
Mixed precision training
With Apache MXNet

Rahul Huilgol (Amazon)
Dick Carter (Nvidia)

Apache MXNet Meetup
April 2018, Seattle

Outline

● Motivation
● Advantages
● Hardware support
● Mixed precision for deep learning
● Challenges
● Results

Motivation

● Trends in deep learning
○ Larger and more complex models
○ Larger training datasets

● Increased resource requirements
○ Compute
○ Memory

Reduced precision

● Using half precision floating point (float16)
● Advantages

○ Arithmetic speed
○ Memory bandwidth
○ Amount of memory used

● Using this in combination with single precision is Mixed precision

Hardware support

● Early support for float16 was only as a storage type
● Compute was slow

○ By casting to float32 and back
● Recent GPUs have specialized support for float16 arithmetic

○ Volta range of GPUs by Nvidia have Tensor Cores
○ Theoretically 2x-8x performance for matrix multiplication

Mixed precision for deep learning

● Potential to speed up training and inference
● Challenges

○ Maintaining precision of arithmetic
○ Imprecise weight updates
○ Gradient underflow

● We can retain same model accuracy as float32 by addressing the above

Maintaining precision

● Tensor Cores
○ Accumulate half precision products into single precision outputs

Source: Nvidia’s documentation about tensor cores

Maintaining precision

● Tensor Cores
○ Accumulate half precision products into single precision outputs

● Avoid large reductions in float16
○ Softmax
○ Batchnorm

Using Mixed precision with Apache MXNet

● Add a Cast layer to the network for layers to be computed in float16

data = mx.sym.Cast(data=data, dtype=np.float16)

● Cast back the output of network to float32 before softmax layer

Symbolic

Using Mixed precision with Apache MXNet

Gluon

● Cast block or network to float16

net = net.cast(np.float16)

● Cast data

data = data.astype(np.float16)

Imprecise weight updates

updates = (weight gradients) x (learning rate)
weight -= updates

● Updates may become too small for fp16 range
● Update may be too small compared to the weight (if >2048 times), then

float16 addition causes update to become 0

● Solution: Maintain master copy of weights in float32

Imprecise weight updates

Weights
fp32

Weights
fp16

Fp16
Forward pass, Backward pass
Weights, Activations,
Gradients

Gradients fp16

Weight update
fp32

Updated weights
fp32

opt =
mx.opt.create(‘sgd’,
multi_precision=True)

Gradient underflow

● Float16 exponents can range from -14 to 15
○ But gradients are usually small, i.e. negative exponents

● Small gradients when represented in float16 will become 0
● Can cause some networks to diverge

○ An example : Multibox SSD network

Histograms of gradients for Multibox SSD.
Source: Mixed Precision Training by Narang, et al. ICLR 2018

Shift gradients to representable range

● Scale the loss computed after forward pass before backprop
● So all gradients are scaled, and don’t become zero
● Unscale the gradients before weight update, right after backward pass

Choosing scaling factor

● Pick a factor from 8, 32, 64, 128, etc as long as doesn’t cause overflow

Loss scaling

Loss scaling with Apache MXNet

Gluon

loss = gluon.loss.SoftmaxCrossEntropyLoss(weight=128)

Symbolic

mx.sym.SoftmaxOutput(..., grad_scale=128.0)

Optimizers for both interfaces

opt = mx.opt.create(..., rescale_grad=1.0/128)

NVIDIA research’s training results
With mixed precision

Successfully applied to many
networks including :

• Imagenet CNNs
• Detection
• Language Translation
• Speech
• Text to Speech
• GAN
• Image enhancement
• Wavenet

(C) NVIDIA 17

Network FP32
Baseline

Mixed
precision

AlexNet 56.8% 56.9%

VGG-D 65.4% 65.4%

GoogLeNet 68.3% 68.4%

Inception v2 70.0% 70.0%

Inception v3 73.9% 74.1%

Resnet 50 75.9% 76.0%

ResNeXt 50 77.3% 77.5%

ILSVRC12 Networks, Top-1 Accuracy

MXNet Resnet50: fp32 vs mixed-precision

(C) NVIDIA 18

Im
ag

es
 p

er
 s

ec
on

d

MXNet Resnet50: fp32 vs mixed-precision

(C) NVIDIA 19

Im
ag

es
 p

er
 s

ec
on

d

• Resnet50: ~3.3x
• DeepSpeech2: ~4.5x
• FairSeq: ~4.0x
• Sentiment prediction: ~4.0x

Conclusions

• Mixed precision training benefits:
• Faster: Math and memory I/O speedups
• Smaller: Can explore larger minibatches and inputs

• Solutions developed to address potential issues
• FP32 accumulation via Tensor Cores to maintain accuracy
• 32-bit master weights for precise weight updates
• Loss scaling to handle gradient underflow

• Mixed precision matches FP32 training accuracy for a variety of:
• Tasks: classification, regression, generation
• Problem domains: images, language translation, language modeling, speech
• Network architectures: feed forward, recurrent
• Optimizers: SGD, Adagrad, Adam

20(C) NVIDIA

21

GTC 2018 Talks, available publicly soon:

S8923 - Training Neural Networks with Mixed Precision: Theory and Practice

S81012 - Training Neural Networks with Mixed Precision: Real Examples

Also on the web:

Mixed- Precision Training of Deep Neural Networks (NVIDIA Developer Blog)

Training with Mixed Precision (NVIDIA User Guide)

Where to learn about mixed precision training

(C) NVIDIA

Information Sources

https://2018gputechconf.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=157371
https://2018gputechconf.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=184357
https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
https://docs.nvidia.com/deeplearning/sdk/pdf/Training-Mixed-Precision-User-Guide.pdf

Thank you!

Questions?

