
The Bundle Dilemma
Richard S. Hall

Laboratoire d'Informatique de Grenoble,
Grenoble University, France

2

• The Bundle Dilemma
• History
• OSGi Bundle Repository (RFC 112)
• Apache Felix OBR Implementation
• OBR Bundle Repositories
• Issues
• Conclusion

Agenda

3

The Bundle Dilemma

4

• The OSGi framework provides a sophisticated,
general modularity mechanism for Java
• Focus is on keeping the core small
• Push additional functionality out of the framework

• Huge success at promoting and simplifying the
creation of modular Java systems
• Used in embedded to enterprise domains

• The number of available bundles is growing
quickly

Introduction

5

• Its success at being modular results in the
bundle dilemma
• Core is intentionally kept small with developers

encouraged to create useful, re-usable bundles, but...
• Inability of developers to discover and re-use existing

bundles
• Difficulty in deploying existing bundles

The Bundle Dilemma (1/3)

6

The Bundle Dilemma (2/3)

?
You want a bundle that provides some functionality...

7

The Bundle Dilemma (2/3)

You find the bundle and install it, but then...

8

The Bundle Dilemma (2/3)

You find the bundle and install it, but then...

-> start 4
org.osgi.framework.BundleException:
 Unresolved package in bundle 4: package;
 (&(package=org.apache.felix.foo)
 (version>=1.0.0))
->

9

The Bundle Dilemma (2/3)

You really need to install these too...

10

• The OSGi specification is mute on how installed
bundles are discovered in the first place
• Dependency resolution only applies to installed

bundles
• This issue can only become more important as

the number of bundles increases

• What can be done?

The Bundle Dilemma (3/3)

11

• Attempting to define a common (standard?)
bundle repository
• Share
• Discover
• Deploy

OSGi Bundle Repository (OBR)

12

History

13

Oscar Bundle Repository (OBR1)

• Initial bundle repository effort started as part of
Oscar circa 2003/2004
• Minimize Oscar download size
• Provide a repository of bundles for easy deployment

into OSGi frameworks
• Promote a community effort around bundle creation

• Multiple means of access
• Web page, service interface, shell command

• Low barrier for participation
• Turned out to be more popular than I imagined

14

OBR1 Issues

• Too simplistic
• Only truly supported resolving package dependencies
• Could not handle multiple versions of packages in the

framework and only awkwardly handled multiple
versions of bundles in the repository

• No easy way to diagnose deployment errors

• Started to think about how to deal with these
issues in April 2005
• Wanted to improve version handling
• Wanted a generic capability/requirement model

15

OSGi Bundle Repository
RFC 112

16

OSGi Bundle Repository (OBR2)

• The goals of OBR2 are essentially the same as
OBR1, but just doing it better

• Improved (and much debated) generic
capability/requirement model
• XML representation
• Models package, bundle, fragment, native, and service

dependencies (plus arbitrary ones)

• Stronger focus on bundle discovery

17

OBR2 Entities (1/2)

Repository
file

Requirement CapabilityResource

Repository

Repository
Admin

Resolver

1

0..n

1

0..n

10..n 1 0..n

references creates

contains

contains

requires provides

18

OBR2 Entities (2/2)

• Repository Admin – a service to access a federation of
repositories

• Repository – provides access to a set of resources
• Resource – a description of an artifact to be installed on

a device
• Capability – a named set of properties
• Requirement – an assertion on a capability
• Resolver – an object to resolve resource dependencies

and to deploy them
• Repository file – XML file containing resource meta-data

19

OBR2 High-Level View

Client

Repository1

Repository
Admin

Repository3 Repository4

Repository5

Repository2

20

OBR2 Web Site

21

OBR2 Repository File

[Peter Kriens created a tool, called bindex, to generate repository files.]

<repository presentationname=“...” symbolicname=“...” ... >
 <resource>
 <description>...</description>
 <size>...</size>
 <documentation>...</documentation>
 <source>...</source>
 <category id=“...”/>
 <capability>...</capability>
 ...
 <requirement>...</requirement>
 ...
 </resource>
 ...
</repository>

22

OBR2 Generic Capability Concept

• Resources can provide any number of
capabilities
• Simply a “typed” set of properties

<capability name='package'>
 <p n='package' v='org.foo.bar'/>
 <p n='version' t='version' v='1.0.0'/>
</capability>

23

OBR2 Generic Requirement Concept

• Resources can provide any number of
requirements
• Simply a “typed” LDAP query

<require name='package' extend='false'
 multiple='false' optional='false'
 filter='(&(package=org.foo.bar)(version>=1.0.0))'>
 Import package org.foo.bar
</require>

24

OBR2 Capability/Requirement Mappings

• Mappings provided for
• Import/export package
• Provide/require bundle
• Host/fragment
• Import/export service
• Execution environment
• Native code

• Custom mappings to arbitrary capabilities/
requirements

25

OBR2 Repository Admin Service

public interface RepositoryAdmin
{
 public Resource[] discoverResources(String filterExpr);
 public Resolver resolver();
 public Repository addRepository(URL repository)
 throws Exception;
 public boolean removeRepository(URL repository);
 public Repository[] listRepositories();
 public Resource getResource(String respositoryId);
}

26

OBR2 Resolver Object

public interface Resolver
{
 public void add(Resource resource);
 public Requirement[] getUnsatisfiedRequirements();
 public Resource[] getOptionalResources();
 public Requirement[] getReason(Resource resource);
 public Resource[] getResources(Requirement requirement);
 public Resource[] getRequiredResources();
 public Resource[] getAddedResources();
 public boolean resolve();
 public void deploy(boolean start);
}

27

OBR2 Usage Scenario

RepositoryAdmin repoAdmin = ... // Get repo admin service
Resolver resolver = repoAdmin.resolver();
Resource resource = repoAdmin.discoverResources(filterStr);
resolver.add(resource);
if (resolver.resolve()) {
 resolver.deploy();
} else {
 Requirement[] reqs = resolver.getUnsatisfiedRequirements();
 for (int i = 0; i < reqs.length; i++) {
 System.out.println(“Unable to resolve: “ + reqs[i]);
 }
}

28

Apache Felix OBR Implementation

29

• Bundle Repository sub-project
• Not 100% complete with respect to the RFC

• Resolves bundle requirements taking into
account locally installed bundles

• Resolver and deployment algorithms try to
minimize number of installed bundles

Apache Felix OBR Implementation

30

Apache Felix OBR Shell Command

31

Apache Felix OBR GUI

32

• Main purpose is to simplify bundle development
• Uses BND

• Bundle packaging
• Automates bundle meta-data generation

• Prototyping OBR support
• Specify that resulting bundle JAR files are

added/updated in a repository XML file
• Uses bindex

Apache Felix Maven Bundle Plugin

33

• Deployment vs. runtime resolver
• Each resolver does the same work, but the result of the

former is deployment and the latter is a set of wires

• Felix framework adopted the generic OBR model
• Goal is to make one resolver that is used in both the

framework and the OBR implementation
• Could lead to exposing generic dependencies in

bundles

Apache Felix Framework

34

OBR Bundle Repositories

35

• Apache Felix Project
• In the works, will include Felix sub-project bundles

• Apache Felix Commons
• In the works, currently available from Maven
• Bundled versions of common open source libraries

• Equinox Orbit (http://www.eclipse.org/orbit)
• Knopflerfish (http://www.knopflerfish.org/repo/)
• ProSyst

(http://dz.prosyst.com/pdoc/repository.xml)

OBR Bundle Repositories

36

Issues

37

• Deployment vs. runtime requirements
• Potentially need some tweaks to use as a framework

resolver
• Uses constraints
• Related to above point, are not currently addressed

• Local resources
• Not cleanly integrated

• Bundle “applications”
• There is a need for a higher level view, but probably on

top of OBR

Issues

38

Conclusion

39

• OSGi technology is a success...
• ...now we have to deal with it

• To keep momentum going we must make it
easier for developers
• To find existing bundles
• To use existing bundles
• To share their own bundles

• OBR is addressing these needs

Conclusion

