
Apache Sentry - High Availability

Hao Hao - hao.hao@cloudera.com

Seville, Spain, Nov 14 - 16 2016

About me
● Software engineers at Cloudera
● Apache Sentry PMC and Committer

Presentation Agenda
● Apache Sentry Overview

● Introduction
● Architecture

● Apache Sentry High Availability
● Motivation: deploying flexible and robust security

● Challenges to ensure fault tolerance, high availability
● High level design

● Other Features and Future Work

Sentry Overview
● Authorization Service

● Sentry provides the ability to enforce role-based access control (RBAC) to
data and/or metadata for authenticated users in a fine-grained manner.

● Enterprise grade big data security.
● Provides unified policy management.
● Pluggable and highly modular.

● Works out of the box with Apache Hive, Hive metastore/HCataglog,
Apache Solr, Apache Kafka, Apache Sqoop and Apache Impala.

Sentry Architecture
Hive Solr Sqoop

Hook HookHook

Sentry Client Plugin

Sentry Server

Thrift APIs

Sentry Policy
Store

● Server Client Model

● Thrift client APIs
● Get privileges
● Grant/Revoke role
● Grant/Revoke privileges
● List roles

Sentry Architecture
Hive Solr Sqoop

Provider Backend

DB Policy
Engine

Access Binding Layer

Solr Policy
Engine

Sqoop
Policy
Engine

Authorization Provider

Local
File/HDFS

Sentry
Database

Policy Metadata Store

Sentry Architecture
Hive Solr Sqoop

Provider Backend

DB Policy
Engine

Access Binding Layer

Solr Policy
Engine

Sqoop
Policy
Engine

Authorization Provider

● Binding Layer: takes the
authorization requests in the
native format of requestors and
converts that into an authz
request based on the
authorization data model that
can be handled by Sentry
authorization provider.

Local
File/HDFS

Sentry
Database

Policy Metadata Store

Sentry Architecture
Hive Solr Sqoop

Provider Backend

DB Policy
Engine

Access Binding Layer

Solr Policy
Engine

Sqoop
Policy
Engine

Authorization Provider

● Authorization provider: an
abstraction for making the
authorization decision for the
authz request from binding
layer. Currently, supplies a
RBAC authorization model
implementation.

Local
File/HDFS

Sentry
Database

Policy Metadata Store

Sentry Architecture
Hive Solr Sqoop

Provider Backend

DB Policy
Engine

Access Binding Layer

Solr Policy
Engine

Sqoop
Policy
Engine

Authorization Provider

● Policy Engine: gets the
requested privileges from the
binding layer and the
required privileges from the
provider layer. It looks at the
requested and required
privileges and makes the
decision whether the action
should be allowed.

Local
File/HDFS

Sentry
Database

Policy Metadata Store

Sentry Architecture
Hive Solr Sqoop

Provider Backend

DB Policy
Engine

Access Binding Layer

Solr Policy
Engine

Sqoop
Policy
Engine

Authorization Provider

● Policy Backend: making the
authorization metadata
available for the policy engine.
It allows the metadata to be
pulled out of the underlying
repository independent of the
way that metadata is stored.

Local
File/HDFS

Sentry
Database

Policy Metadata Store

Sentry Architecture
Hive Solr Sqoop

Provider Backend

DB Policy
Engine

Access Binding Layer

Solr Policy
Engine

Sqoop
Policy
Engine

Authorization Provider

● Sentry policy store and
Sentry Service: persist the role
to privilege and group to role
mappings in an RDBMS and
provide programmatic APIs to
create, query, update and
delete it. This enables various
Sentry clients to retrieve and
modify the privileges
concurrently and securely.

Local
File/HDFS

Sentry
Database

Policy Metadata Store

HDFS Sync Feature
● Single source of truth

● User “Alice” has INSERT privileges on db1.tb1

● ACLs for “Alice” => WRITE_EXECUTE on /user/warehouse/db1.db/tb1

● Multiple compute frameworks can rely on same policies

Sentry Architecture
Hive Solr Sqoop

Hook HookHook

Sentry Client Plugin

Sentry Server

Thrift APIs

Sentry Store

Sentry Server State
● Sentry sever is stateless

● Sentry permissions are kept in Sentry policy DB:
● Roles to privilege mappings
● Groups to roles mappings

Sentry Architecture with HDFS Sync
Hive Solr Sqoop

Hook HookHook

Sentry Client Plugin

Sentry Server

Thrift APIs

Cache

Sentry Store

Hook

NameNode

Cache
Hive

MetastoreHook

Sentry Server State with HDFS Sync
● Sentry server become stateful

● In-memory cache:
● Replication/snapshot of Apache Hive metastore (HMS) data:

● <Hive Obj, HDFS path>
● HMS delta change:

● (Id, Object, requests to add or remove path)

High Availability Requirement
● Deploy Apache Sentry without introducing any single points of

failure

● Apache Sentry needs to work with Apache Hive metastore
high availability solution

● Be able to use enable Apache Sentry in conjunction with
Apache HDFS high availability as well

High Availability Assumption
● Backend database supports HA and is configured to use it.

● Apache Sentry clients are permitted to cache permission data
for some reasonable amount of time and use outdated
permissions during this time.

High Availability Goal
● Availability

● Sentry service must be available when one of the sentry servers
stops working. It should also be possible to restart a Sentry
daemon while the cluster is active.

High Availability Goal
● Consistency: support a reasonable timeline consistency model.

● Any write operation should bring the database from one valid state to
another. For example, a request to create a table followed by a
request to change table permissions, followed by table scan, all
within a single session, should work as expected.

● Read requests should return a consistent view of the permissions.
For clients accessing the Server across multiple sessions, the goal is
to provide eventual consistency.

High Availability Challenges
● Ad-hoc synchronization between Apache Hive Metastore and

Apache Sentry
● pitfalls related to different daemons receiving events in different

orders.

● Sentry server is stateful
● pitfalls related to synchronizing in memory state between multiple

active daemons

High Availability Design
● Make use of notification log API introduced by Hive HA: for

clients to receive changes to the Hive metastore.

● Hive notification log uses HMS database as the source of
information and the notification log provides a global stream of
modifications made by all Hive MetaStore (HMS) clients.

● Notifications log are identified by a unique epoch number. All
notifications are stored in a SQL table.

High Availability Design
● Converting Sentry to a stateless service where all the actual

state is stored in the backend HA database.

● The removal of in-memory state allows for active/active High
Availability configuration with preserved consistency.

● Store all state in sentry store:
● Snapshot of Sentry permissions
● Snapshot of HMS data
● Update log for HMS delta change
● Update log for Sentry permission delta change

High Availability Design
Hive HA

SQL

Active Sentry
FOLLOWER

Active Sentry
LEADER

Active HMS Active HMS

Sentry HA
SQL

Notification Log

Read/Write Read/Write

High Availability Design

● Synchronizing with HMS update
s. Dedicate a single node to the
processing of HMS notification log.
It also provide a way to associate
Sentry permission state with
specific HMS notification ID
change by referring Hive object
name.

Hive HA
SQL

Active Sentry
FOLLOWER

Active Sentry
LEADER

Active HMS Active HMS

Sentry HA
SQL

Notification Log

Read/Write Read/Write

High Availability Design

● Leader election is performed
using ZooKeeper.

● The first daemon to claim the node
becomes the leader. This is
currently implemented using
Curator framework.

Hive HA
SQL

Active Sentry
FOLLOWER

Active Sentry
LEADER

Active HMS Active HMS

Sentry HA
SQL

Notification Log

Read/Write Read/Write

High Availability Design
● Interaction with Hive Metastore.

● Initially during the transition to the new model, need to synchronize
HMS point-in-time snapshot with the Sentry state.

● Assumption: Need stop any write activity on the cluster
● Read current HMS notification ID_initial
● Read HMS metadata state
● Read current notification ID_new
● If ID_initial != ID_new then discard the current state and retry.

High Availability Design
● Notification logs are processed asynchronously

● Write barrier
● an RPC call for use by HMS Sentry plugin. The call

wait_until(ID_n) should block until Sentry processes ID_n. This call
should be used whenever HMS updates state.

Sentry Releases
● Successfully graduated from the Incubator in March of 2016 and now

is a Top-Level Apache project

● Sentry 1.5.1 released.

Sentry Releases
● Sentry 1.6.0 released on Feb 24, 2016

● Add capability to export/import to dump or load Sentry metadata
● Integrate Sqoop with Sentry by using generic authorization model

● About to release 1.7.0
● Integrate Hive v2 into Sentry
● Integrate Kafka with Sentry by using generic authorization model
● Integrate Solr with Sentry by using generic authorization model

Other Features
● Sentry generic authorization model

● Motivation: easy integration with Apache data engines, even third-party data
applications

● Successfully integrated with Apache Solr, Kafka and Sqoop2

Other Features
● Sentry column level privilege: Fine-grained authorization for SQL engine

● Motivation: No need to create views for the purpose of column level
authorization

● Support Hive/Impala

How to contribute?
● Jump in on discussions

● File Bugs

● Review Code

● Provide Patches

● Reference: https://cwiki.apache.org/confluence/display/SENTRY/How+to+Contribute

https://cwiki.apache.org/confluence/display/SENTRY/How+to+Contribute

Reference
● Apache Sentry: https://cwiki.apache.org/confluence/display/SENTRY/Home

● Apache Sentry High Availability Design:
https://issues.apache.org/jira/secure/attachment/12835271/SENTRY-872_dessi
gn-v2.1.1.pdf

Questions?

