
Yahoo Search ATS Plugins
Daniel Morilha and Scott Beardsley

About Us
● We have a HUGE team!

● Serves traffic which generates ~40% of Yahoo’s $$$

● We run both Search Ingress and Egress

● Maintain around a dozen plugins

● Plugins installed across ATS tiers in Yahoo

● Covering the following plugins today

● Multiplexer [OS]

● Where on Earth (WOE) and Sonora [Y]

● Http Filters [OS]

● Image Inliner [OS eta Q1 2015]

● Zeus configuration [OS]
Yahoo Network

Problem: multiple
reporting pipelines
● One request from the browser

● Multiple origin implementations

● Need a way to validate capacity

● Need a way to validate end-to-end reporting

● Drop response from non-primary origin

Multiplexer
● Remap plugin

● Multiplex UA requests to multiple origins

● Supported methods: GET, POST

● Env Variable for non-primary origin timeout (ns)

○ multiplexer__timeout

○ Defaults to 1 second

● Metrics!

$ sudo traffic_line -m multiplexer.*
multiplexer.requests 1998
multiplexer.hits 1998
multiplexer.failures 0
multiplexer.timeouts 0
multiplexer.time 24087μs
multiplexer.size 1091b

● Open Sourced Oct. 2015: https://tr.im/multiplexer

https://tr.im/multiplexer

Multiplexer
● Example remap.config:

map /click http://a.example.com/clk @plugin=multiplexer.so @pparam=b.example.com @pparam=c.example.com

internal_only is for remaps which are only needed by ATS plugins
.definefilter internal_only @action=allow @src_ip=127.0.0.1 @src_ip=::1
.activatefilter internal_only

map http://b.example.com/click http://b.example.com/clk
map http://c.example.com/click http://c.example.com/some_other_path @plugin=conf_remap.so @pparam=nopristine.config

.deactivatefilter internal_only

Problem: transient session
data

● session == lifetime of a TCP connection
● need to keep session data server-side
● existing solution: repeat session lookups for each request
● multiple session lookup concerns:

○ large dataset distribution
○ consistency
○ latency

● centralized session cache
○ large dataset distribution
○ consistency
○ latency

Where on Earth
● Global plugin

● Translate Client IP to a WOE IDs

○ woeids, names, confidence levels

● Introduces a new “connection cache” concept

● WOE database size ~3GB

● IP override via .ip query parameter

● Production Statistics (April 2015):

○ Avg lookup time: 80ns

● TODO

○ X-Forwarded-For parsing?

○ Fix TS-3612 to improve CHR to 80%

https://issues.apache.org/jira/browse/TS-3612

Sonora
● Almost identical to Where on Earth plugin

● Remote API call instead of local DB lookup

● Production Stats (April 2015):

○ Avg lookup time: 20ms

● Handles “purge” response header directives

● TODO

○ Improve ACLs

○ Parse Sonora response

■ skip cache insertion on error

■ routing actions with backend data

○ Fix TS-3612 to improve CHR to 80%

https://issues.apache.org/jira/browse/TS-3612

Problem: generic request classifier
● Determine if request matches a set of

criteria (aka filter)
● If request matches a filter remove from

experiment
● Use the following as input:

○ HTTP method
○ URL
○ request headers

■ from client
■ from other plugins

○ cookies
● Make decisions fast!
● Allow classification logic to change

frequently

HTTP Filters
● Integrated with ATS-based experimentation classifier

● Boolean expressions are compiled during run-time

● No external dependencies

● Full compilation pipeline starting on Abstract Syntax Tree all the way to interpreted byte-code

● Can be easily ported to other HTTP servers/proxies

● Fast: experiment selection and filtering logic: <0.5ms

● Open Sourced Apr. 2015: https://github.com/yahoo/http-filters

https://github.com/yahoo/http-filters

HTTP Filters

Problem: insert images into HTML
● Goal is to return all content in one response

○ improve render time by ~300ms!

● RFC 2397 defines data URIs: data:[<mediatype>][;base64],<data>

● Works great for non H2/SPDY clients

● For H2/SPDY it is best to use Server Push

● Requires origin changes (server hints Link:<logo.png>;rel=subresource)

● Requires streaming origin to know at HTTP response header generation

● Requires origin to have a copy of the images (and as a result a cache)

● Priority should be given to Above-the-Fold images

● Deliver image content at end of page to allow browser to render text

● Ideally image urls would be detected, image content fetched, cached, and injected (or server pushed) at the

edge

Before After

Image Inliner
● Parse response for asset URLs
● Fetch and cache assets from CDN
● Inline images (datauri)
● Lazy-inline mode

○ for cache hits replace with 1x1
○ insert base64 at bottom

● Base64 increases size by 30%
● HTTP/2 Server Push

○ browser can cancel stream if it
doesn’t need

○ no base64 overhead
○ faster by one roundtrip
○ Requires new ATS plugin APIs

● Open Sourced: ETA Q1 2016

Problem: unified configuration
● Routing configuration not consistent with origins

● Feature flag, application configuration, experimentation definition in many places

● Exponential complexity growth with number of dimensions

○ 16 dimensions = 200ms init cost

○ sparse graph

○ leads to large in-memory caches

● No existing syntax validation of configuration values

● Hard to audit which configurations are used

Zeus Configuration Compiler
● Scalable configuration system

● Goal is to have a unified configuration across all serving tiers

● Multiple configuration distribution options

○ Option 1: configuration compiled into native code

■ Languages: C++, Java, JavaScript, PHP, (we accept pull requests)

○ Option 2: REST API served from ATS via a plugin

■ REST responses are structured, versioned, and cachable JSON

■ 50kqps; 5ms @99th; 2 x Xeon E5-2430 (sandy-bridge); cache disabled

■ dynamically reload compiled shared library

○ Option 3: subset of config available via HTTP request header

■ allows coordination of configuration versions

● Open Sourced Nov 2015: https://github.com/yahoo/zeus

https://github.com/yahoo/zeus

Areas of Improvement
● IPCs (Inter Plugin Communication)

○ repeated parsing request/responses
○ message passing standards

● Core regressions
● Execution ordering (multiple plug-ins sharing the same hook)
● Unified error handling

○ origin errors
○ internal errors

● Session hook access to SPDY/H2 data TS-3612
● SPDY/H2 server push plugin APIs
● Tracing through various hooks
● Validating plugin is memory leak free

https://issues.apache.org/jira/browse/TS-3612

