
State of General Allocator 
Effort 

Fei Deng, Chris Hassell, Susan Hinrichs
ATS Euro Tour

Cork
May 2018



Move Towards General Allocation Libraries 
● General libraries have technically surpassed ATS’s internal free list

○ Tcmalloc, jemalloc, even glibc
○ Superior control for profiling, debugging, optimizing for NUMA

■ E.g, Kit’s experience with jemalloc 
○ Avoids problems of over allocating in one size to starve allocation in another size later

● Goal to adopt one or more general allocation libraries and ultimately remove 
the ATS freelist code

○ Some tracking via github project https://github.com/apache/trafficserver/projects/10

https://github.com/apache/trafficserver/projects/10


Phase 1 Concerns
● Turning off ATS free least should not reduce performance (much)

○ Issue of leaving per-thread proxy allocator (-f) or not (more than -f)

● When doing a core dump, we need to be able to mark regions of memory as 
not dumped (IOBuffers).  Necessary to avoid truly enormous core files.



Performance
● Fei’s measurements from march 

https://github.com/apache/trafficserver/issues/3354
●  Comparing

○ Default = with freelist

○ Old Disable Freelist = -f option (only disable ATS global allocator)

○ New Disable Freelist = -f option and disable freelist in ProxyAllocator

○ jemalloc = New Disable Freelist and compiled with jemalloc

● Wrk2 workload against cached data
○ ./wrk -t8 -c1000 -d300s -R20000 -L -H"Content-MD5: 1" http://127.0.0.1:8080

○ On a lab prod box

https://github.com/apache/trafficserver/issues/3354
http://127.0.0.1:8080






Dumping Core
● The original madvise(MADV_DONTDUMP) doesn’t work for the free list case.  

When data that was allocated with MADV_DONTDUMP is reallocated it may 
be recallocated in a DODUMP scenario

○ Fei tried to add MADV_DODUMP before freeing for the DONTDUMP case.  Unstable.
○ Fei tried to always call MADV_DODUMP or MADV_DONTDUMP in all allocation cases.  

Performance problems.

● Ended up with a jemalloc-only pool based solution explored by Facebook and 
Chris.  

○ Commit 284fb4d56a1251cbec4a755472d2f1a9f4ac3ffe
○ Downside is that it ties us to a specific allocator.
○ Could be prettier.  For first pass, did minimal ATS code change.



State of Phase I 
● Core dump issue addressed if you compile with jemalloc
● PR in to augment -f to disable proxy allocator in addition to global allocator
● We hope to start rolling out jemalloc-only this quarter

○ Blocked by other internal dependencies

● Working with jemalloc-5.0.1



Other Benefits of Running with jemalloc
● Finding memory leaks

○ https://github.com/jemalloc/jemalloc/wiki/Use-Case:-Leak-Checking
○ Kit’s Summit presentation 

https://cwiki.apache.org/confluence/download/attachments/70255385/ATSSummit_jemalloc.pp
tx?version=1&modificationDate=1508884895000&api=v2

○ Tracking leak in SSL session reuse (Image next slide)

● Finding memory corruptions
○ https://github.com/jemalloc/jemalloc/wiki/Use-Case:-Find-a-memory-corruption-bug
○ Fill memory with junk on free.  Enabled at runtime via environment variable
○ Fei found at least 5 memory corruptions bugs with a combination of ASAN and junk fill in ATS 

this spring

https://github.com/jemalloc/jemalloc/wiki/Use-Case:-Leak-Checking
https://cwiki.apache.org/confluence/download/attachments/70255385/ATSSummit_jemalloc.pptx?version=1&modificationDate=1508884895000&api=v2
https://cwiki.apache.org/confluence/download/attachments/70255385/ATSSummit_jemalloc.pptx?version=1&modificationDate=1508884895000&api=v2
https://github.com/jemalloc/jemalloc/wiki/Use-Case:-Find-a-memory-corruption-bug




Next Phase
● NUMA manipulation

○ Chris has done some experimentation in this space
○ Jemalloc arenas give us some nice controls

■ Memkind http://memkind.github.io/memkind/
● Unfortunately their white paper isn’t very clear about how they map cores to 

arenas

● Completely remove ATS free lists
○ Less code to support
○ Simplify the allocation/free code path
○ Perhaps move to tradition new/delete.

http://memkind.github.io/memkind/

