OSGi University

Marcel Offermans
Karl Pauls

luminis

iIstory of OSGi

ne Framework

® The Compendium

® OSGi Application Approaches
® Fmbedding

® Managing Service Dependencies

® Development Environment

® Open Source Frameworks

iIstory of OSGi

ne Framework

® The Compendium

® OSGi Application Approaches
® Fmbedding

® Managing Service Dependencies

® Development Environment

® Open Source Frameworks

® Started as an embedded platform for the “home
gateway”

® Originally under the JCP as JSR-8 (1999)

® OSGi alliance, consists of a large numloer of big
companies, with the following mission:

® Maintaining and publicizing the OSGi specification.
® Certifying implementations.

® Organising events.

® Current version: OSGi Release 4.1 (JSR-291)

® R1: long ago ;)

® R2: october 2001

® Java Embedded Server (Sun), Oscar (SourceForge)
® R3: march 2003

® Knopflerfish
® R4: august 2005

® |BM joined and influenced this release, Equinox (Eclipse
Foundation)

® R4 1. april 2007

OSGi technology is the dynamic module system
for Java™

OSGi technology is Universal Middleware.

OSGi technology provides a service-oriented, component-
based environment for developers and offers standardized

ways to manage the software lifecycle. These capabillities
greatly increase the value of a wide range of computers
and devices that use the Java™ platform.

® Expert Groups:

® core platform (CPEG)
® mobile (MEG)

® vehicle (VEG)

® cnterprise (EEG)

® residential (REG)

® \\Vorking Groups:

® marketing

® requirements

OSGi Service Platform OSGi Service Platform

Core Specification Service Compendium
The OSGi Alliance The OSGi Alliance

Release 4, Version 4.1 Release 4, Version 4.1
April 2007 April 2007

OSGi OSGi

Alliance Alliance

. OSGi ==
,08Gi = * Alliance
Alliance

istory of OSGi

ne Framework

® The Compendium

® OSGi Application Approaches
® Fmbedding

® Managing Service Dependencies

® Development Environment

® Open Source Frameworks

SERVICE MODEL

LIFECYCLE

MODULE

Execution
Environment

L3 - Provides a publish/find/bind service
model to decouple bundles

|2 - Manages the life cycle of a bundle in

a framework without requiring the vm to be
restarted

L1 - Creates the concept of a module
(aka. bundles) that use classes from each
other in a controlled way according to
system and bundle constraints

LO -
0SGi Minimum Execution Environment

CDC/Foundation
JavaSE

® Unit of deployment
Is the bundle I.e., a JAR

® Separate class loader
per bundle

® Class loader graph
® |ndependent namespaces

® (Class sharing at the Java package level

® Unit of deployment
Is the bundle I.e., a JAR

® Separate class loader
per bundle

® Class loader graph
® |ndependent namespaces

® (Class sharing at the Java package level

® Multi-version support
® |.e., side-by-side versions
® Explicit code boundaries and dependencies

® |.e., package imports and exports

® Support for various sharing policies

® |.e., arbitrary version range support

® Arbitrary export/import attributes

® |nfluence package selection -

® Sophisticated class space consistency model

® EnNnsures code constraints are not violated

® Package filtering for fine-grained class visibility

® Exporters may include/exclude specific classes from
exported package

® Bundle fragments

® A single logical module in multiple physical bundles

® Bundle dependencies

® Allows for tight coupling when required -

Bundle-Name: Example Bundle
Bundle-SymbolicName: net.luminis.example.bundle
Bundle-Version: 1.0.0
Dynamiclmport-Package:

org.osgi.service.log

Import-Package:
org.osgi.framework;version="1.3“,
org.osgi.service.event;version="[1.1,2.0)",
net.luminis.foo;resolution:=“optional®

Export-Package:
org.osgi.service.event;uses:=org.osgi.framework;version=“1.1"

Bundle-ManifestVersion: 2

® Managed life cycle

® States for each bundle;

® Allows updates of existing bundles.

® Dynamically install, start, update, and uninstall

)

.Ma installed

start start starting
resolved <

® NManaged life cycle dé_ |

uninstalled

~—_—

® States for each bundle;

® Allows updates of existing bundles.

® Dynamically install, start, update, and uninstall

Provided package

\ Bundle
O0SGi framework

Existing

Existing
install Bundle
bundle.jar

O0SGi framework

Existing
Bundle

resolve bundle

O0SGi framework

automatic package

dependency resolution Existing

Bundle

—_ -
O0SGi framework

® (0SGi framework
promotes service
oriented interaction
pattern among
bundles

Service

Reqistr
PuinV Sy

Service

Provider

Interact

Service
Requester

® 0SGi framework
promotes service
oriented interaction
pattern among
bundles

Service

Reqistr
PuinV e

Service

Provider
Interact

\Find

Service
Requester

=
publish :
. publish
publish /' yse Sy use

Service

‘ Service l

Provided service

N

Provided package S

\ Bundle
O0SGi framework

Existing
install Bundle
bundle.jar

O0SGi framework

Existing
Bundle

activate bundle

O0SGi framework

automatic package

dependency resolution Existing

Bundle

—_ -
O0SGi framework

manual service
dependency resolution

Existing
Bundle

O0SGi framework

® Optional Security Layer based on
Java permissions

® |nfrastructure to define, deploy, and
manage fine-grained application
pEermissions

® Code authenticated by location or
signer

® \WVell defined API to manage
permissions

® PermissionAdmin

® ConditionalPermissionAdmin

istory of OSGi

ne Framework

® The Compendium

® OSGi Application Approaches
® Fmbedding

® Managing Service Dependencies

® Development Environment

® Open Source Frameworks

® Specification:

® OSGi compendium — catalog of standard service
descriptions

® |mplementations:

® OBR repository at bundles.osgi.org — over 1400
bundles, implement compendium and other services

® Maven repository and third party OBR'’s

® More and more projects are made OSGi compatible, for
example:

® Apache Commons OSGi

0SGi Service Platform
Service Compendium
The OSGi Alliance

Release 4, Version 4.1

OSGi

Alliance

User Admin Initial Provisioning Wire Admin

Log Device Access

Measurement and State
Preferences UPnP™ Device

Configuration Admin

XML Parser

Position
Metatype

Service Tracker

Event Admin

|0 Connector HTTP

Execution Environment Spec

Declarative Services

® Used in any application that needs role based
access control

® Provides: users, roles and groups

® Can authenticate users

® Can determine autorization for authenticated
users

® [Fairly easy to plug-into HT TP, SOAP, RMI, JMX or
anything else

® Configuration Admin:

® contains externally configurable settings for a service;

® allows manage-
ment systems to
configure all settings;

® settings can be
created even before the
actual bundle is installed.

® Configuration Admin:

® contains externally configurable settings for a service;

® allows manage-
ment systems to bundle
configure all settings; A% }writes

a bundle

. bundle i
® settings can be s

port=? deployed port= 80
created even before the secure=? T B |secure=true

actual bundle is installed. configuration
data

Configuration
Admin

Channel Pattern

Publisher

0..n

1

sendEvent

® Publish subscribe el

® Asynchronous and synchronous

® Hierarchical topics

® Used within OSGi too

ccservicey>
Event Admin

servicesy
EventHandler

handleEvent

class Subscriber implements BundleActivator, EventHandler {
final static String[] topics = new String[] {
"org/osgi/service/log/LogEntry/LOG_WARNING",
"org/osgi/service/log/LogEntry/LOG_ERROR" };

public void start(BundleContext context) {
Dictionary d = new Hashtable();
d.put(EventConstants.EVENT_TOPIC, topics);
d.put(EventConstants.EVENT_FILTER, "(bundle.symbolicName=com.acme.*)");
context.registerService(EventHandler.class.getName(), this, d);

}

public void stop(BundleContext context) {
+

public void handleEvent(Event event) {
// ...

}

class Publisher {
EventAdmin m_eventAdmin;

public void send() {
if (m_eventAdmin != null) {
Dictionary properties = new Hashtable();
properties.put("timestamp", new Date());
m_eventAdmin.sendEvent(new Event("com/acme/timer", properties));

EackingStore [a bundle
® Preferences: ‘ eepter | |

l l | undle i
® contains bundle private] bundle id

user name |

: .] 1 ! |
SetnngS’ node name <cnterfacess |o..n root user nodes, 1[cinterfaces>>

Preferences Preferences
Service

1 root system node 1

1:n bundle - service

is coupled to the bundle “
life-cycle; T

i e SEEncke] JaE A e | on weies 1[5
there is a notion of system

and user preferences per
Preferences
bUﬂC”e Service

implementation

| HAVEN'T
HAD MY

COFFEE YET

DON'T

< MAKE ME

KILL YOU

istory of OSGi

ne Framework

® The Compendium

® OSGi Application Approaches
® Fmbedding

® Managing Service Dependencies

® Development Environment

® Open Source Frameworks

® Service model vs. extender model

® Choose an OSGi extensibility mechanism

® Bundied application vs. hosted
framework

® \WVho is in control of whom

® [wo different approaches for adding extensibility
to an OSGi-based application

® The service-based approach uses the OSGi service

concept and the service registry as the extensibility
mechanism

® The extender-based approach uses the OSGi
iINnstalled bundle set as the extensibility mechanism

® Advantages and disadvantages for each

® Can be used independently or together

® Applications can leverage OSGi functionality in
two ways

¢ Bundled application

® Build entire application as a set of bundles that will run on top of
a framework instance

® Hosted framework

® Host a framework instance inside the application and externally
interact with bundles/services

® Create a simple Swing-based paint program

® Define a SimpleShape interface to draw shapes

® Different implementations to draw different shapes
® Each shape has name and icon properties

® Avallable shapes are displayed in tool bar

® [o draw a shape, click its button; then the canvas

® Shapes can be dragged, but not resized

® Support dynamic deployment of shapes

aint Program Mock Up

® Conceptual SimpleShape interface

public interface SimpleShape
{
/**
* Method to draw the shape of the service.
* @param g2 The graphics object used for painting.
* @param p The position to paint the shape.
*/
public void draw(Graphics2D g2, Point p);

Shape
Tracker

Drawing
Frame

1

*

Default
Shape

Shape
Component

)

Shape
Tracker

Best practice — Try to
centralize interaction
with OSGi API so that
other components
remain POJOs...only
Shape Tracker will
interact with OSGi API.

Injected “proxied” shape
Implementation to hide
aspects of dynamism
and provide a default
Implementation.

Actual shape

Implementation.

_ Default
Shape

Component that draws the
shape in parent frame; looks
up shape via Drawing Frame

rather than having a direct

reference.

Shape
Component

ervice

Service
registry

ervice

Service
registry

o Service
\)U blication
i]

ervice

Service
registry

Service
event

ervice

Service
registry

Service
request

ervice

Service
registry

Service binding

1

® |nstead of having clients look up and use a service
iINnterface, have clients register a service interface
to express their interest

® [he service tracks the registered client interfaces
and calls them when appropriate

® This is called the Whiteboard pattern

® [t can be considered an Inversion of Control pattern

® SimpleShape service interface

public interface SimpleShape

{
/**
* A service property for the name of the shape.
**/
public static final String NAME_PROPERTY = "simple.shape.name";
/**
* A service property for the icon of the shape.
**/
public static final String ICON_PROPERTY = "simple.shape.icon";

/**
* Method to draw the shape of the service.
* @param g2 The graphics object used for painting.
* @param p The position to paint the triangle.

**/

public void draw(Graphics2D g2, Point p);

® Shape service bundles have an activator to
register their service

/**
* Implements the BundleActivator.start() method, which

* registers the circle SimpleShape service.
* context The context for the bundle.

**/
public void start(BundleContext context)
{

m_context = context;

Hashtable dict = new Hashtable();
dict.put(SimpleShape .NAME_PROPERTY, "Circle");
dict.put(SimpleShape.ICON_PROPERTY,

new Imagelcon(this.getClass().getResource("circle.png")));
m_context.registerService(

SimpleShape.class.getName(), new Circle(), dict);

® Use Inversion of Control and inject shapes

® Puts tracking logic in one place
® |solates application from OSGi AP
® |Implemented as OSGi Service Tracker subclass

® Uses whiteboard pattern for services

® | isten for SimpleShape service events

Extender Model

luminis

.
Extender Model

Installed
In;’mll\> bundle

bundle.jar

A

luminis

Extender Model

w

Installed
bundle

Create /
bunV =

luminis

Extender Model

w

Installed
bundle

Bundle
Nent
II

luminis

Extender Model

w

Installed

Interrogate for metadata,
resources, classes, etc.

1! N

public interface SimpleShape
{

/**
* A property for the name of the shape.
**/
public static final String NAME_PROPERTY = "Extension-Name";
/**
* A property for the icon of the shape.

**/
public static final String ICON_PROPERTY = "Extension-Icon";
/**
* A property for the class of the shape.
**/
public static final String CLASS_PROPERTY = "Extension-Class";

/**
* Method to draw the shape of the extension.
* @param g2 The graphics object used for painting.
* @param p The position to paint the triangle.

**/

public void draw(Graphics2D g2, Point p);

® Shape extension bundles have extension-related
Mmetadata in their Jar manifest

Extension-Name: Circle
Extension-Icon: org/apache/felix/circle/circle.png
Extension-Class: org.apache.felix.circle.Circle

® Use Inversion of Control and inject shapes

® Puts tracking logic in one place

® |solates application from OSGi AP

® |mplemented as custom ,bundle tracker”

® Uses pattern similar to whiteboard, but for installed
bundles instead of services

® | istens for bundle events

® Probes bundle manifest to see if shape extensions provided

® |mplementations are packaged in a similar fashion

® As a bundle JAR file with metadata

® Separate public APl into separate packages

® org.apache.felix.examples.servicebased.host.service

® Only export public API packages in your metadata

Show examplel!

istory of OSGi

ne Framework

® The Compendium

® OSGi Application Approaches
® Fmbedding

® Managing Service Dependencies

® Development Environment

® Open Source Frameworks

® \ore complicated due to external/internal gap
between application and framework

® c.g., unlike bundles the host application does not have
a bundle context by which it can access framework
services

® Requires host/framework interactions

® Accessing framework
® Providing services to bundles

® Using services from bundles

® Fclix tries to simplify hosted framework scenarios

® Configuration data is passed into framework
constructor

® Felix framework is the System Bundle

® Gives the host application an intuitive way to access
framework functionality

® [elix constructor also accepts ,,constructor
activators” to extend system bundle

® Fclix tries to multiplex singleton resources to allow
for multiple framework instances

// Create a list for custom framework activators and

// add an instance of the auto-activator it for processing
// auto-install and auto-start properties.

List list = new ArraylList();

list.add(new AutoActivator());

// Create a case-insensitive property map.
Map configMap = new StringMap(false);

try
{

// Create an instance of the framework.
Felix felix = new Felix(configMap, list);

// Start the framework instance
felix.start();

// Stop the framework instance
felix.stop();

}
catch (Exception ex) { ... }

® Providing a host application service

BundleContext bc = felix.getBundleContext();

bc.registerService(Service.class, svcObj, null);

® Accessing internal bundle services
BundleContext bc = felix.getBundleContext();

ServiceReference ref =
bc.getServiceReference(Service.class);

Service svcObj = (Service) bc.getService(ref);

® Classes shared among host application and
bundles must be on the application class path

® Disadvantage of hosted framework approach, which
limits dynamics

® Use of reflection by host to access bundle services can
eliminate this issue, but it is still not an optimal solution

® |n summary, better to completely bundle your
application if possible

istory of OSGi

ne Framework

® The Compendium

® OSGi Application Approaches
® Fmbedding

® Managing Service Dependencies

® Development Environment

® Open Source Frameworks

® Declarative Services

® Dependency Manager

® POJO

® Spring

® Service Component Runtime, part of the spec
® Declared in a header in the bundle manifest
® XML descriptor for dependencies

® Maven SCR plugin

® clix shell command for managing SCR bundles

public class SampleComparator implements Comparator {
private volatile LogService m_log;
public int compare(Object ol, Object 02) {
return ol.equals(o2) ? @ : -1;

}

protected void activate(ComponentContext context) {
LogService log = m_log;
if (log !'= null) {
log.log(LogService.LOG_INFO, "Hello Components!");

3

protected void deactivate(ComponentContext context) {

} <component name="sample.component" immediate="true">
<implementation class="sample.SampleComparator" />
<property name="service.description" value="Comparator" />
<property name="service.vendor" value="ASF" />

ks <service>
protected void unbindLog(LogService log) { <provide interface="java.util.Comparator" />

m_log = null; </service>
<reference name="1log"

protected void bindLog(LogService log) {
m_log = log;

interface="org.osgi.service.log.LogService"

cardinality="0..1" policy="dynamic"

bind="bindLog" unbind="unbindLog" />
</component>

® AP| based dependency management

® supports extensible types of dependencies:
® service dependency

® configuration dependency

® change dependencies dynamically at runtime

public class SampleComparator implements Comparator {
private volatile LogService m_log;

public int compare(Object ol, Object 02) {
return ol.equals(o2) ? 0 : -1;

}

void start() {
m_log.log(LogService.LOG_INFO, "Hello there!");

}

public class Activator extends DependencyActivatorBase {
public void init(BundleContext context, DependencyManager manager) throws Exception {
manager.createService()

.setInterface(Comparator.class.getName(), null)

.setImplementation(SampleComparator.class)

.add(createServiceDependency()
.setService(lLogService.class)
.setRequired(false));

}

public void destroy(BundleContext context, DependencyManager manager) throws Exception {

}

® POJO is an evolution of Service Binder (which
inspired Declarative Services).

® Further simplify the OSGi programming model

® Byte code inspection and instrumentation is used to
simplify metadata

® |Implement a composite component concept

® Further embrace of the Factory concept

® A composite has two levels: what is on the outside and
what is on the inside.

® Component definitions do not automatically
create instances

® purely define a component type that is reified as
,factory” service in the service registry

® [0 get an instance it is necessary to create them

® programmatically or via metadata

Conceptually, a composite is a service registry
nested inside of a parent service registry.

® Global OSGi service registry at the root

Furthermore, a composite can offer and require
services from the outside

® Component that provides a ,,org.foo. TextEditor”
service

® O-to-n dynamic dependency on ,org.foo.Plugin®
services

® field="plugins” refers to a field in the component class
where Plugin services will be injected

<component classname="org.foo.MyEditor*>
<provides/>
<requires field="plugins®/>
</component>
<instance component="org.foo.MyEditor®/>

® Composite defines a text editor service that is
tallored to editing Java text files

® singular text editor subservice

® aggregate subservice for all Java-related plugins

<composite name="org.foo.JavakditorFactory">
<subservice action="instantiate" specification="org.foo.Plugin”
filter="(mime.type=text/java)" aggregate="true"/>
<subservice action="instantiate" specification="org.foo. TextEditor"
binding-policy="static"/>
</composite>
<instance component="org.foo.JavaEditorFactory"/>

® The Spring Dynamic Modules for OSGi(tm)
Service Platforms project makes it easy to build
Spring applications that run in an OSGi framework

® Exposing beans as OSGi services is fairly simple

® OSQGi services can be used as waell

® Services are injected using a proxy

® Dynamism is limited because the proxy will stay
regardless of an available service

® Throws ServiceUnavailableException

® Exposing beans as OSGi services

<bean name="reverseBean"
class="nl.luminis.demo.reversestring.ReverseStringlmpl"/>

<o0sgi:service ref="reverseBean"
interface="nl.luminis.demo.string.ReverseString"/>

® Using OSGi services inside of beans

<bean name="reverseBean"
class="nl.luminis.demo.reversestring.ReverseStringBean">
<property name="auditService" ref="externalAuditService"/>
</bean>

® Dynamic services

<osgi:reference id="externalAuditService"

interface="nl.luminis.demo.audit.AuditService"
cardinality="0..1">
<osgi:listener ref="reverseBean"
bind-method="serviceAdded"
unbind-method="serviceRemoved"/>
</o0sgi:reference>

istory of OSGi

ne Framework

® The Compendium

® OSGi Application Approaches
® Fmbedding

® Managing Service Dependencies

® Development Environment

® Open Source Frameworks

® Clipse

® Build systems

® Naven

® Ant

PLUG-IN == BUNDLE

Plug-in Project
Create a new plug-in project ﬁ

Project name: |demo-bundle

® Create plug-in project for B0 s st e

q I hor [3y
Location: [fUsers/marcel/Documents/workspace/demo-bundle Browse... |

eaCh bundle Project Settings

S Create a Java project

Source folder: | src

® Nake sure to select

“standard” OSGi framework | e smsnsmeeswmwn

O Eclipse version: [3.3 3]
83n 05Gi framework:

® Select your Execution

Execution Environment: [CDC-l.lanundatiun-l.l I-G-‘ I: Environments...]
]
Environment

D Add project to working sets

Warking sets:

C < Back -_) E—Hn'l—.-—a (Cancel) _ Finish)

dependencies

® Run inside
Eclipse

® Exportto
bundle file

el DU O [BEE @YD

rﬁ demo.bundle Sﬂ-\\.\

=8

k]

1=} _-a:slllug-m Deve..

J—

i Overview

General Information
This section describes general information about this plug-in.

ID: | demo.bundle

Version: 1.0.0

Mame Demanstration

Pravider: luminis

Activator: demao.Activator

Execution Environments

Specify the minimum execution environments required to run this
plug=in.

B\ CDC-1.1/Foundation-1.1 | Add...
Remaove

Up

Configure JRE a5sociations ...

Update the classpath settings

OBE@

Plug-in Content

The content of the plug-in is made up of two sections:

|-_{ Dependencies: lists all the plug-ins required on this plug-
in's classpath to compile and run.

=4

% Buntime: lists the libraries that make up this plug-in's
runtime,

Extension / Extension Point Content

This plug-in may define extensions and extension points:

i;—’ Extensions: declares contributions this plug-in makes to the
platform.

|;-" Extension Points: declares new function points this plug-in
adds to the platfarm,

Testing

Test this plug-in by launching an O5Gi framework:
2 Launch the framework

%5 Launch the framework in Debug mode

Exporting

To package and export the plug-in:

1. Organize the plug=-in using the Organize Manifests Wizard

2. Specify what needs to be packaged in the deployable plug-in
on the Buil nfi on page

. Export the plug=in in a format suitable for deployment using
the Export Wizard

Dwewlew] Dependencies [Runtime [B:ullr.l] MANIFEST.MF | build.properties [

ECES

® Clipse

® harder to run outside of Eclipse

® one bundle per project

® NMaven

® used and developed within Felix

® one bundle per “project” model

® Ant

® use a Bnd based bundle task

® more flexible project models possible

® Two plugins in Felix:

® Bnd based bundle plugin

® Supports publishing to an OBR
e Has Eclipse/PDE integration

® SCR plugin

® Pax Eclipse plugin at OPS4J

® synchronizes Maven and Eclipse projects

® NMore flexibility and control

® Use macros

® OSGIi Bundle Ant Task

https://opensource.luminis.net/confluence/x/AgAX

https://opensource.luminis.net/confluence/x/AgAX
https://opensource.luminis.net/confluence/x/AgAX

istory of OSGi

ne Framework

® The Compendium

® OSGi Application Approaches
® Fmbedding

® Managing Service Dependencies

® Development Environment

® Open Source Frameworks

® Apache Felix: http://felix.apache.org/

® R4, originally called Oscar

® Knopflerfish 2: http:// www.knopflerfish.org/

® R4, open source version of UbiServ by Makewave

® Equinox: http:// www.eclipse.org/equinox/

® R4, initially developed for Eclipse and the RCP

® Concierge: http://concierge.sourceforge.net/

® R3, optimized for resource constrained environments

http://felix.apache.org
http://felix.apache.org
http://www.knopflerfish.org
http://www.knopflerfish.org
http://www.eclipse.org/equinox/
http://www.eclipse.org/equinox/
http://concierge.sourceforge.net
http://concierge.sourceforge.net

