Apache CarbonData 2.0

Agenda

« CarbonData Background
« 2.0 New Features

— Data access
— Data analysis

* Upgrade Suggestion

Apache CarbonData

2014-2016: Internal R&D

2016-2017: Entered the Apache incubator and became an excellent incubator project of the year.

June 2017: Become a top Apache project.

R T

Since 2018: PB-level large enterprnises/ISVs have gone live > 50; Maximum number of records in a single table >
15 tnllion

< Contnbutors from:

Az == () BDBS Wamart:): «smERR

BEYOMNDSOFT

HUAWE] RTEEERL alaa= 1

'}r 1“") =y - [I,T, S Fﬁ -:. .*::. .
@ :p (a ﬁjﬁ%ﬁ cwis Lufax.com o B 24 3 talend

[EI;E ?_?i':..r FAIFINE LA FRAF

huly [SR

Tencent f&if

SUNING &7

Typical Data Analysis Scenarios

oam Data insight BI report

Query Interactive Batch
Details analysis calculation
Log Analysis: Fault Locating
Feature: Real-time data query by user ID and device ID Data

Interactive analysis: Generate insights and forecasts.
Features: multi-dimensional, variable mode, flexible
computing, and massive data

Report calculation: BI report ~

Features: periodic summary statistics, service data change, Production database App Iugs
and database data synchronization Transactions

Carbon Data Architecture

APACHE

Spa

Batch data

spark extension

QLAP
Bl & Batch data

analytics

storage handler

Queries

presto .=

.

connector Carbon sdk(java)

CarbonData Access

Streaming Al
Mear real-time data Al-enabled data
analytics analytics

CarbonData Core Engine
Takle, Segment, Index, Caching

Open Format
Carbon File

Clo

Storage .

® O PyTorch

Tensor

.7

pycarbon pycarbon

MultiQuery
Multi-Dimensional
data query

/A ALLUXIO

CarbonData columnar file format

g rhArdAg s
wla _page_lemgih
‘Townd_Bae_enTh
e paje lesgn
Hlspr] A Do

HE DT MLECE
Haambes of rows

in_page

=Built-in Index columnar storage
=Suitable for both batch and point
query
=Built-in Index Type:
=Min/Max index
=Inverted index
=Encoding & Compression:
= | ocal Dictionary, RLE, Delta
= Snappy compression
=Data Type:
= Primitive type and nested type
Schema Evolution:
Add, Remove, Rename columns

-Blocklet: Set of rows stored in columnar format
-Page : Data for one column in a Blocklet (3200
entries or based on size)

-Footer : Metadata information

CarbonData ACID

Importing Query update Create an Create MV

data into the index. {automatic
dEllﬂhﬂEE (automatic or manual]
or nual]
Multi-engine
concument nperahnns

Metadatal--
segment]
--segment’Z

--segment3

Model fraining

L]
e
I 1

All operations support the ACID
capability.

1.Spark

- Batch processing, interactive
analysis, and machine learning

- Insert, Update, delete,
compaction, and merge

» Create indexes and MVs.

2.Flink: streaming data import
and real-time analysis

3.Presto: Interactive query
4 Hive: large-scale ETL

5.Tensorflow and pytorch: model
training

6.SDK: Java, Python, C++

CarbonData ACID

It's either a success or a failure.

. '_C‘D ncurrent operations: SQL engine Transaction metadata +
importing, updating, Spark/Hive/Presto Segment lock
querying and merging small
files

- Snapshot isolation
- Multi-engine concurrent
access

Compute Compute Compute
node node node

Segment] Segment?2 Segment3 (streaming segment)

CarbonfFile column-store file
(Block)
Blocklet
UL
Blocket Blocklet
UL ———

CarbonData : Query Acceleration

Index, matenalized view

Index SQL engine
» Skipping Files That Spark/Hive/Presto
Do Not Need to Be

Scanned Through
Indexes ,

. . : Compute Compute
s o

File SaL
ﬁItE:riﬂg rewriting

N

Compute
node

Segment1

Carbon column-store Carbon row-store file
file (Block)

Blocklet

JUULL

* Reusing pre-
computation results
by rewnting SQL I
statements

Segment3

Index

Index

Carbon index optimization

SELECT cit : 20 t1 WHERE userId= '18689887362"

Use the index to scan only 10 MB. No index, brute force full scan > 10 GB

Spark+Carbon optimiz Spark Driver

Full scan

Executor
Task Task

OBS
File File File File File File File

Blocklet Blocklet Blocklet Blocklet Blocklet Blocklet Blocklet
Blocklet Blocklet Blocklet Blocklet Blocklet Blocklet Blocklet
Blocklet Blocklet Blocklet Blocklet Blocklet Blocklet Blocklet

Footer Footer Footer Footer Footer Footer Footer Footer

100x performance improvement in point query scenarios

Agenda

» CarbonData Background
« 2.0 New Features

— Data access
— Data analysis

« Upgrade Suggestion

CarbonData 2.0 New Features

« Data access:
** Flink stream import
Database real-time data synchronization
Hive inbound and Presto inbound (2.1)
The Spark insert performance is doubled and the time is reduced by half.
The CSV, TXT, JSON, Parquet, ORC, CarbonFile format is supported in a table.

» * * »
#.'l i-.'l- -I-.'l i-.i

« Data query:
++ Spark Extension
++ Unify the index syntax, add the index server, Sl index, and Geo index.
+ Unify the MV syntax, support time series data, and support Parquet/ORC tables.

++ Supports unstructured data, interconnection with TensorFlow, and pytorch deep neural
network model training.

Flink + CarbonData real-time stream import

Flink cluster Querying a Cluster Index server
App emm—— e g C oD
Tracing Kafka ark™ "z, Presto =
point data

* * §

CarbonData tablespace (HDFS or cloud storage)

1

Local disk
s+ Write time:

<+ Setting the Flink Checkpoint Interval Segment Segment
% Number nf.data records: | Data Data | | Index
(carbon.writer.local.commit.threshold) file file File
F | F
% Reliability: Data is written to disks before data is Data Data
uploaded. Data can be retransmitted when a network LEs file

fault occurs.
Metadata

% Real-time data: Data can be queried after data is
written, and indexes can be constructed after a delay.

Real-time database data synchronization

Querying a Cluster

—ssmmmm INncremental log collection
MySQL

presto ="
Spark cluster
— et Carbon Combine Delta files during query.
Oracle Update/Delete/Merge (Merge On Read)
o CarbonData tablespace (HDFS or
R —— cloud storage)

Segment Segment
Data Delta | Data || Delta
file file file file

I | |,? | ,.-' F?

«Only delta files are added, and the I/O impact is small.
Compared with the file rewriting mode, the update

Data ' Dat:
time is shortened by 50% to 70%. 1‘:|j|.e~.d f;alea
ir"? | :?'
«Multiple Delta files are automatically combined to () Metadata

avoid small-sized files.

Merge API Example

change table target table Updated target table

el) e

// Merge data in the change table to the target table.
targetDataFrame.as("A")
.merge(changeDataFrame.as("B"), "A.id = B.id")
.whenMatched("B.change_type = 'D"")

.delete()

.whenMatched("B.change_type = 'U"")
updateExpr(Map("id" -> "B.id", "value" -> "B.value"))
.whenNotMatched("B.change_type ='T")
InsertExpr(Map("id" -> "B.id", "value" -> "B.value"))
.execute()

Importing Hive and Presto Data to Carbon Tables

* Winte Hive data to Carbon tables:
— MNon-transactional tables (similar to common Hive tables) do not support ACIDs.

CREATE TABLE hive_table (...)
STORED BY' org.apache.carbondata.hive.CarbonStorageHandler"

INSERT INTO hive_table SELECT * FROM source
SELECT * FROM hive_table

 Write Presto into Carbon Table:

— Under development (planned version 2.1 : Oct-30)
— Support transaction tables and non-transaction tables

2X performance improvement of the Spark Insert

« Performance improvement points:
— Avoid the conversion from Spark IntemalRow to Carbon Row.
— Avoid multiple data conversions durning bad record processing.
— Avoid adjusting the column order during index building.

. Types of Carbon tables supported.
Indexed, no index
— Partitioned, no partition
— transaction table
— Importing MVs
— Importing Flink Stream Data to the Database

800 seconds 420 seconds

Mixed format table (beta)

New data

Log
Historical data Spark cluster

hdfs://path

Querying a Cluster

.ﬁ.P.ﬁr:HE&

Spark
Query ‘.‘

CarbonData tablespace

ORC File

(HDFS or cloud ls:l:nrage)

Segment

External

Segment
Segment |

ORC File

External Segment
*Segment pointing to an external file

*When ADD SEGMENT is executed, only the data path is

recorded, but data is not copied.
*Supports CSV, TXT, JSON, Parquet, ORC.

«Addition by partition
*index creation for mixed segment (planned version 2.x)

CarbonFile

| ORCFile | -

‘ CarbonFile

CarbonFile

I 4

5 Metadata

CarbonFile
. F

CarbonData 2.0 new Features

= Data access:
% Flink stream import
++ Database real-time data synchronization
<+ Hive inbound and Presto inbound (2.1)
+ The Spark insert performance is doubled and the time is reduced by half.
< The CSV, TXT, JSON, Parquet, ORC, CarbonFile format is supported in a table.

« Data query:
* Spark Extension
+ Unify the index syntax, add the index server, Sl index, and Geo index.
< Unify the MV syntax, support time series data, and support Parquet/ORC tables.

+ Supports unstructured data, interconnection with TensorFlow, and pytorch deep neural
network model training.

Spark Extension

« Standard extension mode of the Spark community

// CarbonData 1.x

import org.apache.spark.sql.CarbonSession._
val spark = SparkSession

builder()

.master(masterUrl)

.enableHiveSupport()
.getOrCreateCarbonSession()

// CarbonData 2.0
val spark = SparkSession
builder()
.master(masterUrl)
.enableHiveSupport()
.config("spark.sql.extensions”, "org.apache.spark.sql.CarbonExtensions")
getOrCreate ()

All CarbonSession features are
supported.

= Ingesting the Parser

= Injection optimization rule

- Inject physical planner

CarbonSession is still supported
in 2.0, but it is recommended to
not use it (to be discarded in the
future).

Index Service

Index Service

(index cluster)
Index
service
Index
node

CarbonData tablespace e _
Distributed index cache

(HDFS or cloud storage)] : L
- = The index memory on the driver side is too
Segment segment large.

Data | | Index) (e - Multiple clusters share one index.
_ o a X
file File file File = Deployed on YARN

Querying a Cluster

Qv presto

Index preloading

= The first query is slow.

- Automatic preloading after data is saved to the
Metadata database

Secondary index

f"llhﬂr\-'inq a Cluster

Index cluster
Carbon optimization rules:
Using blocklet_id for Pruning

block_id
max

Segment2 13860001

) Data Index e S Data | Index

File f1 | File 2 File = - file | File
' 7

Data Data

File f2 | | File 4

: 13860001 w4
13860004 13
13860005 f3

Metadata 1 Metadata

% Accelerate the query of high cardinality columns. Consider a example where primary index of the main table is the user ID. However, the query
performance of mobile numbers as shown in above example is poor. Therefore, the Sl can be used to index mobile numbers.
% Indexes are also available on the Sl, which accelerates Sl processing.

Multi-dimensional filtering using secondary
Indexes

/[Use the secondary index for filtering.

SELECT... WHERE: The value of field 1 is 10 and the value of field 2 is 20. Join two index tables, and then
query the primary table.

SELECT... WHERE: field 1 = 10, field 3 = 30, or field 4 = 40, perform union between two index tables, and
then query the primary table.

Querying a Cluster

Index cluster

Carbon optimization rules. §4e—)
Using block_id for Pruning

CarbonData tablespace (HDFS or cloud storage)

Main table Secondary index Secondary index Secondary index Secondary index
table (field 1 table (field 2 table (field 3 table (field 4
index) index) index) index)

The index syntax is consistent with that of Hive

// Create an index.

CREATE INDEX [IF NOT EXISTS] index name
ON TABLE table_name (column_name, ...)
AS index_provider

[WITH DEFERRED REFRESH]

[PROPERTIES(key'="value')]

index_provide := bloomfilter | lucene | carbondata

/[Display the index.
SHOW INDEXES on table_name

// Delete an index.
DROP INDEX [IF EXISTS] index name on table name

// Refresh the index (by segment).
REFRESH INDEX index name

ON table_ame

[WHERE SEGMENT.ID IN (segment _id, ...)]

The MV syntax is consistent with that of Hive

// Create a materialized view.

CREATE MATERIALIZED VIEW [IF NOT EXISTS] mv_name
[WITH DEFERRED REFRESH]

AS select statement

// Example
CREATE MATERIALIZED VIEW mv1
AS select a.city, max(b.gdp) from a join b on a.id = b.id group by a.city

// Display the materialized view.
SHOW MATERIALIZED VIEW

// Delete a materialized view.
DROP MATERIALIZED VIEW [IF EXISTS] mv_name

// Refresh the index. (The system automatically determines the segment to be refreshed and performs
incremental update.)
REFRESH MATERIALIZED VIEW mv_name

Time series supported by MV

Import cluster Querying in a Cluster

AracHs Carbon MV

SpQr [‘Gl Optimization Rules a ”I:H.ﬁzz + mization R

SpQ Optimization Rules

Automatic pre-aggregation of Automatically select a proper
periodic tables when importing data ', " periodic table for rollup when
to the main table gquerying the primary table.

Tablespace (HDFS or cloud storage)

MY Table — Daily
Table

Main table MY granularity—
Timestamp, Minute granularity

dimension, ,_ .
measure

MV Table —
Hourly Table

MV Table —
Monthly Table

Time series MV example

Granularity
// Create a materialized view.

CREATE MATERIALIZED VIEW avg _sales_minute AS
month SELECT timeseries(order_time, ‘'minute’), avg(price)
FROM sales

GROUP BY series(order_time, 'minute’)

year

weak
day

hour // The following query statement uses the materialized
view:

SELECT timeseries(order_time, "hour’), avg(price)
fifteen_minute FROM sales

GROUP BY series(order_time, 'hour’)

thirty_minute

ten_minuts

five_minute

mimute

second Resftrictions: The time series MV does not support join statements and is replaced by common MVs.

MYV supports non-Carbon tables

Querying a Cluster

au..-_-a.-._:rc’}(\z n Carbon MY

Spa

Optimization Rules

L)

Tablespace (HDFS or cloud storage)

CarbonData table Spark Datasource Spark Datasource Hive table
Table Table

Segment Segment

Parquet . ORC Parquet
file file I L F

. . 7 - : .

. . . Frar|;|u et QRC . Pa rq ust
Data Data File File File
file file I

L F L F

| Metadata

In addition to speeding up Carbon tables, you can also speed up Parquet, ORC tables.
Restnictions: There is no segment concept. Only full MV update is supported. Incremental update is not supported.

Geo spatial support

Records to hit with query are highlighted:

]J:III “dl‘
--

—-m--m

= pluggable index generation support for geo
spatial longitude, latitude columns
(default Z order implementation)

= polygon query filter push down to scan layer
for faster query performance

Accelerated Al model training

Data conversion

Spa

O PyTorch

/
pycarbon

TF APl layer Pytorch API layer
DataSet, Tensor Datal oader

CarbonReader for python

Storage (local, HDFS, and object storage)

CarcbonfFile CarcbonfFile
"

Facilitates model training by using the pycarbon + Al
framework.

o>

After images are converied to Carbon files, the files
are merged, which greatly improves the 1/O
efficiency.

Cache: caches memory or local disks to avoid
multiple remote read operations during training.
Parallel processing: supports multi-thread parallel
read.

Out-of-order read: The read sequence of each
training round is disordered, facilitating fast model
convergence.

Fast filtering: Compared with TFRecord, Carbon can
quickly filter training sets based on column-store
features.

Supports interconnection with the TF and Pytorch

native data structures.

ImageNet Dataset Read Performance Comparison

Dataset: 7800 images (1 GB) are extracted from ImageNet. Converted to Carbon and TFRecord files.
Field: 7 Columns: height, width, depth, imageName, imageBinary, txtName, txtContent
Storage: cloud storage (object storage)

Remote Read Local Read Filter read

s

CarbonData

20
.

CarbonData

10 times higher than JPG and 6 times The analysis shows that TF does not support 1300 images are filtered out
higher than TFRecord cloud storage.To avoid the TF bug, measure from 7800 images as the
the download time and local read time. training set. The I/O and time
are six times shorter.

Upgrade Suggestion to CarbonData 2.x

< CarbonData 2.0.1 of the latest version is recommended.
< Only Spark 2.3 and Spark 2 4 are supported. Versions earlier than Spark 2_3 are not supported.

< Global dictionaries are no longer supported.

Migration solution:
> Recreate tables in the old system and use them in the new system.

% Pre-Aggregate DataMap is no longer supported.

Migration solution:
o Delete the DataMap from the old system.
> Recreate indexes using the Index or MV syntax in the new system.

% Baich sorting is no longer supported.

Migration solution:
¢ Inthe old system, run the ALTER TABLE command to change SORT_SCOPE to NO_SORT, LOCAL_SORT, or GLOBAL_SORT.

< You are advised to use CarbonData in Spark Extension mode. CarbonSession will not be supported in the future.

< You are advised to set the data warehouse storage location using Spark/Hive. The carbon_storelocation attribute will no longer be supported in the
future.
¢ spark.sql.warehouse_dir
< hive metastore warehouse dir

Summary:

spark extension storage handler connector sdk(java) pycarbon pycarbon

A, P8O HE

4._arbonbDatqg,

Data access - :
insert, update, delete, compaction, materialized view
merge(beta)

= oran

Tensor

Carbon Core

Carbon format table : : :
o iy =

eoos [

CarbonData Focus on Data Access and Analysis Performance, Big Data + Al Unified
Storage

Love more community involvement & feedback

- Subscribe to dev mailing list
- Mail list: dev@carbondata.apache.org, user@carbondata.apache.org
- Mailing list Archive: http://apache-carbondata-dev-mailing-list-archive.1130556.n5.nabble.com/
- Slack : https://join.slack.com/t/carbondataworkspace/shared _invite/zt-g8sv1g92-
pr3GTvirW5HIDVVNI6H2dg
- Welcome any type of contribution: feature, documentation or bug report:
- Code: https://github.com/apache/carbondata
- JIRA: https://issues.apache.org/jira/browse/CARBONDATA
- Website: http://carbondata.apache.org
- cwiki: https://cwiki.apache.org/confluence/display/ CARBONDATA/CarbonData+Home

