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Agenda
• Introduction to Google Android
• Demo: Hello world
• The OSGi framework
• Combining Android and OSGi
• Getting Felix to run
• Application design and deployment
• Demo: modular desktop application
• Demo: context awareness
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Android
• Device Architecture
• Dalvik Virtual Machine
• From Source to Deployment
• Anatomy of an Application
• Application life cycle
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Architecture

4



Dalvik Virtual Machine
• interpreter only, register based
• optimized to run multiple instances
• executes files in .dex format
• runs on posix-compliant OS
• looks, feels and smells like Java ;)
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From Source to Deployment

• Eclipse Plugin: Android Dev Tools
– compiles and packages automatically
– launch and debug in emulator or phone

• Command line: activityCreator.py
– generates project structure
– Ant build.xml file
– IntelliJ project files
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.java .class .jar .dex .apk

javac jar dx aapt



Anatomy

• activity, a single screen
• intent, describes what you want done
• intent filter, describes intents that can 

be handled
• intent receiver, UI that reacts to intent
• service, background process with API
• content provider, for shared data 

access
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Anatomy Example
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Life Cycle
• is not controlled by the application
• android maintains “importance 

hierarchy” based on:
– foreground process
– visible proces
– service proces
– background proces
– empty proces
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Life Cycle           (Activity)
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Demo: hello world
• Create an application with an Activity in 

Eclipse
• Set the “hello world” text
• Create a breakpoint
• Deploy and debug the application
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OSGi Framework Layering
L3 - Provides a publish/find/bind service 
model to decouple bundles

L2 - Manages the life cycle of a bundle in a 
framework without requiring the vm to be 
restarted

L1 - Creates the concept of a module (aka. 
bundle) that both isolate and share classes from 
each other in a controlled way

L0 - well defined profiles that define the 
environment in which bundles can work, ie:
* CDC/Foundation
* JavaSE-6
* Android-1.0

SERVICE MODEL

MODULE

LIFE-CYCLE

Execution
Environment
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Module Layer
• Unit of deployment

is the bundle
• Separate class 

loader per bundle
• Class sharing at the package level
• Packages are versioned, multiple 

versions concurrently supported
• Framework handles the 

consistency

13

Module
Bundle Bundle Bundle

org.apache.utils 1.0

org.apache.utils 1.1org.apache.log 2.3

org.apache.db 1.4

Bundle

exports

imports

exports

imports

exports

exports

Module



Life-cycle Layer
• Managed life cycle

for each bundle
• Bundles can be:

– added, 
– updated and 
– removed
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Service Layer
• Preferred way for

bundles to interact
• Service registry

can even be distributed in OSGi R4.2
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Side step: interaction styles
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Security Concepts Overview
• Codebased security of the Java  

Security Model
– uses Protection Domains
– stack walk based Permission Check
– signed bundles

• PA and CPA provide 
management infrastructure

• IF all conditions match 
THEN apply permissions
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OSGi and Android
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Benefits of each model
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Why combine them?
• Using and enforcing a modular design
• Build applications faster through re-use 

of existing OSGi components
• Applications tailored for the user, only 

give him what he wants/needs
• Dynamic loading and unloading, you do 

not always need all application 
components
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Android Services
• declared in AndroidManifest.xml
• can be started and stopped:

Context.startService(), .stopService()
• you can bind to it to use it
• services run in remote processes, IDL 

compiler generates stubs
– primitives, collections, Parcelable’s by 

value
– other AIDL interfaces by reference
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Getting Felix to run
• Initial efforts by Karl Pauls and me
• Felix is portable, so we just dex’ed it
• since 1.0.3 we are Android aware

– found a way to dynamically load classes
– relies on an undocumented class

• Google, we need an API for:
– dynamic class loading
– dynamic security policies
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Deploying on a dev phone
• Some manual preparation is necessary
• Phone is configured so apps cannot 

dynamically load classes
• Fixed by:

– becoming root
– chmod 777 /data/dalvik-cache
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Side step: other frameworks
• EclipseCon 2008, Santa Clara:

– Neil Bartlett and BJ Hargrave ported both 
Equinox and Concierge to Android

• ProSyst:
– ported their embedded server

• Knopflerfish:
– no plans as far as we know
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Application design
• Basis of the application is an Activity, 

exposed through ActivityService

• Felix looks for a ViewFactory to create 
its main view

• Security is declared here
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public interface ActivityService {
    public Activity getActivity();
    public Object lookupSystemService(String name);
}

public interface ViewFactory {
    public View create(Context context);
}



Management Agent
• Responsible for installation and update
• Communicates with a provisioning 

server
• Can be used to:

– centrally manage and deploy components
– allow a “store” like or context aware 

interface to select components client side
• We embed the management agent as 

part of the application
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Topology
• Client: on the laptop
• Server: far, far away on the net
• Phone: using 3G/GPRS
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Side step: Deployment Admin
• streams deployment packages
• packages get installed transactionally
• supports fix packages with deltas
• can install arbitrary file types
• types handled by resource processors
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Desktop Application
• Desktop component

(ViewFactory) shows a 
button bar at the top

• Applications plug in, show their UI 
below the button bar, register interface:
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public interface DesktopApplication {                                                                                                                  
    public static final String NAME = "name";
    public ImageView getImageView(Context context);                                                                                                                   
    public View getView(Context context);                                                                                                                             
}



Demo: dynamic deployment
• Bundles for:

– desktop, button bar and plugin mechanism
– weather, a simple weather application
– maps, a mockup mapping application

• Deploy and use applications
• Undeploy applications

30



Context Aware Extension
• Combines the centrally managed model 

with a local one
• Phone can enable/disable certain 

components based on certain logic by 
talking to the ArtifactHandler service
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public interface ArtifactHandler {
    public List<Artifact> listComponents() throws IOException;
    public void add(String name) throws IOException;
    public void remove(String name) throws IOException;
}



Demo: context awareness
• Same application as before
• Weather bundle is context aware:

– only gets installed when your home WiFi 
network can be found

• Show deployment and undeployment 
without user intervention
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Wrapping it up
• learned how to deploy and debug 

Android application

• seen how we can use OSGi and a 
management agent to deploy stuff

• seen some live demos
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Links
• Apache Felix

– http://felix.apache.org/
• Google Android

– http://developer.android.com/
• Sample code

– https://opensource.luminis.net/confluence/
display/SITE/Apache+Felix+on+Androids

•
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Q & A
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