State of General Allocator
Effort

Fei Deng, Chris Hassell, Susan Hinrichs
ATS Euro Tour
Cork
May 2018

Move Towards General Allocation Libraries

e General libraries have technically surpassed ATS's internal free list
o Tcmalloc, jemalloc, even glibc
o Superior control for profiling, debugging, optimizing for NUMA
m E.g, Kit's experience with jemalloc
o Avoids problems of over allocating in one size to starve allocation in another size later

e (Goal to adopt one or more general allocation libraries and ultimately remove
the ATS freelist code

o Some tracking via github project https://github.com/apache/trafficserver/projects/10

https://github.com/apache/trafficserver/projects/10

Phase 1 Concerns

e Turning off ATS free least should not reduce performance (much)
o Issue of leaving per-thread proxy allocator (-f) or not (more than -f)

e \When doing a core dump, we need to be able to mark regions of memory as
not dumped (IOBuffers). Necessary to avoid truly enormous core files.

Performance

e Fei's measurements from march
https://dithub.com/apache/trafficserver/issues/3354
e Comparing
o Default = with freelist

o Old Disable Freelist = -f option (only disable ATS global allocator)
o New Disable Freelist = -f option and disable freelist in ProxyAllocator
o jemalloc = New Disable Freelist and compiled with jemalloc

e \Wrk2 workload against cached data
o ./wrk -t8 -c1000 -d300s -R20000 -L -H"Content-MD5: 1" http://127.0.0.1:8080

o On alab prod box

https://github.com/apache/trafficserver/issues/3354
http://127.0.0.1:8080

Latency Distribution (HdrHistogram - Recorded Latency)

21.90
5 3
99.999% 31.72
99.990% 19.58
71
99.900% 70
2
2.76
18
90.000% 198
191
17
75.000% 138 ——
157 Jjemailloc
1.15 m new disable freelist
50.000% I B m old disable freelist
1.15
B default
0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

Latency (ms)

500.00%

450.00%

400.00%

350.00%

300.00%

250.00%

200.00%

150.00%

100.00%

50.00%

0.00%

CPU Usage

Duration (s)

= Default
——Qld Disable Freelist
- New Disable Freelist

—jemalloc

Dumping Core

e The original madvise(MADV_DONTDUMP) doesn’t work for the free list case.
When data that was allocated with MADV_DONTDUMP is reallocated it may

be recallocated in a DODUMP scenario

o Feitried to add MADV_DODUMP before freeing for the DONTDUMP case. Unstable.
o Fei tried to always call MADV_DODUMP or MADV_DONTDUMP in all allocation cases.

Performance problems.
e Ended up with a jemalloc-only pool based solution explored by Facebook and
Chris.

o Commit 284fb4d56a1251cbec4a755472d2f1a9f4ac3ffe
o Downside is that it ties us to a specific allocator.
o Could be prettier. For first pass, did minimal ATS code change.

State of Phase |

e Core dump issue addressed if you compile with jemalloc
e PR into augment -f to disable proxy allocator in addition to global allocator

e We hope to start rolling out jemalloc-only this quarter
o Blocked by other internal dependencies

e Working with jemalloc-5.0.1

Other Benefits of Running with jemalloc

e Finding memory leaks
o https://github.com/jemalloc/jemalloc/wiki/Use-Case:-Leak-Checking
o Kit's Summit presentation
https://cwiki.apache.org/confluence/download/attachments/70255385/ATSSummit_jemalloc.pp
tx?version=1&modificationDate=1508884895000&api=v2
o Tracking leak in SSL session reuse (Image next slide)

e Finding memory corruptions
o https://qithub.com/jemalloc/jemalloc/wiki/Use-Case:-Find-a-memory-corruption-bug
o Fill memory with junk on free. Enabled at runtime via environment variable
o Feifound at least 5 memory corruptions bugs with a combination of ASAN and junk fill in ATS
this spring

https://github.com/jemalloc/jemalloc/wiki/Use-Case:-Leak-Checking
https://cwiki.apache.org/confluence/download/attachments/70255385/ATSSummit_jemalloc.pptx?version=1&modificationDate=1508884895000&api=v2
https://cwiki.apache.org/confluence/download/attachments/70255385/ATSSummit_jemalloc.pptx?version=1&modificationDate=1508884895000&api=v2
https://github.com/jemalloc/jemalloc/wiki/Use-Case:-Find-a-memory-corruption-bug

L10Opped 1OUCS Wil <= 170716106V dUS (D)
Dropped edges with <= 35383636 B

188730359

ibe_star_main
0(00%)
of 488730350 (14%)

S ——
000%)
of 1931795450 (5.55)

931795450

2 SSLSESSION,

of 1745132498 (49%)

642370706

SSL_SESSION ew
©0%)
of 1642370706 46%)

R035683827 1336576145 1642370706

CRYPTO_malloc
1775942032 (5

000%)
681 (1.6%)

read_signal and_updsic
000
62151686416 (6.5

Continustion
handiebvent

Tou) |
o 32923862611 (93.0%)

CacheDisk
openStat

000%)
of 685175574 (19%)

T r——"
main_evers_handler

io_compleie

Cachev
12174930255 | "werkeskes

[
©0%)
o 2823065986 (805

©0%) 00%)
of9130470381 (253%) or 2701458681 16%)

INKContoternal
handie_event
0(00%)
of 11348594550 (2.1%)

11342300066

00%)
of9520733421 (26.9%)

2694739875 688178874

=
main_ handier

11341243276

CJDHMRG 11330: 0 / 8919401| 11341243276

00%)
of 1123830101 (14%)

eviceClassfcationtandler
0(00%) R708511362

oF 1341202276 (32.

uth_plagia_global_handi
000
o 6192654610 (

0000%)
of 11330233550 (20%)

11336982821

‘GUCE_continustion l

1340186487

11110129822 11340186487

688178874

2696308608

i bandler 6657
0 00%

11340186487

camPloginiook
0 {00%)

Next Phase

e NUMA manipulation
o Chris has done some experimentation in this space
o Jemalloc arenas give us some nice controls
m Memkind http://memkind.qithub.io/memkind/
e Unfortunately their white paper isn’t very clear about how they map cores to
arenas

e Completely remove ATS free lists
o Less code to support

o Simplify the allocation/free code path
o Perhaps move to tradition new/delete.

http://memkind.github.io/memkind/

