
Cost-Based Optimizer
Framework for
Spark SQL
王振华

2

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Overview
• Motivation
• Statistics Collection Framework
• Cost Based Optimizations
• TPC-DS Benchmark and Query Analysis
• Current Status and Future Work

3

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Overview
• Motivation
• Statistics Collection Framework
• Cost Based Optimizations
• TPC-DS Benchmark and Query Analysis
• Current Status and Future Work

4

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

How Spark Executes a Query?

Logical
Plan

Physical
Plan

Catalog

Optimizer
RDDs

…

SQL

Code

Generator

Data
Frames

5

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

How Spark Executes a Query?

Logical
Plan

Physical
Plan

Catalog

Optimizer
RDDs

…

SQL

Code

Generator

Data
Frames

6

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Catalyst Optimizer: An Overview

events =
sc.read.json(“/logs”)

stats =
events.join(users)
.groupBy(“loc”,“status”)

.avg(“duration”)

errors = stats.where(
stats.status == “ERR”)

Query Plan is an
internal representation

of a user’s program

Series of Transformations
that convert the initial query
plan into an optimized plan

SCAN logs

JOIN

FILTER

AGG

SCAN
users SCAN logsSCAN users

JOIN

FILTER

AGG

SCAN
users

7

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Catalyst Optimizer: An Overview

In Spark, the optimizer’s goal is to minimize end-to-end
query response time. Two key ideas:
- Prune unnecessary data as early as possible

- e.g., filter pushdown, column pruning

- Minimize per-operator cost
- e.g., broadcast vs shuffle

SCAN logsSCAN users

JOIN

FILTER

AGG

SCAN
users

8

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Rule-based Optimizer in Spark 2.1

• Most of Spark SQL optimizer’s rules are heuristics rules.
– PushDownPredicate, ColumnPruning,
ConstantFolding,…

• Does NOT consider the cost of each operator
• Does NOT consider selectivity when estimating join relation

size
• Join order is mostly decided by its position in the SQL queries
• Physical Join implementation is decided based on heuristics

9

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

An Example (TPC-DS q11 variant)

SCAN: store_sales SCAN: customer

SCAN: date_dim

FILTER

JOIN

JOIN

SELECT customer_id
FROM customer, store_sales, date_dim
WHERE c_customer_sk = ss_customer_sk AND
ss_sold_date_sk = d_date_sk AND
c_customer_sk > 1000

10

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

An Example (TPC-DS q11 variant)

SCAN: store_sales SCAN: customer

SCAN: date_dim

FILTER

JOIN

JOIN

3 billion 12 million

2.5 billion

10 million

500 million

0.1 million

11

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

An Example (TPC-DS q11 variant)

SCAN: store_sales

SCAN: customer

SCAN: date_dim

FILTERJOIN

JOIN

3 billion

12 million

2.5 billion 500 million 10 million

500 million

0.1 million

40% faster

80% less data

12

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

An Example (TPC-DS q11 variant)

SCAN: store_sales

SCAN: customer

SCAN: date_dim

FILTERJOIN

JOIN

3 billion

12 million

2.5 billion 500 million 10 million

500 million

0.1 million

How do we automatically optimize queries like these?

13

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Cost Based Optimizer (CBO)

• Collect, infer and propagate table/column statistics on source/intermediate
data

• Calculate the cost for each operator in terms of number of output rows, size
of output, etc.

• Based on the cost calculation, pick the most optimal query execution plan

14

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Overview
• Motivation
• Statistics Collection Framework
• Cost Based Optimizations
• TPC-DS Benchmark and Query Analysis
• Current Status and Future Work

15

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Table Statistics Collected

• Command to collect statistics of a table.
– Ex: ANALYZE TABLE table-name COMPUTE
STATISTICS

• It collects table level statistics and saves into metastore.

– Number of rows
– Table size in bytes

16

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Column Statistics Collected

• Command to collect column level statistics of individual columns.
– Ex: ANALYZE TABLE table-name COMPUTE STATISTICS

FOR COLUMNS column-name1, column-name2, ….

• It collects column level statistics and saves into meta-store.

String/Binary type
✓ Distinct count
✓ Null count
✓ Average length
✓ Max length

Numeric/Date/Timestamp type
✓ Distinct count
✓ Max
✓ Min
✓ Null count
✓ Average length (fixed length)
✓ Max length (fixed length)

17

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Filter Cardinality Estimation

• In each logical expression: =, <, <=, >, >=, in, etc
• Combinations between Logical expressions: AND, OR, NOT
• Example: A <= B

– Based on A, B’s min/max/distinct count/null count values, decide
the relationships between A and B. After completing this
expression, we set the new min/max/distinct count/null count

– Assume all the data is evenly distributed if no histogram
information.

18

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Filter Operator Example

• Column A (op) literal B
– (op) can be “=“, “<”, “<=”, “>”, “>=”, “like”
– Like the styles as “l_orderkey = 3”, “l_shipdate <= “1995-03-21”
– Column’s max/min/distinct count/null count should be updated
– Example: Column A < value B

Column AB B
A.min A.max

Selectivity = 0%
need to change A’s statistics

Selectivity = 100%
no need to change A’s statistics

Without histograms, suppose data is evenly distributed
Selectivity = (B.value – A.min) / (A.max – A.min)
A.min = no change
A.max = B.value
A.ndv = A.ndv * Filtering Factor

19

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Filter Operator Example

• Column A (op) Column B
– (op) can be “<”, “<=”, “>”, “>=”
– We cannot suppose the data is evenly distributed, so the empirical filtering factor is set to 1/3
– Example: Column A < Column B

B

A

AA

A

B

B B

Selectivity = 100% Selectivity = 0%

Selectivity = 33.3% Selectivity = 33.3%

20

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Join Cardinality Estimation

• Inner-Join: The number of rows of “A join B on A.k1 = B.k1” is
estimated as:

• num(A B) = num(A) * num(B) / max(distinct(A.k1),
distinct(B.k1)),

– where num(A) is the number of records in table A, distinct is the number of
distinct values of that column.

– The underlying assumption for this formula is that each value of the smaller
domain is included in the larger domain.

• We similarly estimate cardinalities for Left-Outer Join, Right-Outer
Join and Full-Outer Join

21

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Other Operator Estimation

• Project: does not change row count
• Aggregate: consider uniqueness of group-by columns
• Limit, Sample, etc.

22

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Overview
• Motivation
• Statistics Collection Framework
• Cost Based Optimizations
• TPC-DS Benchmark and Query Analysis
• Current Status and Future Work

23

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Build Side Selection

• For two-way hash joins, we need to choose one operand as build side and the
other as probe side.

• Choose lower-cost child as build side of hash join.
– Without CBO: build side was selected based on

original table sizes. BuildRight
– With CBO: build side is selected based on

estimated cost of various operators before join. BuildLeft
Join

Scan t2Filter

Scan t15 billion records,
500 GB

t1.value = 200
1 million records,
100 MB

100 million records,
20 GB

24

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Hash Join Implementation: Broadcast vs. Shuffle
• Broadcast Criterion: whether the join side’s output size is small (default 10MB).

Physical Plan
➢ SortMergeJoinExec/

BroadcastHashJoinExec/
ShuffledHashJoinExec

➢ CartesianProductExec/
BroadcastNestedLoopJoinExec

Logical Plan
➢ Equi-join

• Inner Join
• LeftSemi/LeftAnti Join
• LeftOuter/RightOuter Join

➢ Theta-join

Join

Scan t2Filter

Scan t15 billion records,
500 GB

t1.value = 100
Only 1000 records,
100 KB

100 million records,
20 GB

Join

Scan t2Aggregate

…

Join

Scan t2Join

… …

25

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Multi-way Join Reorder

• Reorder the joins using a dynamic programming algorithm.
1. First we put all items (basic joined nodes) into level 0.
2. Build all two-way joins at level 1 from plans at level 0 (single items).
3. Build all 3-way joins from plans at previous levels (two-way joins and single items).
4. Build all 4-way joins etc, until we build all n-way joins and pick the best plan among

them.

• When building m-way joins, only keep the best plan (optimal sub-
solution) for the same set of m items.

– E.g., for 3-way joins of items {A, B, C}, we keep only the best
plan among: (A J B) J C, (A J C) J B and (B J C)
J A

26

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Multi-way Join Reorder

Selinger et al. Access Path Selection in a Relational Database Management System. In SIGMOD 1979

27

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Join Cost Formula

• The cost of a plan is the sum of costs of all intermediate
tables.

• Cost = weight X Costcpu + CostIO X (1 - weight)
– In Spark, we use

weight * cardinality + size * (1 – weight)
– weight is a tuning parameter configured via
spark.sql.cbo.joinReorder.card.weight (0.7 as
default)

28

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Overview
• Motivation
• Statistics Collection Framework
• Cost Based Optimizations
• TPC-DS Benchmark and Query Analysis
• Current Status and Future Work

29

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Preliminary Performance Test

• Setup:
− TPC-DS size at 1 TB (scale factor 1000)
− 4 node cluster (Huawei FusionServer RH2288: 40 cores, 384GB mem)
− Apache Spark 2.2 RC (dated 5/12/2017)

• Statistics collection
– A total of 24 tables and 425 columns

➢Take 14 minutes to collect statistics for all tables and all columns.
– Fast because all statistics are computed by integrating with Spark’s built-in

aggregate functions.
– Should take much less time if we collect statistics for columns used in predicate,

join, and group-by only.

30

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

TPC-DS Query Q11
WITH year_total AS (

SELECT
c_customer_id customer_id,
c_first_name customer_first_name,
c_last_name customer_last_name,
c_preferred_cust_flag customer_preferred_cust_fl ag,
c_birth_country customer_birth_country,
c_login customer_login,
c_email_address customer_email_address,
d_year dyear,
sum(ss_ext_list_price - ss_ext_discount_amt) year_total,
's' sale_type

FROM customer, store_sales, date_dim
WHERE c_customer_sk = ss_customer_sk
AND ss_sold_date_sk = d_date_sk

GROUP BY c_customer_id, c_first_name, c_last_name, d_year
, c_preferred_cust_flag, c_birth_country, c_login, c_email_address, d_year

UNION ALL
SELECT
c_customer_id customer_id,
c_first_name customer_first_name,
c_last_name customer_last_name,
c_preferred_cust_flag customer_preferred_cust_fl ag,
c_birth_country customer_birth_country,
c_login customer_login,
c_email_address customer_email_address,
d_year dyear,
sum(ws_ext_list_price - ws_ext_discount_amt) year_total,
'w' sale_type

FROM customer, web_sales, date_dim
WHERE c_customer_sk = ws_bill_customer_sk AND ws_sold_date_sk = d_date_sk
GROUP BY c_customer_id, c_first_name, c_last_name, c_preferred_cust_flag,
c_birth_country, c_login, c_email_address, d_year)

SELECT t_s_secyear.customer_preferred_cust_flag
FROM year_total t_s_firstyear

, year_total t_s_secyear
, year_total t_w_firstyear
, year_total t_w_secyear

WHERE t_s_secyear.customer_id = t_s_firstyear.customer_id
AND t_s_firstyear.customer_id = t_w_secyear.customer_id
AND t_s_firstyear.customer_id = t_w_firstyear.customer_id
AND t_s_firstyear.sale_type = 's'
AND t_w_firstyear.sale_type = 'w'
AND t_s_secyear.sale_type = 's'
AND t_w_secyear.sale_type = 'w'
AND t_s_firstyear.dyear = 2001
AND t_s_secyear.dyear = 2001 + 1
AND t_w_firstyear.dyear = 2001
AND t_w_secyear.dyear = 2001 + 1
AND t_s_firstyear.year_total > 0
AND t_w_firstyear.year_total > 0
AND CASE WHEN t_w_firstyear.year_total > 0
THEN t_w_secyear.year_total / t_w_firstyear.year_total

ELSE NULL END
> CASE WHEN t_s_firstyear.year_total > 0
THEN t_s_secyear.year_total / t_s_firstyear.year_total
ELSE NULL END

ORDER BY t_s_secyear.customer_preferred_cus t_fl ag
LIMIT 100

31

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Query Analysis – Q11 CBO OFF

Large join result

Join	#1

store_sales customer

date_dim

2.9 billion

…

…

Join	#2

web_sales customer

date_dim

Join	#4

…

Join	#3

12 million

2.7 billion 73,049 73,049

12 million720 million

534 million

719 million

144 million

32

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Query Analysis – Q11 CBO ON

Small join result

Join	#1

store_sales date_dim

customer

2.9 billion

…

…

Join	#2

web_sales date_dim

customer

Join	#4

…

Join	#3

73,049

534 million 12 million 12 million

73,049720 million

534 million

144 million

144 million

1.4x Speedup
80% less

33

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

TPC-DS Query 25

SELECT i_item_id, i_item_desc, s_store_id, s_store_name,
sum(ss_net_profit) AS store_sales_profit,
sum(sr_net_loss) AS store_returns_loss,
sum(cs_net_profit) AS catalog_sales_profit

FROM store_sales, store_returns, catalog_sales,
date_dim d1, date_dim d2, date_dim d3, store, item

WHERE d1.d_moy = 4
AND d1.d_year = 2001
AND d1.d_date_sk = ss_sold_date_sk
AND i_item_sk = ss_item_sk
AND s_store_sk = ss_store_sk
AND ss_customer_sk = sr_customer_sk
AND ss_item_sk = sr_item_sk
AND ss_ticket_number = sr_ticket_number
AND sr_returned_date_sk = d2.d_date_sk
AND d2.d_moy BETWEEN 4 AND 10
AND d2.d_year = 2001
AND sr_customer_sk = cs_bill_customer_sk
AND sr_item_sk = cs_item_sk
AND cs_sold_date_sk = d3.d_date_sk
AND d3.d_moy BETWEEN 4 AND 10
AND d3.d_year = 2001

GROUP BY i_item_id, i_item_desc, s_store_id, s_store_name
ORDER BY i_item_id, i_item_desc, s_store_id, s_store_name
LIMIT 100

34

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Query Analysis – Q25 CBO OFF

catalog_sales

item

date_dim	d1

date_dim	d2

date_dim	d3

store_sales store_returns

store

Join	#1

Join	#2

Join	#3

Join	#4

Join	#5

Join	#6

Join	#7

Large shuffle size

2.9	billion 288	million

1.4	billion199	million

35

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Query Analysis – Q25 CBO ON

store_sales date_dim	d1

store

item store_returns date_dim	d2

catalog_sales date_dim	d3

Join	#1

Join	#2

Join	#3

Join	#6

Join	#4

Join	#5

Join	#7
Small shuffle size

25	million 25	million

149	million2	million

> 90% less 3.4x Speedup

36

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

TPC-DS Query Performance

0

350

700

1050

1400

1750

q1 q5 q9 q13 q16 q20 q23b q26 q30 q34 q38 q41 q45 q49 q53 q57 q61 q65 q70 q74 q78 q82 q86 q90 q94 q98

R
un

tim
e

(s
ec

on
ds

)

without CBO
with CBO

37

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

TPC-DS Query Speedup

• TPC-DS query speedup
ratio with CBO versus
without CBO

• 16 queries show
speedup > 30%

• The max speedup is 8X.
• The geo-mean of

speedup is 2.2X. 0	

1	

2	

3	

4	

5	

6	

7	

8	

9	
Speedup	 (X)

38

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

TPC-DS Query Performance

0

350

700

1050

1400

1750

q1 q5 q9 q13 q16 q20 q23b q26 q30 q34 q38 q41 q45 q49 q53 q57 q61 q65 q70 q74 q78 q82 q86 q90 q94 q98

R
un

tim
e

(s
ec

on
ds

)

without CBO
with CBO

39

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

TPC-DS Query 64
WITH cs_ui AS
(SELECT

cs_item_sk,
sum(cs_ext_list_price) AS sale,
sum(cr_refunded_cash + cr_reversed_charge + cr_store_credit) AS refund

FROM catalog_sales, catalog_returns
WHERE cs_item_sk = cr_item_sk AND cs_order_number = cr_order_number
GROUP BY cs_item_sk
HAVING sum(cs_ext_list_price) > 2 * sum(cr_refunded_cash + cr_reversed_charge + cr_store_credit)),
cross_sales AS

(SELECT
i_product_name product_name, i_item_sk item_sk, s_store_name store_name,
s_zip store_zip, ad1.ca_street_number b_street_number, ad1.ca_street_name b_streen_name,
ad1.ca_city b_city, ad1.ca_zip b_zip, ad2.ca_street_number c_street_number,
ad2.ca_street_name c_street_name, ad2.ca_city c_city, ad2.ca_zip c_zip,
d1.d_year AS syear, d2.d_year AS fsyear, d3.d_year s2year,
count(*) cnt, sum(ss_wholesale_cost) s1, sum(ss_list_price) s2, sum(ss_coupon_amt) s3

FROM store_sales, store_returns, cs_ui, date_dim d1, date_dim d2, date_dim d3,
store, customer, customer_demographics cd1, customer_demographics cd2,
promotion, household_demographics hd1, household_demographics hd2,
customer_address ad1, customer_address ad2, income_band ib1, income_band ib2, item

WHERE ss_store_sk = s_store_sk AND ss_sold_date_sk = d1.d_date_sk AND
ss_customer_sk = c_customer_sk AND ss_cdemo_sk = cd1.cd_demo_sk AND
ss_hdemo_sk = hd1.hd_demo_sk AND ss_addr_sk = ad1.ca_address_sk AND
ss_item_sk = i_item_sk AND ss_item_sk = sr_item_sk AND
ss_ticket_number = sr_ticket_number AND ss_item_sk = cs_ui.cs_item_sk AND
c_current_cdemo_sk = cd2.cd_demo_sk AND c_current_hdemo_sk = hd2.hd_demo_sk AND
c_current_addr_sk = ad2.ca_address_sk AND c_first_sales_date_sk = d2.d_date_sk AND
c_first_shipto_date_sk = d3.d_date_sk AND ss_promo_sk = p_promo_sk AND
hd1.hd_income_band_sk = ib1.ib_income_band_sk AND
hd2.hd_income_band_sk = ib2.ib_income_band_sk AND
cd1.cd_marital_status <> cd2.cd_marital_status AND
i_color IN ('purple', 'burlywood', 'indian', 'spring', 'floral', 'medium') AND
i_current_price BETWEEN 64 AND 64 + 10 AND i_current_price BETWEEN 64 + 1 AND 64 + 15

GROUP BY i_product_name, i_item_sk, s_store_name, s_zip, ad1.ca_street_number,
ad1.ca_street_name, ad1.ca_city, ad1.ca_zip, ad2.ca_street_number,
ad2.ca_street_name, ad2.ca_city, ad2.ca_zip, d1.d_year, d2.d_year, d3.d_year)

SELECT
cs1.product_name,
cs1.store_name,
cs1.store_zip,
cs1.b_street_number,
cs1.b_streen_name,
cs1.b_city,
cs1.b_zip,
cs1.c_street_number,
cs1.c_street_name,
cs1.c_city,
cs1.c_zip,
cs1.syear,
cs1.cnt,
cs1.s1,
cs1.s2,
cs1.s3,
cs2.s1,
cs2.s2,
cs2.s3,
cs2.syear,
cs2.cnt

FROM cross_sales cs1, cross_sales cs2
WHERE cs1.item_sk = cs2.item_sk AND

cs1.syear = 1999 AND
cs2.syear = 1999 + 1 AND
cs2.cnt <= cs1.cnt AND
cs1.store_name = cs2.store_name AND
cs1.store_zip = cs2.store_zip

ORDER BY cs1.product_name, cs1.store_name, cs2.cnt

40

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Query Analysis – Q64 CBO ON

4
0

10% slower

FileScan (store_sales)

Exchange

ExchangeSort

AggregateSortMergeJoin

BroadcastHashJoin

FileScan (store_returns)

Exchange

Sort

BroadcastExchange (cs_ui)

ReusedExchange

Sort Sort

BroadcastHashJoin

ReusedExchange

ReusedExchange

Sort

SortMergeJoin

Sort

Fragment 1

Fragment 2

41

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Query Analysis – Q64 CBO OFF

FileScan (store_sales)

Exchange

Exchange

Sort

Aggregate
SortMergeJoin

SortMergeJoin

FileScan (store_returns)

Exchange

Sort

Sort (cs_ui)

SortMergeJoin

Sort

ReusedExchange

Aggregate

Sort (cs_ui)

ReusedExchange

Sort

Exchange

Fragment 1

Fragment 2

42

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Overview
• Motivation
• Statistics Collection Framework
• Cost Based Optimizations
• TPC-DS Benchmark and Query Analysis
• Current Status and Future Work

43

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Current Status

• SPARK-16026 is the umbrella jira.
– A big project started from July 2016
– 36 sub-tasks have been resolved
– 50+ pull requests have been submitted
– 10+ Spark contributors involved

• Good framework to allow integrations
– Use statistics to derive if a join attribute is unique
– Benefit star schema detection and its integration into join reorder

44

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Try out CBO

• We encourage you to use CBO with Spark 2.2!
– Configured via spark.sql.cbo.enabled (off by default)

• CBO has been available with Huawei FusionInsight HD
since May 2016.

– Our Spark CBO contribution is based on Huawei’s CBO version.
• You can also try it on Huawei Cloud

– UQuery (数据查询服务): free for now

45

Graphic and text with background

Icon: The whole film icon appears,

use artwork effect, increasing the

Future Work

• Advanced statistics: e.g. histograms, sketches.
• Partition level statistics.
• Hint mechanism.
• Enhanced cost formula.

THANK YOU
• wangzhenhua@huawei.com

