlatformMBeanServer

Bridge

Connector

Transport
(RMI/GP2P/GFPR)

Managing
Node

Managed
Node

JMX
Client

Single=Agent View over RMI

Distributed system in its VM. It is abstraction component to encapsulate gemfire APIs from
plain Mbeans. It also has responsibilty of invoking mbean operations on gemfire distributed
system components

• Transport : this is the main component which will federate requests to managed members.
Currently considered approaches are RMI, GP2P : Gemfire P2P, and gemfire fixed
partitioned regions. RMI Connector will always be present on Managing node.

• Connector : This is abstraction which understand Mbean ObjectName and other JMX
objects and transforms it for appropriate format that underlying transport understands.

• Local Mbeans (Red coloured small circles) : Use bridge for getting information on local
cache .

• Proxy Mbeans (White coloured small circles) : Use connectors for getting information on
remote nodes

• JMX Client : Any generic client like Gfsh, Data-browser, Gfmon like Dashboard, Jconsole.

Detailed Description

The two approaches discussed above quite different. One of critical problem to address in
Monitoring and Management (M&M) is to provide scalable monitoring. This means irrespective of
size of Distributed system end-user should be able to effectively monitor the system.

In a typical monitoring scenario this will involve requests to set of mbeans and this set will repeat.
So one possible optimization is that prefetch this information in one go. Thus number of remote
requests will reduce from numberOfMbeans*NumberOfMemebers to numberOfMembers.

• JMX Approach : JMX Proxies : Here the granularity at which managing node operates is a
Mbean proxy. So every request from JMX client is bascially federated to respective node. So
typical scenario mentioned above will generate N request-responses. To implement above
optimization a Super Mbean (one which operated at batch or coarse level) can be
implemented.

 In built thread pool support.

• Gemfire P2P Approach : Generic Request-Response Model :This approach (current
design) has very generic request-response model so above optimization can be easily
implemented. Further other meta-data like “Mbean Set for Caching” can be easily
accomodated. This will leave lot of hooks for further optimizations.

To achieve thread pool support like JMX and execution separation from core Gemfire
operations, a separate executor(DistributionMessage.processorType) has to be implmented
in Gemfire.

• Hybrid Approach : This approach uses the same Generic Request-Response Model on
top of RMI protocol. Each managed node exposes one Server object which is responsible for
delegating the request to its handler.

RMI specification for threading : A method dispatched by the RMI runtime to a remote
object implementation (a server) may or may not execute in a separate thread. Calls

originating from different clients Virtual Machines will execute in different threads. From
the same client machine it is not guaranteed that each method will run in a separate thread”

Proof Of Concept

Above three apporaches were evaluated against each other with limited set of functionality
implemented. POC involved a generic JMX client polling managing nodes for set of
mbeans. Number of managed nodes were varied. While testing CPU utilization and response
times were monitored. The mirror-mbean pattern implemented in POC (with some changes)
is discussed here :
http://weblogs.java.net/blog/emcmanus/archive/2007/02/cascading_its_a.html

Results

In 50 node test response time was 6.5% worst for hybrid approach compared to JMX RMI
connector response time while GP2P was marginally better (only 4% compared to JMX
RMI). but CPU utilization was higher in GP2P approach. The Generic request-response
building and parsing can be optimized further for reducing CPU usage.

Detailed results can be found in Appendix 2.

http://weblogs.java.net/blog/emcmanus/archive/2007/02/cascading_its_a.html

Appendix I

Gemfire P2P aproach has implemented flexible messaging model which is like Map Message or
similar to JSON. This free-form Document like Object Model can help to implement features like
Bulk-request, Any meta-data between nodes.

DynamicObject

public class DynamicObject implements DataSerializable, Json ,
JavaSerializable{

//Note method return same object so that method chaining is possible
public DynamicObject put(String key, Object value);
public DynamicObject append(String key, Object value);
public DynamicObject copyProps(String[] key, DynamicObject

otherObject);

//For transfer over networkstream
public void fromData(DataInput di);
public void toData(DataOutput dataOutput) ;

//For interoperability with java beans
public void fromJava(DataInput di);
public void toJava(DataOutput dataOutput) ;

//For interoperability with json. Helpful for debugging
public DynamicObject fromJson(String str)
public String toJson()

}

● Dynamic object mentioned above is actually nested HashMap.
● All inner objects are also Dynamic Objects. Non-Dynamic Objects can put using

serialization spec(Not covered here, Not strictly required)
● Append operation will basically add another object against the same key/property, thus

key/property is of type collection.
● Implements DataSerializable interface.
● Dynamic object can be directly from any other Java bean using serialization spec which is

specified using JSON notation as follows

JSON Representation of the Bulk Reuqest

{
type : "getMBeanData",
mbeans : [

{
objectName : "com.example:type=QueueSampler",
attributes : ["cacheSize","diskQueueSize","readsPerSec"]

},
{

objectName : "com.example:type=Hello",
attributes : ["freeMemory" , "maxMemory" , "numThreads"]

}
]

}

JSON Representation of the bulk response object

{
type : "mbeanUpdatePush",
mbeans : [

{
objectName : "com.example:type=QueueSampler",
attributes : [

{attrName : "cacheSize", attrValue : 124} ,
{attrName : "numUpdates", attrValue : 123523}

]
},
{

objectName : "com.example:type=Hello",
attributes : [

{attrName : "freeMemory", attrValue : 50} ,
{attrName : "maxMemory", attrValue : 64}

]
}

]
}

Appendix II

Test Strategy : In each request all the Mbeans of the Managing nodes(including proxies) are
queried for their attributes.

 2400 such queries were carried out.

Every 100th request recorded. Hence 24 results shown above.
 Each query is for all the attributes of all the Mbeans

 An Mbean can be an JMX proxy of P2P proxy depending on the config
 Each Mbean is a StandardMbe

Stat NO JMX P2P
1180800 4723200 2400

1 50 0 3061 5543 3494
100 1017 953 1078
200 890 862 984
300 806 782 880
400 755 683 774
500 752 726 756
600 729 722 809
700 730 747 758
800 732 717 804
900 742 714 761

1000 726 676 798
1100 726 713 792
1200 735 691 801
1300 718 707 798
1400 723 719 793
1500 727 707 765
1600 759 706 787
1700 725 709 793
1800 732 650 785
1900 723 716 794
2000 736 647 760
2100 722 698 791
2200 723 710 806
2300 725 654 752

Total Time = 1852969 1774270 1975106

Average = 754.47826087 722.13043478261 809.521739130
CPU Us 26.00% 40.00% 30.00%

Number of
Remote
Managed
Nodes

Request
Number

RMI(Hybrid
Aproach)

Number Of
Mbeans queried

Total Attributes
Queried

Total Number
Of Requests

	JMX Federation
	Requirements
	Mandatory Requirements
	Other Desirable Requirements

	Assumptions
	Approaches
	Federation

	Architectural/Design Description

	Appendix I
	Appendix II

