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Catalyst Optimizer: An Overview

events =
sc.read.json(“/logs”)

stats =
events.join(users)
.groupBy(“loc”,“status”)         

.avg(“duration”)

errors = stats.where(
stats.status == “ERR”)

Query Plan is an
internal representation

of a user’s program

Series of Transformations
that convert the initial query
plan into an optimized plan

SCAN logs

JOIN

FILTER

AGG

SCAN 
users SCAN logsSCAN users

JOIN

FILTER

AGG

SCAN 
users
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Catalyst Optimizer: An Overview

In Spark, the optimizer’s goal is to minimize end-to-end 
query response time. Two key ideas:
- Prune unnecessary data as early as possible

- e.g., filter pushdown, column pruning

- Minimize per-operator cost
- e.g., broadcast vs shuffle

SCAN logsSCAN users

JOIN

FILTER

AGG

SCAN 
users
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Rule-based Optimizer in Spark 2.1

• Most of Spark SQL optimizer’s rules are heuristics rules.
– PushDownPredicate, ColumnPruning, 
ConstantFolding,…

• Does NOT consider the cost of each operator
• Does NOT consider selectivity when estimating join relation 

size
• Join order is mostly decided by its position in the SQL queries
• Physical Join implementation is decided based on heuristics
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An Example (TPC-DS q11 variant)

SCAN: store_sales SCAN: customer

SCAN: date_dim

FILTER

JOIN

JOIN

SELECT customer_id
FROM customer, store_sales, date_dim
WHERE c_customer_sk = ss_customer_sk AND
ss_sold_date_sk = d_date_sk AND
c_customer_sk > 1000
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An Example (TPC-DS q11 variant)

SCAN: store_sales SCAN: customer

SCAN: date_dim

FILTER

JOIN

JOIN

3 billion 12 million

2.5 billion

10 million

500 million

0.1 million
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An Example (TPC-DS q11 variant)

SCAN: store_sales

SCAN: customer

SCAN: date_dim

FILTERJOIN

JOIN

3 billion

12 million

2.5 billion 500 million 10 million

500 million

0.1 million

40% faster

80% less data
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An Example (TPC-DS q11 variant)

SCAN: store_sales

SCAN: customer

SCAN: date_dim

FILTERJOIN

JOIN

3 billion

12 million

2.5 billion 500 million 10 million

500 million

0.1 million

How do we automatically optimize queries like these?
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Cost Based Optimizer (CBO)

• Collect, infer and propagate table/column statistics on source/intermediate 
data

• Calculate the cost for each operator in terms of number of output rows, size 
of output, etc.

• Based on the cost calculation, pick the most optimal query execution plan
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Table Statistics Collected

• Command to collect statistics of a table.
– Ex: ANALYZE TABLE table-name COMPUTE 
STATISTICS

• It collects table level statistics and saves into metastore.

– Number of rows
– Table size in bytes
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Column Statistics Collected

• Command to collect column level statistics of individual columns.
– Ex: ANALYZE TABLE table-name COMPUTE STATISTICS 

FOR COLUMNS column-name1, column-name2, ….

• It collects column level statistics and saves into meta-store.

String/Binary type
✓ Distinct count
✓ Null count
✓ Average length
✓ Max length

Numeric/Date/Timestamp type
✓ Distinct count
✓ Max
✓ Min
✓ Null count
✓ Average length (fixed length)
✓ Max length (fixed length)
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Filter Cardinality Estimation

• In each logical expression: =, <, <=, >, >=, in, etc
• Combinations between Logical expressions: AND, OR, NOT
• Example: A <= B

– Based on A, B’s min/max/distinct count/null count values, decide 
the relationships between A and B. After completing this 
expression, we set the new min/max/distinct count/null count

– Assume all the data is evenly distributed if no histogram 
information.  
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Filter Operator Example

• Column A (op) literal B
– (op) can be “=“, “<”, “<=”, “>”, “>=”, “like”
– Like the styles as “l_orderkey = 3”, “l_shipdate <= “1995-03-21”
– Column’s max/min/distinct  count/null count should be updated 
– Example:   Column A < value B

Column AB B
A.min A.max

Selectivity = 0%
need to change A’s statistics

Selectivity = 100%
no need to change A’s statistics

Without histograms, suppose data is evenly distributed
Selectivity = (B.value – A.min) / (A.max – A.min)
A.min = no change
A.max = B.value
A.ndv = A.ndv * Filtering Factor
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Filter Operator Example

• Column A (op) Column B
– (op) can be “<”, “<=”, “>”, “>=”
– We cannot suppose the data is evenly distributed, so the empirical filtering factor is set to 1/3
– Example:   Column A < Column B

B

A

AA

A

B

B B

Selectivity = 100% Selectivity = 0%

Selectivity = 33.3% Selectivity = 33.3%
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Join Cardinality Estimation

• Inner-Join: The number of rows of “A join B on A.k1 = B.k1” is 
estimated as: 

• num(A B) = num(A) * num(B) / max(distinct(A.k1), 
distinct(B.k1)), 

– where num(A) is the number of records in table A, distinct is the number of 
distinct values of that column.

– The underlying assumption for this formula is that each value of the smaller 
domain is included in the larger domain.

• We similarly estimate cardinalities for Left-Outer Join, Right-Outer 
Join and Full-Outer Join
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Other Operator Estimation

• Project: does not change row count
• Aggregate: consider uniqueness of group-by columns
• Limit, Sample, etc.
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Build Side Selection

• For two-way hash joins, we need to choose one operand as build side and the 
other as probe side.

• Choose lower-cost child as build side of hash join.
– Without CBO: build side was selected based on

original table sizes.    BuildRight
– With CBO: build side is selected based on

estimated cost of various operators before join.                     BuildLeft
Join

Scan t2Filter

Scan t15 billion records,
500 GB

t1.value = 200
1 million records,
100 MB

100 million records,
20 GB
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Hash Join Implementation: Broadcast vs. Shuffle
• Broadcast Criterion: whether the join side’s output size is small (default 10MB).

Physical Plan
➢ SortMergeJoinExec/

BroadcastHashJoinExec/
ShuffledHashJoinExec

➢ CartesianProductExec/
BroadcastNestedLoopJoinExec

Logical Plan
➢ Equi-join

• Inner Join
• LeftSemi/LeftAnti Join
• LeftOuter/RightOuter Join

➢ Theta-join

Join

Scan t2Filter

Scan t15 billion records,
500 GB

t1.value = 100
Only 1000 records,
100 KB

100 million records,
20 GB

Join

Scan t2Aggregate

…

Join

Scan t2Join

… …
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Multi-way Join Reorder

• Reorder the joins using a dynamic programming algorithm.
1. First we put all items (basic joined nodes) into level 0.
2. Build all two-way joins at level 1 from plans at level 0 (single items).
3. Build all 3-way joins from plans at previous levels (two-way joins and single items).
4. Build all 4-way joins etc, until we build all n-way joins and pick the best plan among

them.

• When building m-way joins, only keep the best plan (optimal sub-
solution) for the same set of m items. 

– E.g., for 3-way joins of items {A, B, C}, we keep only the best 
plan among: (A J B) J C, (A J C) J B and (B J C) 
J A



26

Graphic and text with background 

Icon: The whole film icon appears, 

use artwork effect, increasing the 

Multi-way Join Reorder

Selinger et al. Access Path Selection in a Relational Database Management System. In SIGMOD 1979
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Join Cost Formula

• The cost of a plan is the sum of costs of all intermediate 
tables.

• Cost = weight X Costcpu + CostIO X (1 - weight)
– In Spark, we use

weight * cardinality + size * (1 – weight)
– weight is a tuning parameter configured via 
spark.sql.cbo.joinReorder.card.weight (0.7 as 
default)
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Preliminary Performance Test

• Setup:
− TPC-DS size at 1 TB (scale factor 1000)
− 4 node cluster (Huawei FusionServer RH2288: 40 cores, 384GB mem)
− Apache Spark 2.2 RC (dated 5/12/2017)

• Statistics collection
– A total of 24 tables and 425 columns

➢Take 14 minutes to collect statistics for all tables and all columns.
– Fast because all statistics are computed by integrating with Spark’s built-in 

aggregate functions.
– Should take much less time if we collect statistics for columns used in predicate, 

join, and group-by only.
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TPC-DS Query Q11
WITH year_total AS (

SELECT
c_customer_id customer_id,
c_first_name customer_first_name,
c_last_name customer_last_name,
c_preferred_cust_flag customer_preferred_cust_fl ag,
c_birth_country customer_birth_country,
c_login customer_login,
c_email_address customer_email_address,
d_year dyear,
sum(ss_ext_list_price - ss_ext_discount_amt) year_total,
's' sale_type

FROM customer, store_sales, date_dim
WHERE c_customer_sk = ss_customer_sk
AND ss_sold_date_sk = d_date_sk

GROUP BY c_customer_id, c_first_name, c_last_name, d_year
, c_preferred_cust_flag, c_birth_country, c_login, c_email_address, d_year

UNION ALL
SELECT
c_customer_id customer_id,
c_first_name customer_first_name,
c_last_name customer_last_name,
c_preferred_cust_flag customer_preferred_cust_fl ag,
c_birth_country customer_birth_country,
c_login customer_login,
c_email_address customer_email_address,
d_year dyear,
sum(ws_ext_list_price - ws_ext_discount_amt) year_total,
'w' sale_type

FROM customer, web_sales, date_dim
WHERE c_customer_sk = ws_bill_customer_sk AND ws_sold_date_sk = d_date_sk
GROUP BY c_customer_id, c_first_name, c_last_name, c_preferred_cust_flag,
c_birth_country, c_login, c_email_address, d_year)

SELECT t_s_secyear.customer_preferred_cust_flag
FROM year_total t_s_firstyear

, year_total t_s_secyear
, year_total t_w_firstyear
, year_total t_w_secyear

WHERE t_s_secyear.customer_id = t_s_firstyear.customer_id
AND t_s_firstyear.customer_id = t_w_secyear.customer_id
AND t_s_firstyear.customer_id = t_w_firstyear.customer_id
AND t_s_firstyear.sale_type = 's'
AND t_w_firstyear.sale_type = 'w'
AND t_s_secyear.sale_type = 's'
AND t_w_secyear.sale_type = 'w'
AND t_s_firstyear.dyear = 2001
AND t_s_secyear.dyear = 2001 + 1
AND t_w_firstyear.dyear = 2001
AND t_w_secyear.dyear = 2001 + 1
AND t_s_firstyear.year_total > 0
AND t_w_firstyear.year_total > 0
AND CASE WHEN t_w_firstyear.year_total > 0
THEN t_w_secyear.year_total / t_w_firstyear.year_total

ELSE NULL END
> CASE WHEN t_s_firstyear.year_total > 0
THEN t_s_secyear.year_total / t_s_firstyear.year_total
ELSE NULL END

ORDER BY t_s_secyear.customer_preferred_cus t_fl ag
LIMIT 100
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Query Analysis – Q11 CBO OFF

Large join result

Join	#1

store_sales customer

date_dim

2.9 billion

…

…

Join	#2

web_sales customer

date_dim

Join	#4

…

Join	#3

12 million

2.7 billion 73,049 73,049

12 million720 million

534 million

719 million

144 million
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Query Analysis – Q11 CBO ON

Small join result

Join	#1

store_sales date_dim

customer

2.9 billion

…

…

Join	#2

web_sales date_dim

customer

Join	#4

…

Join	#3

73,049

534 million 12 million 12 million

73,049720 million

534 million

144 million

144 million

1.4x Speedup
80% less
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TPC-DS Query 25

SELECT i_item_id, i_item_desc, s_store_id, s_store_name,
sum(ss_net_profit) AS store_sales_profit,
sum(sr_net_loss) AS store_returns_loss,
sum(cs_net_profit) AS catalog_sales_profit

FROM store_sales, store_returns, catalog_sales, 
date_dim d1, date_dim d2, date_dim d3, store, item

WHERE d1.d_moy = 4
AND d1.d_year = 2001
AND d1.d_date_sk = ss_sold_date_sk
AND i_item_sk = ss_item_sk
AND s_store_sk = ss_store_sk
AND ss_customer_sk = sr_customer_sk
AND ss_item_sk = sr_item_sk
AND ss_ticket_number = sr_ticket_number
AND sr_returned_date_sk = d2.d_date_sk
AND d2.d_moy BETWEEN 4 AND 10
AND d2.d_year = 2001
AND sr_customer_sk = cs_bill_customer_sk
AND sr_item_sk = cs_item_sk
AND cs_sold_date_sk = d3.d_date_sk
AND d3.d_moy BETWEEN 4 AND 10
AND d3.d_year = 2001

GROUP BY i_item_id, i_item_desc, s_store_id, s_store_name
ORDER BY i_item_id, i_item_desc, s_store_id, s_store_name
LIMIT 100
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Query Analysis – Q25 CBO OFF

catalog_sales

item

date_dim	d1

date_dim	d2

date_dim	d3

store_sales store_returns

store

Join	#1

Join	#2

Join	#3

Join	#4

Join	#5

Join	#6

Join	#7

Large shuffle size

2.9	billion 288	million

1.4	billion199	million
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Query Analysis – Q25 CBO ON

store_sales date_dim	d1

store

item store_returns date_dim	d2

catalog_sales date_dim	d3

Join	#1

Join	#2

Join	#3

Join	#6

Join	#4

Join	#5

Join	#7
Small shuffle size

25	million 25	million

149	million2	million

> 90% less 3.4x Speedup
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TPC-DS Query Performance
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TPC-DS Query Speedup

• TPC-DS query speedup
ratio with CBO versus
without CBO

• 16 queries show
speedup > 30%

• The max speedup is 8X.
• The geo-mean of 

speedup is 2.2X. 0	

1	

2	

3	

4	

5	

6	

7	

8	

9	
Speedup	 (X)
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TPC-DS Query Performance
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TPC-DS Query 64
WITH cs_ui AS
(SELECT

cs_item_sk,
sum(cs_ext_list_price) AS sale,
sum(cr_refunded_cash + cr_reversed_charge + cr_store_credit) AS refund

FROM catalog_sales, catalog_returns
WHERE cs_item_sk = cr_item_sk AND cs_order_number = cr_order_number
GROUP BY cs_item_sk
HAVING sum(cs_ext_list_price) > 2 * sum(cr_refunded_cash + cr_reversed_charge + cr_store_credit)),
cross_sales AS

(SELECT
i_product_name product_name, i_item_sk item_sk, s_store_name store_name,
s_zip store_zip, ad1.ca_street_number b_street_number, ad1.ca_street_name b_streen_name,
ad1.ca_city b_city, ad1.ca_zip b_zip, ad2.ca_street_number c_street_number,
ad2.ca_street_name c_street_name, ad2.ca_city c_city, ad2.ca_zip c_zip,
d1.d_year AS syear, d2.d_year AS fsyear, d3.d_year s2year,
count(*) cnt, sum(ss_wholesale_cost) s1, sum(ss_list_price) s2, sum(ss_coupon_amt) s3

FROM store_sales, store_returns, cs_ui, date_dim d1, date_dim d2, date_dim d3,
store, customer, customer_demographics cd1, customer_demographics cd2,
promotion, household_demographics hd1, household_demographics hd2,
customer_address ad1, customer_address ad2, income_band ib1, income_band ib2, item

WHERE ss_store_sk = s_store_sk AND ss_sold_date_sk = d1.d_date_sk AND
ss_customer_sk = c_customer_sk AND ss_cdemo_sk = cd1.cd_demo_sk AND
ss_hdemo_sk = hd1.hd_demo_sk AND ss_addr_sk = ad1.ca_address_sk AND
ss_item_sk = i_item_sk AND ss_item_sk = sr_item_sk AND
ss_ticket_number = sr_ticket_number AND ss_item_sk = cs_ui.cs_item_sk AND
c_current_cdemo_sk = cd2.cd_demo_sk AND c_current_hdemo_sk = hd2.hd_demo_sk AND
c_current_addr_sk = ad2.ca_address_sk AND c_first_sales_date_sk = d2.d_date_sk AND
c_first_shipto_date_sk = d3.d_date_sk AND ss_promo_sk = p_promo_sk AND
hd1.hd_income_band_sk = ib1.ib_income_band_sk AND
hd2.hd_income_band_sk = ib2.ib_income_band_sk AND
cd1.cd_marital_status <> cd2.cd_marital_status AND
i_color IN ('purple', 'burlywood', 'indian', 'spring', 'floral', 'medium') AND
i_current_price BETWEEN 64 AND 64 + 10 AND i_current_price BETWEEN 64 + 1 AND 64 + 15

GROUP BY i_product_name, i_item_sk, s_store_name, s_zip, ad1.ca_street_number,
ad1.ca_street_name, ad1.ca_city, ad1.ca_zip, ad2.ca_street_number,
ad2.ca_street_name, ad2.ca_city, ad2.ca_zip, d1.d_year, d2.d_year, d3.d_year)

SELECT
cs1.product_name,
cs1.store_name,
cs1.store_zip,
cs1.b_street_number,
cs1.b_streen_name,
cs1.b_city,
cs1.b_zip,
cs1.c_street_number,
cs1.c_street_name,
cs1.c_city,
cs1.c_zip,
cs1.syear,
cs1.cnt,
cs1.s1,
cs1.s2,
cs1.s3,
cs2.s1,
cs2.s2,
cs2.s3,
cs2.syear,
cs2.cnt

FROM cross_sales cs1, cross_sales cs2
WHERE cs1.item_sk = cs2.item_sk AND

cs1.syear = 1999 AND
cs2.syear = 1999 + 1 AND
cs2.cnt <= cs1.cnt AND
cs1.store_name = cs2.store_name AND
cs1.store_zip = cs2.store_zip

ORDER BY cs1.product_name, cs1.store_name, cs2.cnt
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Query Analysis – Q64 CBO ON

4
0

10% slower

FileScan (store_sales)

Exchange

ExchangeSort

AggregateSortMergeJoin

BroadcastHashJoin

FileScan (store_returns)

Exchange

Sort

BroadcastExchange (cs_ui)

ReusedExchange

Sort Sort

BroadcastHashJoin

ReusedExchange

ReusedExchange

Sort

SortMergeJoin

Sort

Fragment 1

Fragment 2
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Query Analysis – Q64 CBO OFF

FileScan (store_sales)

Exchange

Exchange

Sort

Aggregate
SortMergeJoin

SortMergeJoin

FileScan (store_returns)

Exchange

Sort

Sort (cs_ui)

SortMergeJoin

Sort

ReusedExchange

Aggregate

Sort (cs_ui)

ReusedExchange

Sort

Exchange

Fragment 1

Fragment 2
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Current Status

• SPARK-16026 is the umbrella jira.
– A big project started from July 2016
– 36 sub-tasks have been resolved
– 50+ pull requests have been submitted
– 10+ Spark contributors involved

• Good framework to allow integrations
– Use statistics to derive if a join attribute is unique
– Benefit star schema detection and its integration into join reorder
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Try out CBO

• We encourage you to use CBO with Spark 2.2!
– Configured via spark.sql.cbo.enabled (off by default)

• CBO has been available with Huawei FusionInsight HD 
since May 2016.

– Our Spark CBO contribution is based on Huawei’s CBO version.
• You can also try it on Huawei Cloud 

– UQuery (数据查询服务): free for now
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Future Work

• Advanced statistics: e.g. histograms, sketches.
• Partition level statistics.
• Hint mechanism.
• Enhanced cost formula.
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