
UIMA Version 3 User's Guide
Written and maintained by the Apache

UIMA™ Development Community

Version 3.0.0-SNAPSHOT

Copyright © 2006, 2016 The Apache Software Foundation

Copyright © 2004, 2006 International Business Machines Corporation

License and Disclaimer. The ASF licenses this documentation to you under the Apache
License, Version 2.0 (the "License"); you may not use this documentation except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such terms in this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date October, 2016

http://www.apache.org/licenses/LICENSE-2.0

UIMA Version 3 User's Guide iii

Table of Contents
1. UIMA Resources ... 1

1.1. What is a UIMA Resource? ... 1
1.1.1. Resources-framework versus Resources .. 2

1.2. Resource Specifiers ... 2
1.3. Sharing Resources .. 2
1.4. Resource lifecycles ... 3
1.5. ResourceManager and PEARs .. 4

1.5.1. Lifecycle for PEARs .. 4
1.6. .. 4

1.6.1. Multiple Parameterized Instances of a particular resource 4
1.7. Resource Configuration ... 4

1.7.1. Configuration of External Resources ... 4
1.8. CAS Pools ... 4

UIMA Resources 1

Chapter 1. UIMA Resources

1.1. What is a UIMA Resource?
UIMA uses the term Resource to describe all UIMA components that can be acquired by an
application or by other resources. These are typically written by users, and are not part of the
UIMA framework itself.

Figure 1.1. Resource Kinds

Resource kinds include:

Annotator
a user written component, receives a CAS, does some processing, and returns the possibly
updated CAS. Variants include CollectionReaders, CAS Consumers, CAS Multipliers.

Flow Controller
a user written component controlling the flow of CASes within an aggregate.

External Resource
a user written component. Variants include:

• Data - includes special lifecycle call to load data
• Parameterized - allows multiple instantiations with simple string parameter variants;

example: a dictionary, that has variants in content for different languages
• Configurable - supports configuration from the XML specifier

CAS Pools
This is a UIMA framework resource, providing a pooling mechanism to efficiently share CAS
instances with identicial type systems with multiple UIMA pipelines.

Resources-framework versus Resources

2 UIMA Resources UIMA Version 3.0.0

1.1.1. Resources-framework versus Resources
It is easy to confuse UIMA framework classes and methods designed to support resources, with
the resources themselves. There are many different specializations of resources, and corresponding
parts of the UIMA framework that support these.

Here's a small part of the UIMA Frame support classes, in green, showing some of the User
resources that have been (in this example) instantiated, in yellow. The yellow components have
their own superclass hierarchy, indicated by the upwards pointing arrow, independent from the
resource framework implementation. Each Resource has its own set of framework class instances,
starting with a Resource_Impl instance, and also its own User code instance. For clarity, the
multiple instances are omitted in the middle of the diagram.

Figure 1.2. Resource Kinds

1.2. Resource Specifiers
Resources are instantiated from specifications contained in XML Resource Specifiers. These are
described in the reference chapter on component descriptors. A common initialize method that
is part of UIMA framework classes that supports Resources, takes the ResourceSpecifier (the
internal Java form of the XML resource specifier), plus a key-value map of arbitrary additional
parameters, and is responsible for configuring the instance of the UIMA framework support class
so that it can respond to subsequent method calls to get an instance of the resource.

Note that this initialize method is different from the initialze(uimaContext) method that
is part of the API for AnalysisEngines.

1.3. Sharing Resources, even across pipelines
UIMA applications run one or more UIMA Pipelines. Each pipeline has a top-level Analysis
Engine, which may be an aggregation of many other Analysis Engine components. The UIMA
framework instantiates Annotator resources as specified to configure the pipelines.

Sometimes, many identical pipelines are created (for example, in order to exploit multi-core
hardware by processing multiple CASes in parallel). In this case, the framework would produce

Resource lifecycles

UIMA Version 3.0.0 UIMA Resources 3

multiple instances of those Annotation resources; these are implemented as multiple instances of
the same Java class.

Multiple resources in addition to the Annotators are set up and kept in a single instance of the
ResourceManager; this instance serves to allow sharing of 3 types of things across one or more
pipelines. These are:

• The UIMA Extension ClassLoader (if specified) - used to find the resources

The External Resources

The CAS Pool

In typical use, no existing ResourceManager used when creating a pipeline; this results in a new
ResourceManager being created and used for that pipeline. However, in many cases, it may be
advantageous to share the same Resources across multiple pipelines; this is easily doable by
passing a common instance of the ResourceManager to the pipeline creation methods (using the
additional parameters).

For PEAR wrapper usage, a special extra version of an existing ResourceManager is created, called
the ResourceManagerPearWrapper, which keeps all the same resources, except that it has a
separate value for the UIMA Extension Classloader. This is used to support the classpath isolation
feature of PEARs.

1.4. Resource lifecycles
The lifecycle for resources includes several events.

Figure 1.3. Resource Lifecycles

Annotators are instantiated by the various flavors of produceResource, and their
initialize(UimaContext) method is called. While the pipe line is running, each new CAS that
arrives is passed in via the process method. The UIMA Framework doesn't generate a destroy
call on its own, because only the application code making use of the UIMA Framework knows
when a pipeline is finished and can be destroyed.

External Resources are instantiated as a side effect of running produceResource to produce a
pipeline. Instances of DataResource have their load method called during this time. Instances of
ConfigurableDataResource defer their call to load until a call is made to get the resource - this call
supplies a parameter, such as a language code, used to pick one of several inputs to load.

CasPools are instantiated lazily, when a Cas is requested from the pipeline, or when a
pool of a given size needs to be set up for some pipeline configurations. For instance, the
MultiprocessingAnalysisEngine configuration sets up a pool with the size equal to the number of
parallel pipelines being configured.

ResourceManager and PEARs

4 UIMA Resources UIMA Version 3.0.0

(New as of UIMA 2.10.0) For both External Resources and the Cas Pool, destroy is not generated
internally by the UIMA framework, because it doesn't know when the application (which might be
sharing the ResourceManager's resources among multiple pipelines) is finished. The application
may call destroy on the ResourceManager instance, which will then forward this to the External
Resources, and the CAS Pool.

1.5. ResourceManager and PEARs

1.5.1. Lifecycle for PEARs

1.6.

1.6.1. Multiple Parameterized Instances of a particular
resource

1.7. Resource Configuration

1.7.1. Configuration of External Resources

1.8. CAS Pools

	UIMA Version 3 User's Guide
	Table of Contents
	Chapter 1. UIMA Resources
	1.1. What is a UIMA Resource?
	1.1.1. Resources-framework versus Resources

	1.2. Resource Specifiers
	1.3. Sharing Resources, even across pipelines
	1.4. Resource lifecycles
	1.5. ResourceManager and PEARs
	1.5.1. Lifecycle for PEARs

	1.6.
	1.6.1. Multiple Parameterized Instances of a particular resource

	1.7. Resource Configuration
	1.7.1. Configuration of External Resources

	1.8. CAS Pools

