
Apache Felix on Androids

Marcel Offermans
Christian van Spaandonk

1

Agenda
• Introduction to Google Android
• Demo: Hello world
• The OSGi framework
• Combining Android and OSGi
• Getting Felix to run
• Application design and deployment
• Demo: modular desktop application
• Demo: context awareness

2

Android
• Device Architecture
• Dalvik Virtual Machine
• From Source to Deployment
• Anatomy of an Application
• Application life cycle

3

Architecture

4

Dalvik Virtual Machine
• interpreter only, register based
• optimized to run multiple instances
• executes files in .dex format
• runs on posix-compliant OS
• looks, feels and smells like Java ;)

5

From Source to Deployment

• Eclipse Plugin: Android Dev Tools
– compiles and packages automatically
– launch and debug in emulator or phone

• Command line: activityCreator.py
– generates project structure
– Ant build.xml file
– IntelliJ project files

6

.java .class .jar .dex .apk

javac jar dx aapt

Anatomy

• activity, a single screen
• intent, describes what you want done
• intent filter, describes intents that can

be handled
• intent receiver, UI that reacts to intent
• service, background process with API
• content provider, for shared data

access

7

Anatomy Example

8

activity intent activity
intent

filter
intent

service

intent

filter

intent

receiver

Life Cycle
• is not controlled by the application
• android maintains “importance

hierarchy” based on:
– foreground process
– visible proces
– service proces
– background proces
– empty proces

9

Life Cycle (Activity)

10

Demo: hello world
• Create an application with an Activity in

Eclipse
• Set the “hello world” text
• Create a breakpoint
• Deploy and debug the application

11

OSGi Framework Layering
L3 - Provides a publish/find/bind service
model to decouple bundles

L2 - Manages the life cycle of a bundle in a
framework without requiring the vm to be
restarted

L1 - Creates the concept of a module (aka.
bundle) that both isolate and share classes from
each other in a controlled way

L0 - well defined profiles that define the
environment in which bundles can work, ie:
* CDC/Foundation
* JavaSE-6
* Android-1.0

SERVICE MODEL

MODULE

LIFE-CYCLE

Execution
Environment

12

Module Layer
• Unit of deployment

is the bundle
• Separate class

loader per bundle
• Class sharing at the package level
• Packages are versioned, multiple

versions concurrently supported
• Framework handles the

consistency

13

Module
Bundle Bundle Bundle

org.apache.utils 1.0

org.apache.utils 1.1org.apache.log 2.3

org.apache.db 1.4

Bundle

exports

imports

exports

imports

exports

exports

Module

Life-cycle Layer
• Managed life cycle

for each bundle
• Bundles can be:

– added,
– updated and
– removed

14

Life-cycle

Module

Life-cycle

start

end

installed
install

startingstart

stopping stop

activeresolved

uninstalled

uninstall

Service Layer
• Preferred way for

bundles to interact
• Service registry

can even be distributed in OSGi R4.2

15

Service
Provider

Service
Requester

Service
Registry

interact

publish find Service

Life-cycle

Module

Service

Log Database

Bundle Bundle Bundle

publish use
use

publish

Bundle

Prefs

publish

use

Side step: interaction styles

16

Bundle

Component
invoking a

service

Bundle

Component
providing a

service
method call

MyService

Bundle

EventAdmin
implementation

Bundle

Component
listening for

events

EventAdmin
Bundle

Component
publishing an

event
(a)synch event

EventHandler

Security Concepts Overview
• Codebased security of the Java

Security Model
– uses Protection Domains
– stack walk based Permission Check
– signed bundles

• PA and CPA provide
management infrastructure

• IF all conditions match
THEN apply permissions

17

Security

Module

Life-cycle

Service

OSGi and Android

18

OSGi

Java VM

App

Dalvik VM

App
App App

Dalvik VM

App

Dalvik VM

App

Android

Benefits of each model

19

AndroidOSGi

Java VM

App App
invoke

Java VM

App App

lib lib lib

Dalvik VM

App

Dalvik VM

App

Dalvik VM

App

crash

Why combine them?
• Using and enforcing a modular design
• Build applications faster through re-use

of existing OSGi components
• Applications tailored for the user, only

give him what he wants/needs
• Dynamic loading and unloading, you do

not always need all application
components

20

Android Services
• declared in AndroidManifest.xml
• can be started and stopped:

Context.startService(), .stopService()
• you can bind to it to use it
• services run in remote processes, IDL

compiler generates stubs
– primitives, collections, Parcelable’s by

value
– other AIDL interfaces by reference

21

Getting Felix to run
• Initial efforts by Karl Pauls and me
• Felix is portable, so we just dex’ed it
• since 1.0.3 we are Android aware

– found a way to dynamically load classes
– relies on an undocumented class

• Google, we need an API for:
– dynamic class loading
– dynamic security policies

22

Deploying on a dev phone
• Some manual preparation is necessary
• Phone is configured so apps cannot

dynamically load classes
• Fixed by:

– becoming root
– chmod 777 /data/dalvik-cache

23

Side step: other frameworks
• EclipseCon 2008, Santa Clara:

– Neil Bartlett and BJ Hargrave ported both
Equinox and Concierge to Android

• ProSyst:
– ported their embedded server

• Knopflerfish:
– no plans as far as we know

24

Application design
• Basis of the application is an Activity,

exposed through ActivityService

• Felix looks for a ViewFactory to create
its main view

• Security is declared here

25

public interface ActivityService {
 public Activity getActivity();
 public Object lookupSystemService(String name);
}

public interface ViewFactory {
 public View create(Context context);
}

Management Agent
• Responsible for installation and update
• Communicates with a provisioning

server
• Can be used to:

– centrally manage and deploy components
– allow a “store” like or context aware

interface to select components client side
• We embed the management agent as

part of the application

26

Topology
• Client: on the laptop
• Server: far, far away on the net
• Phone: using 3G/GPRS

27

provisioning
server

Android Application

management
agent

network

component
repository

client

Side step: Deployment Admin
• streams deployment packages
• packages get installed transactionally
• supports fix packages with deltas
• can install arbitrary file types
• types handled by resource processors

28

source target

Package for target A version 4
c
o
m

p
o
n
e
n
t
Y

1
.2

c
o
m

p
o
n
e
n
t
X

1
.0

c
o
n
fi
g
u
ra

ti
o
n

A
1

c
o
m

p
o
n
e
n
t
Z

2
.0

c
o
n
fi
g
u
ra

ti
o
n

D
3

Desktop Application
• Desktop component

(ViewFactory) shows a
button bar at the top

• Applications plug in, show their UI
below the button bar, register interface:

29

view

buttonbar

C A1 A2

public interface DesktopApplication {
 public static final String NAME = "name";
 public ImageView getImageView(Context context);
 public View getView(Context context);
}

Demo: dynamic deployment
• Bundles for:

– desktop, button bar and plugin mechanism
– weather, a simple weather application
– maps, a mockup mapping application

• Deploy and use applications
• Undeploy applications

30

Context Aware Extension
• Combines the centrally managed model

with a local one
• Phone can enable/disable certain

components based on certain logic by
talking to the ArtifactHandler service

31

public interface ArtifactHandler {
 public List<Artifact> listComponents() throws IOException;
 public void add(String name) throws IOException;
 public void remove(String name) throws IOException;
}

Demo: context awareness
• Same application as before
• Weather bundle is context aware:

– only gets installed when your home WiFi
network can be found

• Show deployment and undeployment
without user intervention

32

Wrapping it up
• learned how to deploy and debug

Android application

• seen how we can use OSGi and a
management agent to deploy stuff

• seen some live demos

33

Links
• Apache Felix

– http://felix.apache.org/
• Google Android

– http://developer.android.com/
• Sample code

– https://opensource.luminis.net/confluence/
display/SITE/Apache+Felix+on+Androids

•

34

http://felix.apache.org
http://felix.apache.org
http://developer.android.com
http://developer.android.com
https://opensource.luminis.net/confluence/display/SITE/Apache+Felix+on+Androids
https://opensource.luminis.net/confluence/display/SITE/Apache+Felix+on+Androids
https://opensource.luminis.net/confluence/display/SITE/Apache+Felix+on+Androids
https://opensource.luminis.net/confluence/display/SITE/Apache+Felix+on+Androids

Q & A

35

?
?
? !

! !

