Forward Chaining Reasoning Tool for Rya

Rya Working Group, 6/29/2016

Forward Chaining Reasoning Tool for Rya 6/29/2016 1/11

OWL Reasoning

OWL (the Web Ontology Language) facilitates rich ontology definition
over RDF data. The semantics of the OWL provide a set of inference rules
for complex logical reasoning.

Reasoning strategies can typically be classified as either:
e Forward chaining: Proactively apply inference rules to the data

e Backward chaining: Apply inference rules to each query

For example, Rya can perform some backward chaining inference at query
time by rewriting queries. This is useful because it only does reasoning
related to the query itself, but is limited in scope to avoid overly complex
queries.

Forward Chaining Reasoning Tool for Rya 6/29/2016 2/11

We would also like to perform offline consistency checking: Determine
whether a potentially large dataset containing rich OWL schema yields any
contradictions under the inference semantics.

This problem lends itself to forward chaining:

e Validating the consistency of the entire datastore requires reasoning
over all the data

e We are less concerned by the usual challenge (for forward chaining
reasoners) of how to maintain stored triples

Goal: A MapReduce tool to perform distributed consistency checking over
a large Rya datastore.

Forward Chaining Reasoning Tool for Rya 6/29/2016 3/11

Reasoning Using Rules

Full OWL is computationally intractable for large datasets. OWL profiles
(named EL, QL, and RL) are subsets of OWL 2 designed to trade some
expressivity for efficiency.

OWL RL is intended for scalable rule-based reasoning. RL can be
expressed and implemented as a set of if/then rules,® which take in triples
and yield triples or inconsistencies.

If ?x rdf:type ?c and ?c rdfs:subClassOf 7d, then 7x rdf:type 7d .

If 7x ?p ?x and 7p rdf:type owl:IrreflexiveProperty, then the knowledgebase
is inconsistent .

We process a more restricted subset of OWL RL.

lhttps://www.w3.org/TR/cle—profi1es/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules
Forward Chaining Reasoning Tool for Rya 6/29/2016 4 /11

https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

Every rule's if-clause is a conjunction of triples. In order to apply a
reasoning rule, we must detect all the triples in the if-clause.

If we distinguish between schema triples (the relationships between classes
and properties) and instance triples, then most (but not all) RL rules have
the property that there exists a variable in the rule’s if-clause such
that every instance triple in the if-clause has that variable as its
subject and/or object.

Therefore, we can distribute reasoning among multiple computation nodes
if we ensure that:

e Every node has access to the schema.
e Instance triples are partitioned based on their subject and object.

Forward Chaining Reasoning Tool for Rya 6/29/2016 5/11

If every node has schema knowledge:
e :subOrganizationOf rdf:type owl:TransitiveProperty .
e :subOrganizationOf rdf:domain :Organization .
e :Organization owl:disjointWith :Person .

And one node has all triples involving Y:
e :X :subOrganizationOf :Y .
e :Y :subOrganizationOf :Z .
e Y rdf:type :Person .

Then that node can draw conclusions for its local neighborhood:
e :X :subOrganizationOf :Z . [via the semantics of transitivity]
e Y rdf:type :Organization . [via the semantics of domain]
e :Y's types are inconsistent. [via disjoint classes]

Forward Chaining Reasoning Tool for Rya 6/29/2016 6 /11

Supported OWL Constructs

OWL RL vocabulary constructs that can be handled this way include:

Relationships among classes
Property types and properties

owl:AsymmetricProperty owl:complementOf

owl:IrreflexiveProperty owl:disjointWith

owl:SymmetricProperty owl:equivalentClass

owl: TransitiveProperty) owl:equivalentProperty
owl:inverseOf

Property restrictions owl:propertyDisjointWith

owl:allValuesFrom rdfs:domain

owl:hasValue rdfs:range

owl:someValuesFrom | rdfs:subClassOf
rdfs:subPropertyOf

Forward Chaining Reasoning Tool for Rya 6/29/2016 7/11

MapReduce Reasoning

Mapper:
e Input: A triple from Accumulo.

e Processing: Based on the schema, decide whether the triple could be
relevant to reasoning around its subject and/or object.

e Output: < subject, triple > if determined relevant to subject, and/or
< object, triple > if relevant to object.

Reducer:
e Input: Resource x and all relevant triples connected to x.
e Processing: Apply RL reasoning rules to x's neighborhood.

e Output: Inferred triples and/or inconsistencies, with the triples that
implied them.

Inferred triples can trigger rules for neighboring resources, so we repeat
until convergence.

Forward Chaining Reasoning Tool for Rya 6/29/2016 8 /11

MapReduce Workflow

Implemented as several MapReduce jobs, invoked via ReasoningDriver in
the rya.reasoning project.

® Collect schema information to distribute to all nodes [SchemaFilter]

® Repeat until no new information can be derived:

@ Perform local reasoning [ForwardChain]
@ Prune duplicate triples and inconsistencies [DuplicateElimination]

© Collect inferred triples and inconsistencies [OutputTool]

<=
SchemaFilter DuplicateEliminati | OutputTool

A Intermediate Data

Filesystem

Forward Chaining Reasoning Tool for Rya 6/29/2016 9/11

Example Output

Inferred triples

<http://example.org/Y> <http://www.w3.org/1999/02/22 — rdf—syntax—ns#type> <http://example.org/Organization™> .
<http://example.org/X> <http://www.w3.org/1999/02/22 — rdf—syntax—ns#type> <http://example.org/Organization> .
<http://example.org/X> <http://example.org/subOrganizationOf> <http://example.org/Z> .

Inconsistencies

| A

Inconsistency :
[owl:disjointWith — Resource can't belong to two disjoint classes]
|
+—=<http://example.org/Y>
<http://www.w3.org/1999/02/22 — rdf—syntax—ns#type>
<http://example.org/Organization>
[rdfs:domain — Predicate 's domain implies subject's type]
|
+——<http://example.org/Y>
/example.org/subOrganizationOf>
<http://example.org/Z>
[input]

+——<http://example.org/Y>
<http://www.w3.org/1999/02/22 — rdf—syntax—ns#type>
<http://example.org/Person>
[input]

rward Chaining Reasonir

Tool for Rya

29/2016 10 / 11

e Extend to remaining OWL RL rules:

Rules involving owl:sameAs

Rules involving list constructs, e.g.owl:unionOf

Rules requiring multi-way joins, e.g.owl:propertyChainAxiom
Type-checking literals

e Check for unsatisfiable classes: classes that would be inconsistent if
they had any members

e Persist results:
e Store inferred triples in Rya? Should differentiate from original data

e Update inferences when data changes
e Combine forward-chaining with backward-chaining for query evaluation

e Explore user-defined rules (SWRL?)

Forward Chaining Reasoning Tool for Rya 6/29/2016 11 /11

