Entity Centric Indexing in Rya

Rya Working Group
April 20, 2016



Problem Statement

 Find all documents in a datastore that contain a
specified collections of terms.

* The following SPARQL query asks for all documents that
contain the terms “dog” and “barks”.

SELECT ?X

WHERE {
?X contains “dog” .
?X contains “barks” .

}



Adjacency Lists

One possible approach:

* View docs and terms as a graph, with edges drawn from
a term to any document which contains that term

 Efficiently represent graph as a collection of adjacency
lists

* Finding common documents reduced to finding
Intersection of lists

dog docl doc2 doc3 docd doc5

bark doc4 doc5 doc6 doc7 doc8

Adjacency lists of dog and bark



Distributing the Problem

What if the adjacency lists are really large? The word dog

could appear in lots of documents!

« Partition Adjacency Lists Based on Document Number

« Each server contains fixed range of documents

« To find common documents, adjacency list intersection
IS performed on each server

Coee > 3161 ...1 Server 1
/ =1l T ] ShardID =0
| e P{1]2]3]4]5]..] . N dog 1147].. gﬁgtg{[f:l
Lo PlaTsT6 1718 -] | e g I A
\ Lee >l 2151 ... Server 3
ShardID = (doc num)%3 =TT ] ShardID = 2




Efficient EntityCentric Query

Evaluation
Evaluate the SPARQL query

SELECT ?X

WHERE {
?X contains “dog” .
?X contains “barks” .

}
and a broad range of other “entity-centric” queries as efficiently as possible

» Design table so that documents (adjacency lists) are distributed
uniformly among servers in cluster

* Provide a method to find intersecting documents for each term on
each server

» Provides an approach for solving entity-centric queries entirely on
the server to reduce network traffic and distribute the workload



Intersecting lterators in Accumulo

Elements in adjacency lists of “bark” and “dog” stored in Accumulo in a Document Partitioned Index
RowID = shardID (doc hum % 3)
Column Family = term (bark or dog)
Column Qualifier = adjacency element (document number)

Using this index, can evaluate “entity-centric queries” entirely on server
On each server, iter 1 scans bark and iter 2 scans dog

Iterators intersect when colQ1 = colQ2, then return result

Q: Select ?X Where {
?X contains “dog”
?X contains “bark”

}
Server 1
RowlID ColF ColQ
lterl
0 bark 6
0 dog 3
0 dog 6

3

R _—a
Q
R:0 Q R:7
Server 2
RowlID ColF ColQ
1 bark 1
Ilterl
=> 1 bark 4
Iter2 1 dOg 4
1 dog 7

Iter2

Iterl

R:8

Server 3

RowID

ColF

ColQ

bark

bark

dog

Iter2

dog




Issuing a query to Doc Partitioned
Index

To query a document partitioned index in Accumulo, register
intersecting iterator with BatchScanner and set column families

Text[] terms = {new Text(“dog"), new Text(“bark")};

BatchScanner bs = conn.createBatchScanner(table, auths, 10);
IteratorSetting is = new lteratorSetting(30, “ii”, Intersectinglterator.class);
Intersectinglterator.setColumnFamilies(is, terms);

bs.addScanlterator(is);

bs.setRanges(Collections.singleton(new Range()));

for(Entry<Key,Value> entry : bs) {

System.out.printin(" " + entry.getKey().getColumnQualifier());



Generalizing to a Semantic Network

* Generalize Doc Partitioned Index to accommodate a broad range of

SPARQL queries

e Solve as many entity-centric queries server side as possible, where entity
centric means all statement patterns share a common variable or constant

Properties for an Entity

oy

A

e

Entity with Properties

-
o

“Friends of Friends”

o, 8
e

select ?x ?y ?z
where{

A aa ?x

A bb ?y

Acc ?z

}

select ?x

where{
?xaaC
?Xbb B
?xccD

}

select ?x ?y ?z
where{

B aa ?x

?X bb ?y

?X CC ?Z

}



Entity Centric Index Key Design

For each triple (subj, pred, obj, context), include the following two entries in
the entity-centric index table:

Accumulo Key

Column
Row: SI...ij CF:pred Crcontextx00Posllok
Accumulo Key
Column
Row: Ohj CF:pred Crcontextx00Posx00subj

The triple (uri:John, uri:worksAt, uri:Parsons, context. parsonEmployees)
would be added as the following two rows:

Row: uri: John, CF: uri:worksAt, CQ: parsonsEmployees\x00object\xO0uri:Parsons
Row: uri: Parsons, CF: uri:worksAt, CQ: parsonsEmployees\x00subject\x00uri:John



Observations

Where’s the sharding?
Lot’s of data duplication

By modifying the Accumulo Intersectinglterator class,
can answer the following queries server side

— Entity with properties

— Friend of a friend

— Properties of an entity

Predicates cannot be variables

Because Predicates are constants, they can be used to
define locality groups to greatly boost performance



Using Entity-Centric Index in Rya

To use the entity-centric index in Rya, add the following to your
normal Rya client configuration:

conf.set(ConfigUtils.USE_ENTITY, "true");
conf.set(ConfigUtils.ENTITY_TABLENAME, ENTITY_TABLE_NAME);

This configuration creates the entity-centric index and configures
the query planner to delegate portions of the query to the entity-
centric index.

— See EntityDirectExample in rya.indexing.example project

Once table is created, mutations on entity-centric index can be
done through Rya client as mutations are performed on normal Rya
tables

Currently bulk ingest is not supported for entity-centric index

— WARNING: If bulk ingest is used for core Rya tables, the entity centric will
be out of sync with the core Rya tables



Entity-Centric Index and Query
Planning

During query planning, statement patterns in query a group according to
common variables and common constants

Those groups which have the highest “priority” are consolidated into an
entity-centric index node

Entity Centric Index

Joe, livesin, D.C.

Entity
Centric Index

Joe, talksTo, Rob
Node

————————————————
——————————————————————————————————

Rob, commutesBy, Bike

Entity Centric
index Node

Rob, livesin, Arlington

12



