

Apache Felix –
A Standard Plugin Model

for Apache Projects

Richard S. Hall

Amsterdam, Netherlands
April 9th, 2008

Agenda
 Why OSGi technology?
 OSGi technology overview
 Apache Felix status
 Example application
 OSGi application approaches
 Example application demo
 Advanced approaches
 Conclusion

Why OSGi Technology?




Motivation (1/2)
• Growing complexity requires not only

highly modular code, but also systems
that are dynamically extensible

• This is true no matter which problem
domain is your area of concern
– Embedded systems need to adapt to

changing requirements even though they are
deployed out in the field

– Client applications must respond to user
desires for new functionality instantaneously

– Server applications must be configurable and
manageable without down time

Motivation (2/2)
• Java provides the mechanisms to do

these things, but they are
– Low level
– Error prone
– Ad hoc

• Java's shortcoming are particular evident
in its support for both modularity and
dynamism

Java Modularity Limitations (1/2)
• Limited scoping mechanisms

– No module access modifier

• Simplistic version handling
– Class path is first version found
– JAR files assume backwards compatibility at

best

• Implicit dependencies
– Dependencies are implicit in class path

ordering
– JAR files add improvements for extensions,

but cannot control visibility

Java Modularity Limitations (2/2)
• Split packages by default

– Class path approach searches until it finds,
which leads to shadowing or version mixing

– JAR files can provide sealing

• Unsophisticated consistency model
– Cuts across previous issues, it is difficult to

ensure class space consistency

• Missing module concept
– Classes are too fine grained, packages are

too simplistic, class loaders are too low level

• No deployment support

Java Dynamism Limitations
• Low-level support for dynamics

– Class loaders are complicated to use and
error prone

• Support for dynamics is still purely
manual
– Must be completely managed by the

programmer
– Leads to many ad hoc, incompatible

solutions

• Limited deployment support

OSGi Technology
• Resolves many deficiencies associated

with standard Java support for modularity
and dynamism
– Defines a module concept

• Explicit sharing of code (i.e., importing and
exporting)

– Automatic management of code
dependencies

• Enforces sophisticated consistency rules for class
loading

– Life-cycle management
• Manages dynamic deployment and configuration

OSGi Technology
Overview





OSGi Alliance
• Industry consortium
• OSGi Service Platform specification

– Framework specification for hosting
dynamically downloadable services

– Standard service specifications

• Several expert groups define the
specifications
– Core Platform Expert Group (CPEG)
– Mobile Expert Group (MEG)
– Vehicle Expert Group (VEG)
– Enterprise Expert Group (EEG)

OSGi Architectural Overview

Hardware

Driver Driver Driver

Operating System

Java

OSGi

Fra
m

ew
or

k

Bundle

OSGi Framework Layering

CDC
CDC

Execution
Environment

L0 -
•OSGi Minimum Execution Environment
•CDC/Foundation
•JavaSE

MODULE
L1 - Creates the concept of modules
(aka. bundles) that use classes from
each other in a controlled way
according to system and bundle
constraints

LIFECYCLE
L2 - Manages the life cycle of bundle in
a bundle repository without requiring
the VM be restarted

SERVICE MODEL L3 – Provides a publish/find/bind
service model to decouple bundles

OSGi Framework (1/2)
• Component-oriented framework

– Bundles (i.e., modules/components)
– Package sharing and version management
– Life-cycle management and notification

• Service-oriented interaction pattern
– Publish/find/bind intra-VM service model

OSGi Framework (2/2)
• Runs multiple applications and services
• Single VM instance
• Separate class loader per bundle

– Class loader graph
– Independent namespaces
– Class sharing at the Java package level

• Uses Java permissions for security
• Explicitly considers dynamic scenarios

– Run-time install, update, and uninstall of
bundles

OSGi Modularity (1/4)
• Multi-version support

– i.e., side-by-side versions

• Explicit code boundaries and
dependencies
– i.e., package imports and exports

• Support for various sharing policies
– i.e., arbitrary version range support

OSGi Modularity (2/4)
• Arbitrary export/import attributes for more

control
– Influence package selection

• Sophisticated class space consistency
model
– Ensures code constraints are not violated

• Package filtering for fine-grained class
visibility
– Exporters may include/exclude specific

classes from exported package

OSGi Modularity (3/4)
• Bundle fragments

– A single logical module in multiple physical
bundles

• Bundle dependencies
– Allows for tight coupling when required

• Managed life cycle
– Modules can be dynamically installed,

updated, uninstalled

OSGi Modularity (4/4)
• Dynamic module deployment and

dependency resolution

OSGi framework

Provided package

existing
bundle

OSGi Modularity (4/4)
• Dynamic module deployment and

dependency resolution

OSGi framework

existing
bundle

install
bundle.jar

OSGi Modularity (4/4)
• Dynamic module deployment and

dependency resolution

OSGi framework

existing
bundleresolve

bundle

OSGi Modularity (4/4)
• Dynamic module deployment and

dependency resolution

OSGi framework

existing
bundle

automatic package
dependency resolution

Leveraging OSGi Modularity
• Text editor + jar

– Just add metadata to your JAR file's manifest

• Eclipse
– Plug-in Development Environment (PDE)

directly supports bundles

• Bundle packaging tools
– BND from Peter Kriens
– Apache Felix maven-bundle-plugin based

on BND

OSGi Services (1/3)
• OSGi framework promotes service-

oriented interaction pattern among
bundles
– Possible to use modules without services

Publish Find

Interact

Service
Registry

Service
Provider

Service
Requester

Service
Description

OSGi Services (2/3)
• An OSGi application is...

– A collection of bundles that interact via
service interfaces

– Bundles may be independently developed
and deployed

– Bundles and their associated services may
appear or disappear at any time

• Resulting application follows a Service-
Oriented Component Model approach

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

Provided service

Provided package

existing
bundle

component

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

componentinstall
bundle.jar

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

component

activate
bundle

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

component

automatic package
dependency resolution

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

component

manual service
dependency resolution

OSGi Services Advantages
• Lightweight services

– Direct method invocation
• Good design practice

– Separates interface from implementation
– Enables reuse, substitutability, loose coupling,

and late binding
• Dynamic

– Loose coupling and late binding make it possible
to support run-time dynamism

• Application's configuration is simply the set of
deployed bundles
– Deploy only the bundles that you need

OSGi Services Issues
• More sophisticated, but more complicated

– Requires a different way of thinking
• Things might appear/disappear at any moment

– Must manually resolve and track services

• There is help
– Service Tracker

• Still somewhat of a manual approach

– Declarative Services, Spring DM, iPOJO
• Sophisticated service-oriented component

frameworks
• Automated dependency injection and more
• More modern, POJO-oriented approaches

Apache Felix Status




Apache Felix (1/4)
• Top-level project (March 2007)
• Apache licensed open source

implementation of OSGi R4
– Framework (in progress, stable and

functional)
• Version 1.0.3 currently available

– Services (in progress, stable and functional)
• Package Admin, Start Level, URL Handlers,

Declarative Services, UPnP Device, HTTP Service,
Configuration Admin, Preferences, Wire Admin, Event
Admin, Meta Type, Deployment Admin and Log

• OSGi Bundle Repository (OBR), Dependency
Manager, Service Binder, Shell, iPOJO, Mangen

Apache Felix (2/4)
• Felix community is growing

– Code granted and contributed from several
organizations and communities

• Grenoble University, ObjectWeb, CNR-ISTI,
Ascert, Luminis, INSA, DIT UPM, Day
Management AG

• Several community member contributions

– Various Apache Java-based projects have
expressed interested in Felix and/or OSGi

• e.g., ServiceMix, Directory, Sling, Tuscany, etc.

Apache Felix (3/4)
• Felix bundle developer support

– Apache Maven2 bundle plugin
• Merges OSGi bundle manifest with Maven2 POM

file
• Automatically generates metadata, such as
Bundle-ClassPath, Import-Package, and
Export-Package

– Greatly simplifies bundle development by eliminating
error-prone manual header creation process

• Automatically creates final bundle JAR file
– Also supports embedding required packages, instead

of importing them

Apache Felix (4/4)
• Felix Commons

– Effort to bundle-ize common open source
libraries

• Recently started

– Includes bundles such as antlr, cglib,
commons-collections, etc.

– All community donated wrappers

• Roadmap
– Continue toward R4 and R4.1 compliance

• Largely only missing support for fragments, but
work has started

Example Application




Paint Program Plan
• Create a simple Swing-based paint program
• Define a SimpleShape interface to draw

shapes
– Different implementations of SimpleShape can

be created to draw different shapes
– Each shape has name and icon properties
– Available shapes are displayed in tool bar

• To draw a shape, click on its button and
then click in the drawing canvas
– Shapes can be dragged, but not resized

• Support dynamic deployment of shapes

Shape Abstraction
• Conceptual SimpleShape interface

public interface SimpleShape
{
 /**
 * Method to draw the shape of the service.
 * @param g2 The graphics object used for
 * painting.
 * @param p The position to paint the shape.
 **/
 public void draw(Graphics2D g2, Point p);
}

Paint Program Mock Up

High-Level Architecture

Drawing
Frame

Shape
Component

Default
Shape

Simple
Shape

1 1Shape
Tracker

1 *

1

1 1

* 1

1

High-Level Architecture

Drawing
Frame

Shape
Component

Default
Shape

Simple
Shape

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Best practice – Try to
centralize interaction
with OSGi API so that

other components
remain POJOs...only
Shape Tracker will

interact with OSGi API.

High-Level Architecture

Drawing
Frame

Shape
Component

Default
Shape

Simple
Shape

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Best practice – Do not
make assumptions

about threads...since we
are creating a Swing
application, Shape

Tracker sends events on
Swing thread.

Best practice – Try to
centralize interaction
with OSGi API so that

other components
remain POJOs...only
Shape Tracker will

interact with OSGi API.

High-Level Architecture

Shape
Component

Default
Shape

Simple
Shape

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Drawing
Frame

Main application
window – gets

dynamically injected
with available shapes

from the Shape
Tracker.

Drawing
Frame

High-Level Architecture

Shape
Component

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Default
Shape

Simple
ShapeActual shape

implementation.

Drawing
Frame

High-Level Architecture

Shape
Component

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Default
Shape

Simple
Shape

Injected “proxied” shape
implementation to hide
aspects of dynamism
and provide a default

implementation.

Actual shape
implementation.

Simple
Shape

Default
Shape

Drawing
Frame

High-Level Architecture

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Shape
Component

Component that draws the
shape in parent frame; looks
up shape via Drawing Frame

rather than having a direct
reference.

Implementing the Design
• The design is reasonably complete, but

what is the precise approach for
implementation?
– It depends...
– There are a few approach options when

building OSGi-based applications...

OSGi Application
Approaches





OSGi Application Approaches
• When creating an OSGi-based

application there are two main orthogonal
issues to consider
– Service model vs. extension model
– Bundled application vs. hosted framework

• The first issue is related to choosing an
OSGi extensibility mechanism

• The second issue is more of an advanced
topic to be discussed later, but is related
to who is in control of whom

Service vs. Extender Models
• Two different approaches for adding

extensibility to an OSGi-based application
– The service-based approach uses the OSGi

service concept and the service registry as
the extensibility mechanism

– The extension-based approach uses the
OSGi installed bundle set as the extensibility
mechanism

• Advantages and disadvantages for each
• Can be used independently or together

Service-Based Approach

First, we will examine
the service-based approach

Service-Based Approach

Tracker

Frame

Service
registry

Core Shape
impl

Tracker

Frame

Service-Based Approach

Service
registry

Service
publication

Core Shape
impl

Tracker

Frame

Service-Based Approach

Service
registry

Service
event

Core Shape
impl

Tracker

Frame

Service-Based Approach

Service
registry

Service
request

Core Shape
impl

Tracker

Frame

Service-Based Approach

Service
registry

Service binding

Core Shape
impl

Tracker

Frame

Service-Based Approach

Service
registry

Core Shape
impl

Inject

Service Whiteboard Pattern
• Best practice

– Instead of having clients look up and use a
service interface, have clients register a
service interface to express their interest

– A component can then track the registered
service interfaces and call them when
appropriate

• Simple, more robust, leverages the OSGi
service model

• This is called the Whiteboard pattern
– It is an Inversion of Control pattern

Service-Based Paint Program
• SimpleShape service interface
public interface SimpleShape
{
 // A service property for the name of the shape.
 public static final String NAME_PROPERTY
 = "simple.shape.name";
 // A service property for the icon of the shape.
 public static final String ICON_PROPERTY
 = "simple.shape.icon";

 // Method to draw the shape of the service.
 public void draw(Graphics2D g2, Point p);
}

Service-Based Paint Program
• Shape service bundles have an activator

to register their service
– for example...

public class Activator implements BundleActivator
{
 public void start(BundleContext context)
 {
 Hashtable dict = new Hashtable();
 dict.put(SimpleShape.NAME_PROPERTY, "Circle");
 dict.put(SimpleShape.ICON_PROPERTY,
 new ImageIcon(
 this.getClass().getResource("circle.png")));
 m_context.registerService(
 SimpleShape.class.getName(), new Circle(), dict);
 }
 public void stop(BundleContext context) { ... }
}

Service-Based Shape Tracker
• Recall goal of the Shape Tracker

– Use IoC principles to inject shapes into
application

• Puts tracking logic in one place
• Isolates application from OSGi API

• Implemented as an OSGi Service Tracker
subclass
– Uses whiteboard pattern for services
– Listens for SimpleShape service events

• Resulting from service publications into OSGi
service registry

Extension-Based Approach

Now, we will examine
the extension-based approach

Extension-Based Approach

Installed
bundles

Tracker

Frame

Core

Extension-Based Approach

Installed
bundles Install

bundle.jar

Tracker

Frame

Core

Extension-Based Approach

Installed
bundles

Create
logical bundle

Tracker

Frame

Shape
impl

Core

Extension-Based Approach

Bundle
event

Tracker

Frame

Shape
impl

Core

Installed
bundles

Extension-Based Approach

Installed
bundles

Interrogate for metadata,
resources, classes, etc.Tracker

Frame

Shape
impl

Core

Extension-Based Approach

Installed
bundles

Tracker

Frame

Shape
impl

Core

Inject

Extension-Based Paint Program
• SimpleShape extension interface
public interface SimpleShape
{
 // A property for the name of the shape.
 public static final String NAME_PROPERTY
 = "Extension-Name";
 // A property for the icon of the shape.
 public static final String ICON_PROPERTY
 = "Extension-Icon";
 // A property for the class of the shape.
 public static final String CLASS_PROPERTY
 = "Extension-Class";

 // Method to draw the shape of the extension.
 public void draw(Graphics2D g2, Point p);
}

Extension-Based Paint Program
• Shape extension bundles have

extension-related metadata in their JAR
manifest
– for example...

...
Extension-Name: Circle
Extension-Icon: org/apache/felix/circle/circle.png
Extension-Class: org.apache.felix.circle.Circle
...

Extension-Based Shape Tracker
• Recall goal of the Shape Tracker

– Use Inversion of Control principles to inject
shapes into application

• Puts tracking logic in one place
• Isolates application from OSGi API

• Implemented as custom “bundle tracker”
– Uses pattern similar to whiteboard, but for

installed bundles instead of services
– Listens for bundle events

• Specifically, STARTED and STOPPED events
• Probes bundle manifests to see if bundles

provide shape extensions

Paint Program Implementations
• Both approaches implemented for

demonstration
• Bulk of application is the same

– The main difference is in the implementation
of the shaper trackers

• Shape implementations are the same
– The only difference is that service-based

shapes need activators to register their
associated services

• Could be eliminated using DS or iPOJO

Paint Program Implementations
• To be clear here, there is no magic

– You cannot make an application extensible if
it is not designed to be so

• Likewise, it cannot be extended in ways that it
does not expect

– However, it is possible to make expected extensions
further extensible (e.g., a plugin could have plugins)

– In this example, the core paint program was
designed for shape extensibility

• However, it does not dictate how this extensibility
is achieved

– Thus, we were able to use OSGi technology and two
different approaches to achieve it

Packaging the Paint Program
• Shape implementations and the core

application are packaged in a similar
fashion for both service and extension
approaches
– As a bundle JAR file with metadata

• Best practice
– Separate public API into separate packages
– Only export public API packages in your

metadata

Example Application
Demo









Advanced Issues

Bundled vs. Hosted
• Applications can leverage OSGi

functionality in two ways
– Bundled application

• Build entire application as a set of bundles that
will run on top of a framework instance

– Hosted framework
• Host a framework instance inside the application

and externally interact with bundles/services

Bundled vs. Hosted
• Building your application as a set of

bundles is the preferred approach
– Allows all parts of application to benefit from

OSGi modularity and dynamism
– Allows application to run on any framework
– However, it is not always possible to bundle

application, e.g., legacy situations

• Hosted framework approach allows
piecemeal OSGi adoption
– Will likely tie application to a framework

implementation

Hosted Framework
• More complicated due to external/internal

gap between application and framework
– e.g., unlike bundles, the host application

does not have a bundle context by which it
can access framework services

• Required host/framework interactions
– Accessing framework functionality
– Providing services to bundles
– Using services from bundles

Hosted Framework
• Felix tries to simplify hosted framework

scenarios
– All configuration data is passed into

framework constructor
– Felix framework implements Bundle

interface and acts as the “system bundle”
• Gives the host application an intuitive way to

access framework functionality

– Felix constructor also accepts “constructor
activators” to extend system bundle

– Felix tries to multiplex singleton resources to
allow for multiple framework instances

Hosted Framework

// Define configuration properties
Map configMap = new StringMap(false);
configMap.put(..., ...);
...
// Create application activators
List list = new ArrayList();
list.add(new Activator());

try {
 // Create a framework instance
 Felix felix = new Felix(configMap, list);
 // Start framework instance
 felix.start();
 ...
 // Stop framework instance
 felix.stop();
} catch (Exception ex) { ... }

Hosted Framework
• Providing a host application service
BundleContext bc = felix.getBundleContext();
bc.registerService(Service.class, svcObj, null);

Hosted Framework
• Providing a host application service

• Accessing internal bundle services

BundleContext bc = felix.getBundleContext();
bc.registerService(Service.class, svcObj, null);

BundleContext bc = felix.getBundleContext();
ServiceReference ref =
 bc.getServiceReference(Service.class);
Service svcObj = (Service) bc.getService(ref);

Hosted Framework
• Providing a host application service

• Accessing internal bundle services

• Better approach is to use a constructor
activator since it is integrated with system
bundle (i.e., framework) starting and
stopping

BundleContext bc = felix.getBundleContext();
bc.registerService(Service.class, svcObj, null);

BundleContext bc = felix.getBundleContext();
ServiceReference ref =
 bc.getServiceReference(Service.class);
Service svcObj = (Service) bc.getService(ref);

Hosted Framework
• Classes shared among host application

and bundles must be on the application
class path
– Disadvantage of hosted framework

approach, which limits dynamics
– Use of reflection by host to access bundle

services can eliminate this issue, but it is still
not an optimal solution

• In summary, better to completely bundle
your application if possible

Hosted Framework Paint Program

• This approach was also implemented for
the paint program
– For both approaches (i.e., service-based and

extender-based)

• Simply added a static main to the
activator of the main application bundle
– This means they can be used as either a

bundled application or a hosted framework

Custom Life Cycle Layer
• As mentioned previously, it is possible to

use the module layer without the service
layer
– Some projects have their own component

models with different life cycle and
interaction mechanisms

• The extension model can be used to
create custom life cycle and component
interaction mechanisms
– The Eclipse plugin model is actually an

example of this

Custom Life Cycle Layer
• OSGi framework still manages bundle

resolution
– Bundle activation becomes a no-op

• Special extension bundle must implement
custom life cycle layer
– Probes bundles to discover custom life cycle

interfaces/entry points
– Exposes how to initialize, start, stop, custom

components
– Injects custom bindings and/or container

context


Conclusion

Conclusion (1/2)
• Today's applications require high degrees

of modularity and dynamic extensibility
– Java provides infrastructure, but no direct

support

• OSGi technology addresses Java's
limitations in these areas
– Available today and growing in importance

• Developing OSGi-based applications is
straightforward and provides immediate
benefits

Conclusion (2/2)
• OSGi technology is flexible and can be

leveraged in different ways to meet your
requirements

• Apache Felix is ready when you are
– Stable and in regular use

• Paint Program application is available
– http://cwiki.apache.org/FELIX/apache-felix-

application-demonstration.html

Questions?Questions?

