Mixed precision training

With Apache MXNet

Apache MXNet Meetup
April 2018, Seattle

Rahul Huilgol (Amazon)
Dick Carter (Nvidia)
Outline

- Motivation
- Advantages
- Hardware support
- Mixed precision for deep learning
- Challenges
- Results
Motivation

- Trends in deep learning
 - Larger and more complex models
 - Larger training datasets
- Increased resource requirements
 - Compute
 - Memory
Reduced precision

- Using half precision floating point (float16)
- Advantages
 - Arithmetic speed
 - Memory bandwidth
 - Amount of memory used
- Using this in combination with single precision is Mixed precision
Hardware support

- Early support for float16 was only as a storage type
- Compute was slow
 - By casting to float32 and back
- Recent GPUs have specialized support for float16 arithmetic
 - Volta range of GPUs by Nvidia have Tensor Cores
 - Theoretically 2x-8x performance for matrix multiplication
Mixed precision for deep learning

- Potential to speed up training and inference
- Challenges
 - Maintaining precision of arithmetic
 - Imprecise weight updates
 - Gradient underflow
- We can retain same model accuracy as float32 by addressing the above
Maintaining precision

- Tensor Cores
 - Accumulate half precision products into single precision outputs

Source: Nvidia’s documentation about tensor cores
Imprecise weight updates

- Maintain master weights in float32
Gradient underflow

- Float16 exponents can range from -14 to 15
 - But gradients are usually small, i.e. negative exponents
- Small gradients when represented in float16 will become 0
- Can cause some networks to diverge
 - An example: Multibox SSD network
Histograms of gradients for Multibox SSD.
Source: Mixed Precision Training by Narang, et al. ICLR 2018
Shift gradients to representable range

- Scale the loss computed after forward pass before backprop
- So all gradients are scaled, and don’t become zero
- Unscale the gradients before weight update, right after backward pass

Choosing scaling factor

- Pick a factor from 8, 32, 64, 128, etc as long as doesn’t cause overflow
NVIDIA research’s training results
With mixed precision

Successfully applied to many networks including:

- Imagenet CNNs
- Detection
- Language Translation
- Speech
- Text to Speech
- GAN
- Image enhancement
- Wavenet

<table>
<thead>
<tr>
<th>Network</th>
<th>FP32 Baseline</th>
<th>Mixed precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlexNet</td>
<td>56.8%</td>
<td>56.9%</td>
</tr>
<tr>
<td>VGG-D</td>
<td>65.4%</td>
<td>65.4%</td>
</tr>
<tr>
<td>GoogLeNet</td>
<td>68.3%</td>
<td>68.4%</td>
</tr>
<tr>
<td>Inception v2</td>
<td>70.0%</td>
<td>70.0%</td>
</tr>
<tr>
<td>Inception v3</td>
<td>73.9%</td>
<td>74.1%</td>
</tr>
<tr>
<td>Resnet 50</td>
<td>75.9%</td>
<td>76.0%</td>
</tr>
<tr>
<td>ResNeXt 50</td>
<td>77.3%</td>
<td>77.5%</td>
</tr>
</tbody>
</table>

ILSVRC12 Networks, Top-1 Accuracy

(C) NVIDIA
MXNet Resnet50: fp32 vs mixed-precision

Images per second

1 GPU 2 GPU 4 GPU 8 GPU

MXNet FP32 GTC 2017 MXNet FP32 GTC 2018 MXNet Mixed GTC 2018

(C) NVIDIA
MXNet Resnet50: fp32 vs mixed-precision

- Resnet50: \(~3.3x\)
- DeepSpeech2: \(~4.5x\)
- FairSeq: \(~4.0x\)
- Sentiment prediction: \(~4.0x\)
Conclusions

• Mixed precision training benefits:
 • Faster: Math and memory I/O speedups
 • Smaller: Can explore larger minibatches and inputs

• Solutions developed to address potential issues
 • FP32 accumulation via Tensor Cores to maintain accuracy
 • 32-bit master weights for precise weight updates
 • Loss scaling to handle gradient underflow

• Mixed precision matches FP32 training accuracy for a variety of:
 • Tasks: classification, regression, generation
 • Problem domains: images, language translation, language modeling, speech
 • Network architectures: feed forward, recurrent
 • Optimizers: SGD, Adagrad, Adam
Information Sources

Where to learn about mixed precision training

GTC 2018 Talks, available publicly soon:

S8923 - Training Neural Networks with Mixed Precision: Theory and Practice
S81012 - Training Neural Networks with Mixed Precision: Real Examples

Also on the web:

Mixed- Precision Training of Deep Neural Networks (NVIDIA Developer Blog)
Training with Mixed Precision (NVIDIA User Guide)
Thank you!

Questions?