
1

Entity Centric Indexing in Rya
Rya Working Group

April 20, 2016

Problem Statement
• Find all documents in a datastore that contain a

specified collections of terms.

• The following SPARQL query asks for all documents that
contain the terms “dog” and “barks”.

2

SELECT ?X

WHERE {

 ?X contains “dog” .

 ?X contains “barks” .

}

Adjacency Lists

3

doc1
doc4

doc2

doc5

doc7

dog
bark

doc3
doc8

doc6

dog

bark

doc1 doc2 doc3

doc4 doc5 doc6

doc4 doc5 …

doc7 doc8 …

Adjacency lists of dog and bark

One possible approach:

• View docs and terms as a graph, with edges drawn from

a term to any document which contains that term

• Efficiently represent graph as a collection of adjacency

lists

• Finding common documents reduced to finding

intersection of lists

Distributing the Problem

4

What if the adjacency lists are really large? The word dog

could appear in lots of documents!

• Partition Adjacency Lists Based on Document Number

• Each server contains fixed range of documents

• To find common documents, adjacency list intersection

is performed on each server

dog

bark

dog

bark

1 2 3

4 5 6

4 5 …

7 8 …

Server 1

ShardID = 0

Server 2

ShardID = 1

ShardID = (doc num)%3

Server 3

ShardID = 2

3 6 ...

6 ...

1 4 ...

4 7 ...

2 5 ...

5 8 ...

dog

dog

bark

bark

Efficient EntityCentric Query
Evaluation

Evaluate the SPARQL query

and a broad range of other “entity-centric” queries as efficiently as possible

5

SELECT ?X

WHERE {

 ?X contains “dog” .

 ?X contains “barks” .

}

• Design table so that documents (adjacency lists) are distributed

uniformly among servers in cluster

• Provide a method to find intersecting documents for each term on

each server

• Provides an approach for solving entity-centric queries entirely on

the server to reduce network traffic and distribute the workload

Intersecting Iterators in Accumulo

RowID ColF ColQ

0 bark 6

0 dog 3

0 dog 6

6

RowID ColF ColQ

1 bark 1

1 bark 4

1 dog 4

1 dog 7

RowID ColF ColQ

2 bark 2

2 bark 5

2 dog 5

2 dog 8

Server 1

Server 2 Server 3

Elements in adjacency lists of “bark” and “dog” stored in Accumulo in a Document Partitioned Index

• RowID = shardID (doc num % 3)

• Column Family = term (bark or dog)

• Column Qualifier = adjacency element (document number)

Using this index, can evaluate “entity-centric queries” entirely on server

• On each server, iter 1 scans bark and iter 2 scans dog

• Iterators intersect when colQ1 = colQ2, then return result

Q: Select ?X Where {

 ?X contains “dog”

 ?X contains “bark”

}

Iter1

Iter2

Iter1

Iter2

Iter1

Iter2

Q

Q
Q

R:0 R:7

R:8

Issuing a query to Doc Partitioned
Index

To query a document partitioned index in Accumulo, register
intersecting iterator with BatchScanner and set column families

Text[] terms = {new Text(“dog"), new Text(“bark")};

BatchScanner bs = conn.createBatchScanner(table, auths, 10);

IteratorSetting is = new IteratorSetting(30, “ii”, IntersectingIterator.class);

IntersectingIterator.setColumnFamilies(is, terms);

bs.addScanIterator(is);

bs.setRanges(Collections.singleton(new Range()));

for(Entry<Key,Value> entry : bs) {

 System.out.println(" " + entry.getKey().getColumnQualifier());

 }

7

Generalizing to a Semantic Network
• Generalize Doc Partitioned Index to accommodate a broad range of

SPARQL queries

• Solve as many entity-centric queries server side as possible, where entity
centric means all statement patterns share a common variable or constant

8

select ?x ?y ?z

where{

 A aa ?x

 A bb ?y

 A cc ?z

 }

select ?x

where{

 ?x aa C

 ?x bb B

 ?x cc D

 }

select ?x ?y ?z

where{

 B aa ?x

 ?x bb ?y

 ?x cc ?z

 }

Entity Centric Index Key Design

9

For each triple (subj, pred, obj, context), include the following two entries in

the entity-centric index table:

The triple (uri:John, uri:worksAt, uri:Parsons, context: parsonEmployees)

would be added as the following two rows:

Row: uri: John, CF: uri:worksAt, CQ: parsonsEmployees\x00object\x00uri:Parsons

Row: uri: Parsons, CF: uri:worksAt, CQ: parsonsEmployees\x00subject\x00uri:John

Observations
• Where’s the sharding?

• Lot’s of data duplication

• By modifying the Accumulo IntersectingIterator class,
can answer the following queries server side
– Entity with properties

– Friend of a friend

– Properties of an entity

• Predicates cannot be variables

• Because Predicates are constants, they can be used to
define locality groups to greatly boost performance

10

Using Entity-Centric Index in Rya

• To use the entity-centric index in Rya, add the following to your
normal Rya client configuration:

 conf.set(ConfigUtils.USE_ENTITY, "true");

 conf.set(ConfigUtils.ENTITY_TABLENAME, ENTITY_TABLE_NAME);

• This configuration creates the entity-centric index and configures
the query planner to delegate portions of the query to the entity-
centric index.
– See EntityDirectExample in rya.indexing.example project

• Once table is created, mutations on entity-centric index can be
done through Rya client as mutations are performed on normal Rya
tables

• Currently bulk ingest is not supported for entity-centric index
– WARNING: If bulk ingest is used for core Rya tables, the entity centric will

be out of sync with the core Rya tables

11

Entity-Centric Index and Query
Planning

12

?x livesIn
Arlington

?y livesIn D.C.

?y talksTo ?x

?x commutesBy
Bike

Entity Centric Index

…

Joe, livesIn, D.C.

Joe, talksTo, Rob

…

Rob, commutesBy, Bike

Rob, livesIn, Arlington

…

Entity

Centric Index

Node

Entity Centric

index Node

1

2

• During query planning, statement patterns in query a group according to

common variables and common constants

• Those groups which have the highest “priority” are consolidated into an

entity-centric index node

