Mixed precision training

With Apache MXNet

Apache MXNet Meetup April 2018, Seattle

Rahul Huilgol (Amazon) Dick Carter (Nvidia)

Outline

- Motivation
- Advantages
- Hardware support
- Mixed precision for deep learning
- Challenges
- Results

Motivation

- Trends in deep learning
 - Larger and more complex models
 - Larger training datasets
- Increased resource requirements
 - Compute
 - Memory

Increase in number of model parameters

Reduced precision

- Using half precision floating point (float16)
- Advantages
 - Arithmetic speed
 - Memory bandwidth
 - Amount of memory used
- Using this in combination with single precision is **Mixed precision**

Hardware support

- Early support for float16 was only as a storage type
- Compute was slow
 - By casting to float32 and back
- Recent GPUs have specialized support for float16 arithmetic
 - Volta range of GPUs by Nvidia have **Tensor Cores**
 - Theoretically 2x-8x performance for matrix multiplication

Mixed precision for deep learning

- Potential to speed up training and inference
- Challenges
 - Maintaining precision of arithmetic
 - Imprecise weight updates
 - Gradient underflow
- We can retain same model accuracy as float 32 by addressing the above

Maintaining precision

- **Tensor** Cores
 - Accumulate half precision products into single precision outputs Ο

Source: Nvidia's documentation about tensor cores

F16 accumulator is also available for inference

Maintaining precision

- Tensor Cores
 - Accumulate half precision products into single precision outputs
- Avoid large reductions in float16
 - \circ Softmax
 - Batchnorm

Using Mixed precision with Apache MXNet Symbolic

• Add a Cast layer to the network for layers to be computed in float16

data = mx.sym.Cast(data=data, dtype=np.float16)

• Cast back the output of network to float 32 before softmax layer

Using Mixed precision with Apache MXNet Gluon

- Cast block or network to float16
 net = net.cast(np.float16)
- Cast data

data = data.astype(np.float16)

Imprecise weight updates

updates = (weight gradients) x (learning rate) weight -= updates

- Updates may become too small for fp16 range
- Update may be too small compared to the weight (if >2048 times), then float 16 addition causes update to become 0
- Solution: Maintain master copy of weights in float32

Imprecise weight updates

Gradient underflow

- Float16 exponents can range from -14 to 15
 - But gradients are usually small, i.e. negative exponents
- Small gradients when represented in float16 will become 0
- Can cause some networks to diverge
 - An example : Multibox SSD network

log₂(magnitude)

Histograms of gradients for Multibox SSD. Source: Mixed Precision Training by Narang, et al. ICLR 2018

Loss scaling

Shift gradients to representable range

- Scale the loss computed after forward pass before backprop
- So all gradients are scaled, and don't become zero
- Unscale the gradients before weight update, right after backward pass

Choosing scaling factor

• Pick a factor from 8, 32, 64, 128, etc as long as doesn't cause overflow

Loss scaling with Apache MXNet

Gluon

loss = gluon.loss.SoftmaxCrossEntropyLoss(weight=128)

Symbolic

mx.sym.SoftmaxOutput(..., grad_scale=128.0)

Optimizers for both interfaces

opt = mx.opt.create(..., rescale_grad=1.0/128)

NVIDIA research's training results With mixed precision

Successfully applied to many networks including :

- Imagenet CNNs
- Detection
- Language Translation
- Speech
- Text to Speech
- GAN
- Image enhancement
- Wavenet

ILSVRC12 Networks, Top-1 Accuracy

Network	FP32 Baseline	Mixed precision
AlexNet	56.8%	56.9%
VGG-D	65.4%	65.4%
GoogLeNet	68.3%	68.4%
Inception v2	70.0%	70.0%
Inception v3	73.9%	74.1%
Resnet 50	75.9%	76.0%
ResNeXt 50	77.3%	77.5%

MXNet Resnet50: fp32 vs mixed-precision

MXNet Resnet50: fp32 vs mixed-precision

Conclusions

• Mixed precision training benefits:

- Faster: Math and memory I/O speedups
- Smaller: Can explore larger minibatches and inputs
- Solutions developed to address potential issues
 - FP32 accumulation via Tensor Cores to maintain accuracy
 - 32-bit master weights for precise weight updates
 - Loss scaling to handle gradient underflow

• Mixed precision matches FP32 training accuracy for a variety of:

- Tasks: classification, regression, generation
- Problem domains: images, language translation, language modeling, speech
- Network architectures: feed forward, recurrent
- Optimizers: SGD, Adagrad, Adam

Information Sources

Where to learn about mixed precision training

GTC 2018 Talks, available publicly soon:

<u>S8923 - Training Neural Networks with Mixed Precision: Theory and Practice</u>

<u>S81012 - Training Neural Networks with Mixed Precision: Real Examples</u>

Also on the web:

<u>Mixed-Precision Training of Deep Neural Networks</u> (NVIDIA Developer Blog)

Training with Mixed Precision (NVIDIA User Guide)

Thank you!

Questions?