Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

Table of Contents

1.
2.

4,
5.

(1] d o To [¥ o 4 T o VO TRIN 2
Use cases: row-level filters.... ... ittt e s rensesesassesesnssesesnssannes 2
Use case #1: restrict users to access subset of rows based on group the user belongs to 2
o [ToY A 1= - 11 U UPRPPRRNE 3
QUUETY RESUIES. ...ttt e e e ettt e e e e e e e et e e e e e e e e e e e s e e st et b abaaaeeaaaeeeeassssabaasaaaaaaeeeeaaannssssasaeaaaaaaenns 3
Use case #2: restrict users to access subset of rows based on data in another table 4
oo LoV A 1= - 11 U PRPPRRNE 4
QUUETY RESUIES. ...ttt e ee e e ettt e e e e e e et e e e e e e e e e e s e e st abtabaeaeeaaaeeeeasssssbaaaaeaaaaeeeeasasnssssssaeaaaaaeannn 5
Use case #3: restrict users to access subset of rows based on data in reference tables...................... 5
oo oY A 1= - 11 U UPRPPRRNE 6
QUUETY RESUIES. ...ttt e ettt e e e e e e ettt e e e e e e e e e e ee e st et e baaeaeeaaaeeeaasssssbaaaaaaaaaeeessaasnssssssaeaaaaaanens 6
Use case #4: allow specific users/groups to access all FOWScueeeeeeeieeriieiiieeiieeieeeieeeeeeeeeeeeeeeeeeeeeen 7
o [ToY A 1= - 11 U PRPPRRNE 7
QUUETY RESUIES. ... iiiiiiiee e e ettt e e e e e e e et e e e e e e e e e e e e e s taab b baaeaeeaaaeeseasassasaasaaeaaaeeeesaassssstssaeaaaaaannnn 8
Use cases: data-maskingcccouveuuiiiiiiiininiiiiiiiiieniiiiiesesssn. 8
Use case #1: only last 4 digits of phone numbers should be shown.........cccccoivrmiiiiiiiiiiieiiciiieniennes 8
o [ToY A 1= - 11 U PUPPRRNE 8
QUUETY RESUIES....iiitiiiiee e e ettt e e e e e e e et e e e e e e e e e e e e e st e bt bbaeaeaaaaeeeeassssabaasaeaaaaeeeesaannssssssaeaaaaaeenns 9
Use case #2: only year value of date_of_birth column should be shown.........cccccoovemnirrrrniiirnennnnnne. 9
oo oY A 1= - 11 U UPRPPRRNE 9
QUUETY RESUIES. .. iiiiiieiee e e e e e ettt et e e e e e e e et aa e e e e e eeaeesee s e astaraaaaeaaaaaeeesaassstaaaaaaeaaaesesesnnstsraasaees 10
Use case #3: name_last column value should not be shown ... 10
o] [ToY e 1= - 11 U PPPUUPRRO 10
QUUETY RESUIES. ..ttt et e e e e ettt e e e e e e e e e ettt aa e e e eeaeaeesee s abtbbaaaeeaaaeaeeesaassstaaaasaeaaaeseeeaanstsransaees 11
Use case #4: apply a custom transformation to name_first columncc..coivieniiiiiiniiiiireiccnneenneens 11
o] [ToY e 1= - 11 U PPPUURRRO 11
QUUETY RESUIES. ...ttt et e e e e ettt e e e e e e e ettt e e e e eeeeaeesee s e abtbbaaaeeeaaeaeeeaaassstaaaasaaaaaesesesnnstsransaees 12
Lo oy 1V o T = 12
L] =] €= 1oL =L ROt 13
FAQ coieiiieiieiiteireeitenetereenteseresseessassrasssassasssessssssasssasssassssssasssnsessssasssnsssassasssasesassnsssasesnnens 13

Page 1 of 13

Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

1. Introduction

Apache Ranger provides centralized security for Enterprise Hadoop ecosystem, including fine-
grained access control and centralized auditing. Apache Ranger policy model supports policies to
allow or deny an access based on users, groups, access-types and other dynamic attributes like
IP-address, time of access, etc. In addition, the model also supports authorization based on the
classification of the resources - like PIl, FINANCE, SESITIVE, etc. (tag-based authorization).

Couple of the often asked features are the ability to allow users to access only a subset of rows
in a table or restrict users to access only masked/redacted value of sensitive data. In version 0.6
release, Apache Ranger policy model has been enhanced to support row-filtering and data-
masking features. With this release, Apache Ranger plugin for Apache Hive implements these
new features, allowing security administrators to set appropriate row-filters and data-masking
for Hive tables and columns. This document covers various details of these enhancements, using
a number of examples.

2. Use cases: row-level filters

Let us go through few use cases to understand the row-level filter feature. Hive table given below
will be used in the following use cases:

Table: customer

B h et fomm o B Fommm e +
| id | name first | name last | addr country | date of birth | phone num |
B h et fom Fmm o Fommm e +
| 1 | Mackenzy | Smith | US | 1993-12-18 | 123-456-7890

| 2 | Sherlyn | Miller | US | 1975-03-22 | 234-567-8901

| 3 | Khiana | Wilson | US | 1989-08-14 | 345-678-9012

| 4 | Jack | Thompson | US | 1962-10-28 | 456-789-0123

| 5 | Audrey | Taylor | UK | 1985-01-11 | 12-3456-7890

| 6 | Ruford | Walker | UK | 1976-05-19 | 23-4567-8901

| 7 | Marta | Lloyd | UK | 1981-07-23 | 34-5678-9012

| 8 | Derick | Schneider | DE | 1982-04-17 | 12-345-67890

| 9 | Anna | Richter | DE | 1995-09-07 | 23-456-78901

| 10 | Raina | Graf | DE | 1999-02-06 | 34-567-89012

| 11 | Felix | Lee | CA | 1982-04-17 | 321-654-0987

| 12 | Adam | Brown | CA | 1995-09-07 | 432-765-1098

| 13 | Lucas | Jones | CcA | 1999-02-06 | 543-876-2109

| 14 | Yvonne | Dupont | FR | 1982-04-17 | 01-23-45-67-89

| 15 | Pascal | Fournier | FR | 1995-09-07 | 23-45-67-89-01

| 16 | Ariel | Simon | FR | 1999-02-06 | 34-56-78-90-12

B h et fomm o B Fommm e +

Use case #1: restrict users to access subset of rows based on group the user belongs to
Let us start with a simple use case. The requirement is to restrict users to access only records of
customers located in the same country where the user works. For example, US users can only
access US customer records; and UK users can only access UK customer records. Users belong to
one of the country-specific groups maintained in LDAP/AD, as shown in the example below:

tom e o +
| Group name | Users

tom e o +
us-employees	john,scott
uk-employees	mary,adam
de-employees	drew,alice
tom e o +

Page 2 of 13

Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

Policy details
Follow the steps given below to create a policy to enforce row-level access control:
1. Select ‘Row Level Filter’ tab

Ranger UAccess Manager [3 Audit & Settings

cl1_hive Policies

Access Masking Row Level Filter

2. Add a policy to specify row-filters for various user groups, as shown below:

Policy Details :

LCRYI Row Level Fiter

Policy Name * | rowfilter: cust.customer table [enabled @)

Hive Table * | % customer

AuditLogging (B)

Description | Restrict employees to access only
country-specific customer records

Row Filter Conditions :

Select Group Select User Access Types Row Level Filter

* us-employees | ‘ ‘Se\ecl User [select | |73 addr_country ='US' [n
x uk-employees ‘ Select User [setect |IP3 addr_country ='UK’ |IP3 u
x de-employees ‘ Select User m ’ addr_country = 'DE |3 u

Query Results
Let us now access the customer table with different users and see how the results have only
subset of rows in the table, as set by the above Apache Ranger policy:

User john, a member of us-employees group:
The result includes only customers in US.

[john@localhost ~]1$ beeline -u Jjdbc:hive2://localhost.localdomain:10000/cust
0: jdbc:hive2://localhost.localdomain:10000> select * from cust.customer;

o= Fomm e Fom - Fom e Fom e Fomm +
| id | name first | name last | addr country | date of birth | phone num |
o= Fomm e Fom - Fom e Fom e Fomm +
|1 | Mackenzy | Smith | Us | 1993-12-18 | 123-456-7890 |
| 2 | Sherlyn | Miller | US | 1975-03-22 | 234-567-8901

| 3 | Khiana | Wilson | US | 1989-08-14 | 345-678-9012

| 4 | Jack | Thompson | US | 1962-10-28 | 456-789-0123 |
o= Fomm e Fom - Fom e Fom e Fomm +

User mary, a member of uk-employees group:
The result includes only customers in UK.

Page 3 of 13

Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

[mary@localhost ~]$ beeline -u Jjdbc:hive2://localhost.localdomain:10000/cust
0: jdbc:hive2://localhost.localdomain:10000> select * from cust.customer;

o= Fomm e Fom - Fom e Fom e Fomm - +
| id | name first | name last | addr country | date of birth | phone num |
o= Fomm e Fom - Fom e Fom e Fomm - +
|5 | Audrey | Taylor | UK | 1985-01-11 | 12-3456-7890
| 6 | Ruford | Walker | UK | 1976-05-19 | 23-4567-8901 |
|7 | Marta | Lloyd | UK | 1981-07-23 | 34-5678-9012
o= Fomm e Fom - Fom e o Fomm - +
User drew, a member of de-employees group:
The result includes only customers in DE.

[drew@localhost ~]$ beeline -u jdbc:hive2://localhost.localdomain:10000/cust
0: jdbc:hive2://localhost.localdomain:10000> select * from cust.customer;
o= Fomm e Fom - Fom e Fom e Fomm - +
| id | name first | name last | addr country | date of birth | phone num |
o= Fomm e Fom - Fom e Fom e Fomm - +
| 8 | Derick | Schneider | DE | 1982-04-17 | 12-345-67890

I 9 | Anna | Richter | DE | 1995-09-07 | 23-456-78901

| 10 | Raina | Graf | DE | 1999-02-06 | 34-567-89012
o= Fomm e Fom - Fom e Fom e Fomm - +

Use case #2: restrict users to access subset of rows based on data in another table
Let us get a little more sophisticated now. The requirement is to use an attribute in employee
table to find the country where a user works, instead of using user-groups in LDAP/AD.

Table: employee

o +
| id | userid | country |
[==== === | === |
1	john	US
2	scott	US
3	mary	UK
4	adam	UK
5	drew	DE
6	alice	DE
o +
Policy details

Update the policy created earlier to use the following filter, for group=public, as shown below:

addr country in (select e.country from emp.employee e
where e.userid = current user())

Please note that multiple policy-items in the previous use case, one for each user-group, are
replaced with a single policy-item in the updated policy below.

Page 4 of 13

Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

Policy Details :

UV SR Row Level Filter |
Policy ID m

Policy Name * rowFilter: cust.customer table enabled

Hive Database * * cust

Hive Table * * customer

Audit Logging ﬁ

Description Restrict employees to access only
country-specific customer records/

Row Filter Conditions :

Access
Select Group Select User Types Row Level Filter

x public select Jf addr_country In (select e.country from emp.employe ee e where e.userld = current_user(

Query Results
The query results should be same as the previous use case.

Use case #3: restrict users to access subset of rows based on data in reference tables

Let us get more sophisticated now. Instead of restricting users to customer records of a single
country, the requirement is to allow users to access records of customers who are located in the
same region as the user. For example, a user in US should be able to access records of customers
in North America region; and a user in DE or FR should be able to access records of customers in

European Union region.

A reference table, country_region, is used to find the region for a given country. This table and
couple of helper views, shown below, will be used to setup appropriate filter in Apache Ranger

policy:

Table: country region
Fo—— Fo—— +
| country | region |
Fo—— Fo—— +
| US | NA I
| CcA | NA I
| UK | UK |
| DE | EU I
| FR | EU |
Fo—— Fo—— +

create view employee region(userid, region) as

select e.userid, cr.region from emp.employee e, emp.country region cr

where e.country = cr.country;

create view employee country(userid, country) as

select er.userid, cr.country from emp.employee region er, emp.country region cr

where cr.region = er.region;

Page 5 of 13

Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

Policy details
Update the policy created earlier to use the following filter, for group=public, as shown below:

addr country in

current user())

(select ec.country from emp.employee country ec
where ec.userid

Policy Details :
[CERITI Row Level Filter
policyio (EED
Policy Name * | rowfilter: cust.customer table
Hive Database * || cust
Hive Table * || * customer
Audit Logging (X
Description | Restrict employees to access only
country-specific customer records
Row Filter Conditions :
Access "
Select Group Select User Row Level Filter
Types
% public leleet] om) mplo; R = ﬁ
s s
i

The query results now will include customers in all countries in the region where the user works

— not just the customers in the country where the user works.

User john, who works in ‘US’:
The result includes customers in North America region.

[john@localhost ~]1$ beeline -u Jjdbc:hive2://localhost.localdomain:10000/cust

0: jdbc:

fmm——— e +
| id | name first |
O o +
1	Mackenzy
2	Sherlyn
3	Khiana
4	Jack
11	Felix
12	Adam
13	Lucas
O e +

Smith
Miller
Wilson
Thompson
Lee
Brown
Jones

User mary, who works in ‘UK’:
The result includes customers in UK region.

1993-12-18
1975-03-22
1989-08-14
1962-10-28
1982-04-17
1995-09-07
1999-02-06

————

hive2://localhost.localdomain:10000> select * from cust.customer;
+ ____________
date_of birth

phone num

123-456-7890
234-567-8901
345-678-9012
456-789-0123
321-654-0987
432-765-1098
543-876-2109

[mary@localhost ~]$ beeline -u Jjdbc:hive2://localhost.localdomain:10000/cust

0: jdbc:

fo—— = B +
| id | name first |
o o ———————— +
5	Audrey
6	Ruford
7	Marta
fo—— = B +

Taylor
Walker
Lloyd

1985-01-11
1976-05-19
1981-07-23

————

hive2://localhost.localdomain:10000> select * from cust.customer;
+ ____________
date_of birth

phone num

12-3456-7890
23-4567-8901
34-5678-9012

______________ +

______________ +

______________ +

______________ +

______________ +

Page 6 of 13

Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

User drew, who works in ‘DE’:
The result includes customers in European Union region.

[drew@localhost ~]$ beeline -u jdbc:hive2://localhost.localdomain:10000/cust
0: jdbc:hive2://localhost.localdomain:10000> select * from cust.customer;

fo—— = B fom o Bt Fomm e +
| id | name first | name last | addr country | date of birth | phone num |
fo—— = fom fom o o Fom e +
| 8 | Derick | Schneider | DE | 1982-04-17 | 12-345-67890

| 9 | Anna | Richter | DE | 1995-09-07 | 23-456-78901

| 10 | Raina | Graf | DE | 1999-02-06 | 34-567-89012

| 14 | Yvonne | Dupont | FR | 1982-04-17 | 01-23-45-67-89

| 15 | Pascal | Fournier | FR | 1995-09-07 | 23-45-67-89-01

| 16 | Ariel | Simon | FR | 1999-02-06 | 34-56-78-90-12
fo—— = B fom o Bt Fomm e +

Use case #4: allow specific users/groups to access all rows

It might be necessary to allow specific users/group to access all rows in a table, while restricting
rest of the users to only subset of rows. For example, let us say the requirement is for user ‘falcon’
to be able to access all rows.

Policy details

Update the policy created earlier by inserting a policy-item, with user=falcon and empty value
for filter, as shown below. Ensure that the new policy-item appears before the policy-item that
has groups=public.

While determining the filter to apply for a table, Apache Ranger policy engine evaluates the
policy-items in the order listed in the policy. The filter specified in the first policy-item that
matches the access-request (i.e. user/groups) will be used in the query.

In this case, since no filter is specified for user falcon, the user will be allowed access all rows.

Policy Details :

CCR RN Row Level Filter

prolicyi (GE)

Policy Name * | rowfFilter: cust.customer table

Hive Database * * cust

Hive Table * * customer

Audit Logging G

Description Restrict employees to access only
country-specific customer records/

Row Filter Conditions :

Access
Select Group Select User W Row Level Filter

xfalcon| | Wesd Add Row Filter | + ﬁ

% public

Page 7 of 13

Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

Query Results
The query results will include all customers, without any filters.

[falcon@localhost ~]# beeline -u jdbc:hive2://localhost.localdomain:10000/cust

0: jdbc:hive2://localhost.localdomain:10000> select * from cust.customer;

fo—— = B fom fom e o Fom e +
| id | name first | name last | addr country | date of birth | phone num |
R R P — RS ———— o e e +
| 1 | Mackenzy | Smith | US | 1993-12-18 | 123-456-7890

| 2 | Sherlyn | Miller | US | 1975-03-22 | 234-567-8901

| 3 | Khiana | Wilson | US | 1989-08-14 | 345-678-9012

| 4 | Jack | Thompson | US | 1962-10-28 | 456-789-0123

| 5 | Audrey | Taylor | UK | 1985-01-11 | 12-3456-7890

| 6 | Ruford | Walker | UK | 1976-05-19 | 23-4567-8901

|7 | Marta | Lloyd | UK | 1981-07-23 | 34-5678-9012

| 8 | Derick | Schneider | DE | 1982-04-17 | 12-345-67890

| 9 | Anna | Richter | DE | 1995-09-07 | 23-456-78901

| 10 | Raina | Graf | DE | 1999-02-06 | 34-567-89012

| 11 | Felix | Lee | CA | 1982-04-17 | 321-654-0987

| 12 | Adam | Brown | CA | 1995-09-07 | 432-765-1098

| 13 | Lucas | Jones | CcA | 1999-02-06 | 543-876-2109

| 14 | Yvonne | Dupont | FR | 1982-04-17 | 01-23-45-67-89

| 15 | Pascal | Fournier | FR | 1995-09-07 | 23-45-67-89-01

| 16 | Ariel | Simon | FR | 1999-02-06 | 34-56-78-90-12
fo—— = B fom fom e o Fom e +

3. Use cases: data-masking
Let us use customer table used in row-level filter use cases for data-masking feature use cases
as well.

Use case #1: only last 4 digits of phone numbers should be shown

It is often necessary to show only part of the sensitive data to most users. In this use case, we
will see the details of Apache Ranger policy to show only last 4 digits unmasked for values in
phone_num column.

Policy details
Follow the steps given below to create a policy to enforce masking on the column:
1. Select ‘Masking’ tab

cl1_hive Policies

Access

Masking Row Level Filter

List of Policies : cl1_hive

2. Add a policy with the following details:

Page 8 of 13

Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

Policy Details :
Policy Type m
policyip (E
Policy Name * masking: customer.phone_num

Hive Database * * cust

Hive Table * * customer

Hive Column * » phone_num
Select Masking Option

Redact

Audit Logging ﬁ D Partial mask: show last 4
Partial mask: show first 4
Description masking policy for Hash
Nullify

customer.phone_num column
Unmasked (retain original value)
Date: show only year

Mask Conditions :
Custom

v x
Select Group Select User Access Types -

% public elect Use select [IP3

Query Results

The result of query on customer table will only show last 4 digits of phone_num column
unmasked, as shown below. In addition, please note that the row-level filter policy created earlier
is also applied in the query result.

[john@localhost ~]# beeline -u Jjdbc:hive2://localhost.localdomain:10000/cust
0: jdbc:hive2://localhost.localdomain:10000> select * from cust.customer;

fo—— = B fom o Bt e +
| id | name first | name last | addr country | date of birth | phone num |
fo—— fom fom o o e +
1	Mackenzy	Smith	US	1993-12-18	xxx-xxx-7890
2	Sherlyn	Miller	US	1975-03-22	xxx-xxx-8901
3	Khiana	Wilson	US	1989-08-14	xxx-xxx-9012
4	Jack	Thompson	US	1962-10-28	xxx-xxx-0123

| 11 | Felix | Lee | CA | 1982-04-17 | xxx-xxx-0987 |
| 12 | Adam | Brown | CA | 1995-09-07 | xxx-xxx-1098 |
| 13 | Lucas | Jones | CcA | 1999-02-06 | xxx-xxx-2109

fo—— = B fom o Bt e +

Use case #2: only year value of date_of birth column should be shown

In this use case, we will see the details of Apache Ranger policy to show only year value of
date_of_birth column. To ensure that the value returned is of type date, a constant value of ‘01’
will be shown for day and month fields of the column value.

Policy details
Add a policy with the following details:

Page 9 of 13

Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

Policy Details :
Policy Type ([EETE
Policy Name * masking: customer.date_of_birth y
Hive Database * * cust
Hive Table * * customer
Hive Column * x date_of_birth
Select Masking Option

Redact

Audit Logging ﬁ) Partial mask: show last 4
Partial mask: show first 4
Hash

Description masking policy for

Nullify

customer.date_of_birth column ,
N Unmasked (retain original value)
© Date: show only year

Mask Conditions :
Custom

v x
Select Group Select User Access Types .

* public Select User

Query Results
In addition to earlier masked result on phone_num column, the query result will only show year
value for date_of_birth column, as shown below.

[john@localhost ~]1# beeline -u Jjdbc:hive2://localhost.localdomain:10000/cust
0: jdbc:hive2://localhost.localdomain:10000> select * from cust.customer;

fo—— = B fom o Bt e +
| id | name first | name last | addr country | date of birth | phone num |
fo—— = fom fom o o e +
1	Mackenzy	Smith	US	1993-01-01	xxx-xxx-7890
2	Sherlyn	Miller	US	1975-01-01	xxx-xxx-8901
3	Khiana	Wilson	US	1989-01-01	xxx-xxx-9012
4	Jack	Thompson	US	1962-01-01	xxx-xxx-0123

| 11 | Felix | Lee | CA | 1982-01-01 | xxx-xxx-0987 |
| 12 | Adam | Brown | CA | 1995-01-01 | xxx-xxx-1098 |
| 13 | Lucas | Jones | CA | 1999-01-01 | xxx-xxx-2109

fo—— = B fom o Bt e +

Use case #3: name_last column value should not be shown
In this use case, we will see the details of Apache Ranger policy to effectively not show the value
of name_last column — by returning NULL as value for all rows.

Policy details
Add a policy with the following details:

Page 10 of 13

Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

Policy Details :
Policy Type (B
Policy Name * masking: customer.name_last
Hive Database * * cust
Hive Table * % customer

Hive Column * % name_last
Select Masking Option
Redact
Audit Logging ﬁ Partial mask: show last 4
Partial mask: show first 4
Hash

Description masking policy for
P & poley 9 Nullify

customer.name_last column
Unmasked (retain original value)

Date: shi I
Mask Conditions : ate: show only year

Custom

v x
Select Group Select User Access Types .

* public

Query Results

In addition to earlier masked result on phone_num, date_of_birth columns, the query result will
only show null value for name_last column, as shown below.

[john@localhost ~]1# beeline -u Jjdbc:hive2://localhost.localdomain:10000/cust

0: jdbc:hive2://localhost.localdomain:10000> select * from cust.customer;
+-———= Fom e o= o o fom e +

| id | name first | name last | addr country | date of birth | phone num |
fo—— = fom fom o m o e +
1	Mackenzy	NULL	US	1993-01-01	xxx-xxx-7890
2	Sherlyn	NULL	US	1975-01-01	xxx-xxx-8901
3	Khiana	NULL	US	1989-01-01	xxx-xxx-9012
4	Jack	NULL	US	1962-01-01	xxx-xxx-0123
11	Felix	NULL	CA	1982-01-01	xxx-xxx-0987
12	Adam	NULL	CA	1995-01-01	xxx-xxx-1098
13	Lucas	NULL	CA	1999-01-01	xxx-xxx-2109
fo—— = B fom o Bt e +

Use case #4: apply a custom transformation to name_first column
In this use case, we will see the details of Apache Ranger policy to set a custom expression to
transform the value of name_first column.

Policy details

Add a policy with the following details to specify the expression, initcap (reverse ({col})), to
transform name_first column values. Ensure that the datatype of the expression is same as the
datatype of the column. Token ‘{co1}’ in the expression will be replaced by Apache Ranger policy
engine by the name of the column on which masking is being applied.

Page 11 of 13

Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

Policy Details :
Policy Type ([EESNS
Policy Name * masking: customer.name_first

Hive Database * * cust

Hive Table * * customer

Hive Column * * name_first

Audit Logging G

Description masking policy for
customer.name_first column

Mask Conditions :

Select Group Select User Access Types Select Masking Option

% public select [IP3 oLl | ¢ | initcap(reverse({col}))

Query Results
In addition to earlier masked result on phone_num, date_of_birth, name_last columns, the query
result will show transformed value name_first column, as shown below.

[john@localhost ~]1# beeline -u Jjdbc:hive2://localhost.localdomain:10000/cust
0: jdbc:hive2://localhost.localdomain:10000> select * from cust.customer;

fo—— = B fom o Fmmm e e +
| id | name first | name last | addr country | date of birth | phone num |
R R P — RS ———— o e e +
| 1 | Yznekcam | NULL | US | 1993-01-01 | xxx-xxx-7890

| 2 | Nylrehs | NULL | US | 1975-01-01 | xxx-xxx-8901

| 3 | Anaihk | NULL | US | 1989-01-01 | xxx-xxx-9012

| 4 | Kcaj | NULL | US | 1962-01-01 | xxx-xxx-0123

| 11 | Xilef | NULL | CA | 1982-01-01 | xxx-xxx-0987

| 12 | Mada | NULL | CA | 1995-01-01 | xxx-xxx-1098

| 13 | Sacul | NULL | CA | 1999-01-01 | xxx-xxx-2109
fo—— = B fom o Fmmm e e +
4. Policy Model

This section summarizes the updates to Apache Ranger policy model to support row-filter and
data-mask features.
1. Support for two new policy-types has been added: row-filter and data-mask
2. RangerServiceDef, the class that represents a service/component (like HDFS/Hive/HBase,
..), has been updated with addition of two attributes — rowFilterDef and dataMaskDef.
Services that need row-filter or data-masking feature should populate these attributes
with appropriate values
3. RangerPolicy, the class that represents a policy in Apache Ranger, has been updated with
addition of two attributes — rowFilterPolicyltems and dataMaskPolicyltems. References

Page 12 of 13

Row-level filtering and column-masking using Apache Ranger policies in Apache Hive

4. RangerPolicyEngine interface has been wupdated with two new methods,
evalRowfFilterPolicies() and evalDataMaskPolicies(). Corresponding implementations
have been added to RangerPolicyEnginelmpl and other related classes.

5. References

e HIVE-13125: Support masking and filtering of rows/columns
e HIVE-13568: Add UDFs to support column-masking

e RANGER-873: Ranger policy model to support data-masking
e RANGER-908: Ranger policy model to support row-filtering

e RANGER-895: Ranger Hive plugin to support column-masking
e RANGER-909: Ranger Hive plugin to support row-filtering

6. FAQ

1. Which version of Apache Hive version supports row-filtering and data-masking?
Apache Hive version 2.1 and above support row-filtering and data-masking features

2. Can wildcards or multiple-values be used to specify database/table/column in row-
filtering and data-masking policies?
Use of wildcards or multiple-values to specify database/table/column values is not
supported in row-filtering and data-masking policies. Row-filter expressions often refer
to columns in the same table; such expressions may not be applicable for other tables,
making wildcards/multiple-values less useful or more error-prone here.

3. How are operations like insert, update and delete are handled when the user has row-
filter/column-masking on the table/columns?
Operations insert/update/delete/export are denied for users if row-filter or column-
masking policies are applicable on the table for the user.

4. How do | exclude specific users/groups from row-filter and column-masking?
Policy-items in row-filter and column-masking policies are evaluated in the order listed
in the policy. The filter or mask specified in the first matched policy-item will be applied
in the query.

To exclude specific users/groups from row-filter, create a policy-item for specific
users/groups with empty value as row-filter and ensure that the policy-item is the first
one to appear in the list for the users/groups.

To exclude specific users/groups from column-masking, create a policy-item for specific
users/groups with ‘Unmasked’ as the masking option and ensure that the policy-item is
the first one to appear in the list for the users/groups.

Page 13 of 13

