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Presentation Agenda
● Apache Sentry Overview

● Introduction
● Architecture

● Apache Sentry High Availability
● Motivation: deploying flexible and robust security 

● Challenges to ensure fault tolerance, high availability
● High level design

● Other Features and Future Work



Sentry Overview
● Authorization Service

● Sentry provides the ability to enforce role-based access control (RBAC) to 
data and/or metadata for authenticated users in a fine-grained manner. 

● Enterprise grade big data security.
● Provides unified policy management.
● Pluggable and highly modular.

● Works out of the box with Apache Hive, Hive metastore/HCataglog, 
Apache Solr, Apache Kafka, Apache Sqoop and Apache Impala.
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● Server Client Model

● Thrift client APIs
●  Get privileges
●  Grant/Revoke role
●  Grant/Revoke privileges
●  List roles
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Sentry Architecture
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HDFS Sync Feature
● Single source of truth

● User “Alice” has INSERT privileges on db1.tb1

● ACLs for “Alice” => WRITE_EXECUTE on /user/warehouse/db1.db/tb1

● Multiple compute frameworks can rely on same policies
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Sentry Server State
● Sentry sever is stateless

● Sentry permissions are kept in Sentry policy DB:
● Roles to privilege mappings
● Groups to roles mappings



Sentry Architecture with HDFS Sync
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Sentry Server State with HDFS Sync
● Sentry server become stateful

● In-memory cache:
● Replication/snapshot of Apache Hive metastore (HMS) data: 

● <Hive Obj, HDFS path>
● HMS delta change:

● (Id, Object, requests to add or remove path)



High Availability Requirement
● Deploy Apache Sentry without introducing any single points of 

failure

● Apache Sentry needs to work with Apache Hive metastore 
high availability solution

● Be able to use enable Apache Sentry in conjunction with 
Apache HDFS high availability as well



High Availability Assumption
● Backend database supports HA and is configured to use it.

● Apache Sentry clients are permitted to cache permission data 
for some reasonable amount of time and use outdated 
permissions during this time.



High Availability Goal
● Availability

● Sentry service must be available when one of the sentry servers 
stops working. It should also be possible to restart a Sentry 
daemon while the cluster is active.



High Availability Goal
● Consistency: support a reasonable timeline consistency model.

● Any write operation should bring the database from one valid state to 
another. For example, a request to create a table followed by a 
request to change table permissions, followed by table scan, all 
within a single session, should work as expected.

● Read requests should return a consistent view of the permissions. 
For clients accessing the Server across multiple sessions, the goal is 
to provide eventual consistency.



High Availability Challenges
● Ad-hoc synchronization between Apache Hive Metastore and 

Apache Sentry
● pitfalls related to different daemons receiving events in different 

orders.

● Sentry server is stateful
● pitfalls related to synchronizing in memory state between multiple 

active daemons



High Availability Design
● Make use of notification log API introduced by Hive HA: for 

clients to receive changes to the Hive metastore.

● Hive notification log uses HMS database as the source of 
information and the notification log provides a global stream of 
modifications made by all Hive MetaStore (HMS) clients.

● Notifications log are identified by a unique epoch number. All 
notifications are stored in a SQL table.



High Availability Design
● Converting Sentry to a stateless service where all the actual 

state is stored in the backend HA database.

● The removal of in-memory state allows for active/active High 
Availability configuration with preserved consistency.

● Store all state in sentry store:
● Snapshot of Sentry permissions
● Snapshot of HMS data
● Update log for HMS delta change
● Update log for Sentry permission delta change
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High Availability Design

● Synchronizing with HMS update
s. Dedicate a single node to the 
processing of HMS notification log. 
It also provide a way to associate 
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High Availability Design

● Leader election is performed 
using ZooKeeper.

● The first daemon to claim the node 
becomes the leader. This is 
currently implemented using 
Curator framework.
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High Availability Design
● Interaction with Hive Metastore.

● Initially during the transition to the new model, need to synchronize 
HMS point-in-time snapshot with the Sentry state.

● Assumption: Need stop any write activity on the cluster
● Read current HMS notification ID_initial
● Read HMS metadata state
● Read current notification ID_new
● If ID_initial != ID_new then discard the current state and retry.



High Availability Design
● Notification logs are processed asynchronously

● Write barrier
● an RPC call for use by HMS Sentry plugin. The call 

wait_until(ID_n) should block until Sentry processes ID_n. This call 
should be used whenever HMS updates state.



Sentry Releases
● Successfully graduated from the Incubator in March of 2016 and now 

is a Top-Level Apache project

● Sentry 1.5.1 released.



Sentry Releases
● Sentry 1.6.0 released on Feb 24, 2016

● Add capability to export/import to dump or load Sentry metadata
● Integrate Sqoop with Sentry by using generic authorization model

● About to release 1.7.0
● Integrate Hive v2 into Sentry
● Integrate Kafka with Sentry by using generic authorization model
● Integrate Solr with Sentry by using generic authorization model



Other Features
● Sentry generic authorization model

● Motivation: easy integration with Apache data engines, even third-party data 
applications

● Successfully integrated with Apache Solr, Kafka and Sqoop2



Other Features
● Sentry column level privilege: Fine-grained authorization for SQL engine

● Motivation: No need to create views for the purpose of column level 
authorization

● Support Hive/Impala



How to contribute?
● Jump in on discussions

● File Bugs

● Review Code

● Provide Patches

● Reference: https://cwiki.apache.org/confluence/display/SENTRY/How+to+Contribute

https://cwiki.apache.org/confluence/display/SENTRY/How+to+Contribute


Reference
● Apache Sentry: https://cwiki.apache.org/confluence/display/SENTRY/Home

● Apache Sentry High Availability Design: 
https://issues.apache.org/jira/secure/attachment/12835271/SENTRY-872_dessi
gn-v2.1.1.pdf



Questions?


