
Java Modularity Support in OSGi R4

Richard S. Hall
ApacheCon (San Diego)

December 14th, 2005

Modularity
What is it?

What is Modularity?

“(Desirable) property of a system, such that
individual components can be examined, modified
and maintained independently of the remainder of
the system. Objective is that changes in one part of
a system should not lead to unexpected behavior in
other parts.”

 (www.maths.bath.ac.uk/~jap/MATH0015/glossary.html)

Different types of modularity
LogicalLogical

Useful during development to decompose and/or structure the
system

PhysicalPhysical
Useful after development to simplify deployment and
maintenance

Why Care About Modularity?

Simplifies the creation of large, complex systems
Improves robustness
Eases problem diagnosis
Enables splitting work among independent teams

Simplifies the deployment and maintenance of
systems
Simplifies aspects of extensible and dynamic
systems
Java needs improvement in this area

Java currently lags .NET in support for modularity
OSGi specification deals with many of these issues and
can fill that gap

Java Modularity
Standard Support & Limitations

Logical Modularity in Standard Java

Classes
Provide logical static scoping via access modifiers (i.e.,
public, protected, private)

Packages
Provide logical static scoping via “package privates”
Namespace mechanism, avoids name clashes

Class loaders
Enable run-time code loading
Provide logical dynamic scoping

Physical Modularity in Standard Java

Java class files
Java Archive (JAR) files

Provide form of physical modularity
May contain applications, extensions, or services
May declare dependencies
May contain package version and sealing information

Standard Java Modularity Limitations (1)

Limited scoping mechanisms
No module access modifier

Simplistic version handling
Class path is first version found
JAR files assume backwards compatibility at best

Implicit dependencies
Dependencies are implicit in class path ordering
JAR files add improvements for extensions, but cannot
control visibility

Split packages by default
Class path approach searches until if finds, which can
lead to shadowing or mixing of versions
JAR files can provide sealing

Standard Java Modularity Limitations (2)

Low-level support for dynamics
Class loaders are complicated to use

Unsophisticated consistency model
Cuts across previous issues, it is difficult to ensure class
space consistency

Missing module concept
Classes too fine grained, packages too simplistic, class
loaders too low level
JAR files are best candidates, but still inadequate
Modularity is a second-class concept as opposed to the
.NET platform

In .NET, Assembly usage is enforced with explicit versioning
rules and sharing occurs via the Global Assembly Cache

OSGi Overview
Dynamic Service Platform

OSGi Alliance

Formerly known as the Open Services Gateway
Initiative
Defined a framework for hosting dynamically
downloadable services
OSGi framework provides

Simple component model
Component life-cycle management
Service registry
Standard service definitions

Separation of specification and implementation

Home Services Gateway

Service providers
and administrators

Application
servers

Set-top box

Television

Refrigerator

Digital
camera

Washer
and dryer

Computer

Multi-client
access

OSGi Overview

Hardware

Driver Driver Driver

Operating System

Java

OSGi

Fr
am

ew
or

k

Bundle

Service Orientation

The OSGi framework promotes a service-oriented
interaction pattern

Publish Find

Interact

Service
Registry

Service
Provider

Service
Requester

Service
Description

OSGi Component Model

Simple component and packaging model
JAR files, called bundlesbundles, contain Java classes,
resources, and meta-data
Meta-data explicitly defines boundaries and
dependencies in terms of Java package imports/exports

Dependencies and associated consistency are automatically
managed

Defines a component life cycle
Explicitly considers dynamic scenarios
Interaction through service interfaces

Component Life Cycle

INSTALLED

RESOLVEDUNINSTALLED

STARTING STOPPING

ACTIVE

explicit

automatic

install

updateuninstall resolve

uninstall

start

stop

Bundle Dependency Resolution

The framework automatically resolves package
dependencies when a bundle is activated

Matches bundle’s imports to available exports
Ensures package version consistency

If a bundle cannot be successfully resolved, then it
cannot be activated/used

OSGi Component Model

A bundle represents a single component contained
in a JAR file

OSGi framework

existing
bundle

component

Provided/required services

Provided/required packages

OSGi Component Model

A bundle represents a single component contained
in a JAR file

OSGi framework

install
bundle.jar

existing
bundle

component

OSGi Component Model

A bundle represents a single component contained
in a JAR file

OSGi framework

start
bundle

activator

existing
bundle

component

OSGi Component Model

A bundle represents a single component contained
in a JAR file

OSGi framework

automatic package
dependency resolution existing

bundle
component

OSGi Component Model

A bundle represents a single component contained
in a JAR file

OSGi framework

existing
bundle

component

manual service
dependency resolution

OSGi R3 Bundle Manifest Example

Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet;
 specification-version=2.3
Export-Package:
 org.foo.service;
 specification-version=1.1

OSGi R3 Bundle Manifest Example

Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet;
 specification-version=2.3
Export-Package:
 org.foo.service;
 specification-version=1.1

Life cycle entry point

OSGi R3 Bundle Manifest Example

Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet;
 specification-version=2.3
Export-Package:
 org.foo.service;
 specification-version=1.1

Internal module class path

OSGi R3 Bundle Manifest Example

Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet;
 specification-version=2.3
Export-Package:
 org.foo.service;
 specification-version=1.1

Native code dependencies

OSGi R3 Bundle Manifest Example

Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet;
 specification-version=2.3
Export-Package:
 org.foo.service;
 specification-version=1.1

Package dependency

OSGi R3 Bundle Manifest Example

Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet;
 specification-version=2.3
Export-Package:
 org.foo.service;
 specification-version=1.1

Provided package

OSGi Applications

A collection of bundles that interact via service
interfaces

Bundles may be independently developed and deployed
Bundles and their associated services may appear or
disappear at any time

OSGi R3 Modularity
Improving Standard Java

Success as a Modularity Framework

OSGi framework is increasingly used as a
modularity mechanism for Java

Provides logical and physical system structuring
Has benefits for development and deployment

Provides sophisticated dynamic module life-cycle
management

Simplifies creation of dynamically extensible systems
Where system components can be added, removed, or rebound at run
time while the system as a whole continues to function

OSGi R3 Modularity (1)

Defines bundlebundle, logical and physical modularity unit
Explicit boundaries

External interface (i.e., exports)
Internal class path

Java code, resources, and native libraries

Explicit dependencies
Package dependencies (i.e., imports)

Explicit versioning
Package version, bundle version

Isolation via class loaders
Packaging format (bundle JAR file)

OSGi R3 Modularity (2)

Defines dynamic bundle life cycle
Possible to install, update, and uninstall code at run time
Automatic package dependency resolution
Replaces low-level class loaders

OSGi R3 Modularity Issues (1)

Package sharing is only global
Cannot have multiple shared versions

Simplistic versioning semantics
Always backwards compatible

Not intended for sharing implementation packages
Only for specification packages, which was why the
version model is simple

Provider selection is always anonymous
No way to influence selection

OSGi R3 Modularity Issues (2)

Simplistic consistency model
Consistency model based on single in-use version
No way to declare dependencies among packages

Coarse-grained package visibility rules
Classes in a package are either completely visible to
everyone or hidden

Module content is not extensible
All content of the logical module must be included in the
physical module

Package dependencies are not always appropriate
Package metadata is cumbersome in large, complex
systems, tightly coupled subsystems and in less
structured legacy systems

In Fairness

It is important to point out that the preceding slides
do not necessarily describe shortcomings of the
OSGi framework

It was not designed to be a modularity layer, so it makes
sense that it does not do it perfectly
It was used for a modularity layer by developers because
it was simple and filled a specific need

OSGi R4 Framework
Modularity Support for the Future

Modularity Requirements

Backwards compatible with OSGi R3
Defined in terms of Java packages

Well-defined concept in Java
Maps nicely to class loaders

Explicitly defined boundaries
Explicitly defined dependencies
Support for versioning and multi-versions
Flexible, must support

Small to large systems
Static to dynamic systems

Related Work

Module mechanisms
MJ: A Rational Module System for Java and its
Applications (J. Corwin et al – IBM)
Mechanisms for Secure Modular Programming in Java
(L. Bauer et al – Princeton University)
Units: Cool Modules for HOT Languages (M. Flatt and M.
Felleisen – Rice University)
Evolving Software with Extensible Modules (M. Zenger –
École Polytechnique Fédérale de Lausanne)

Component and extensible frameworks
EJB, Eclipse, NetBeans

Microsoft .NET
Assemblies and Global Assembly Cache

OSGi R4 Modularity (1)

Limitation: Limitation: Package sharing is only globalPackage sharing is only global

OSGi R4 Modularity (1)

Limitation: Limitation: Package sharing is only globalPackage sharing is only global
Multi-version support

Possible to have more than one version of a shared
package in memory at the same time
General change of philosophy to the prior OSGi
specifications
Has deep impact on service aspects as well as
modularity

For a given bundle, the service registry is implicitly partitioned
according to the package versions visible to it
Impact on services not explored further in this presentation

OSGi R4 Modularity (2)

Limitation: Simplistic versioning semanticsLimitation: Simplistic versioning semantics

OSGi R4 Modularity (2)

Limitation: Limitation: Simplistic versioning semanticsSimplistic versioning semantics
Import version ranges

Exporters still export a precise version, but importers
may specify an open or closed version range
Eliminates existing backwards compatibility assumption

OSGi R4 Modularity (2)

Limitation: Limitation: Simplistic versioning semanticsSimplistic versioning semantics
Import version ranges

Exporters still export a precise version, but importers
may specify an open or closed version range
Eliminates existing backwards compatibility assumption
Import-Package: foo; version=“[1.0.0,1.5.0)”

OSGi R4 Modularity (2)

Limitation: Limitation: Simplistic versioning semanticsSimplistic versioning semantics
Import version ranges

Exporters still export a precise version, but importers
may specify an open or closed version range
Eliminates existing backwards compatibility assumption

Limitation: Not intended for sharing implementation Limitation: Not intended for sharing implementation
packagespackages

Import-Package: foo; version=“[1.0.0,1.5.0)”

OSGi R4 Modularity (2)

Limitation: Limitation: Simplistic versioning semanticsSimplistic versioning semantics
Import version ranges

Exporters still export a precise version, but importers
may specify an open or closed version range
Eliminates existing backwards compatibility assumption

Limitation: Limitation: Not intended for sharing implementation Not intended for sharing implementation
packagespackages
Multi-version sharing and importing version ranges
make implementation package sharing possible

Import-Package: foo; version=“[1.0.0,1.5.0)”

OSGi R4 Modularity (3)

Limitation: Provider selection is always anonymousLimitation: Provider selection is always anonymous

OSGi R4 Modularity (3)

Limitation: Limitation: Provider selection is always anonymousProvider selection is always anonymous
Arbitrary export/import attributes

Exporters may attach arbitrary attributes to their exports,
importers can match against these arbitrary attributes

Exporters may declare attributes as mandatory
Mandatory attributes provide simple means to limit package visibility

Importers influence package selection using arbitrary
attribute matching

OSGi R4 Modularity (3)

Limitation: Limitation: Provider selection is always anonymousProvider selection is always anonymous
Arbitrary export/import attributes

Exporters may attach arbitrary attributes to their exports,
importers can match against these arbitrary attributes

Exporters may declare attributes as mandatory
Mandatory attributes provide simple means to limit package visibility

Importers influence package selection using arbitrary
attribute matching

Export-Package: foo;
 version=“1.0.0”;
 myattr=“myvalue”

Export-Package: foo;
 version=“1.0.0”

A
foo
(myattr=“myvalue”) Bfoo

OSGi R4 Modularity (3)

Limitation: Limitation: Provider selection is always anonymousProvider selection is always anonymous
Arbitrary export/import attributes

Exporters may attach arbitrary attributes to their exports,
importers can match against these arbitrary attributes

Exporters may declare attributes as mandatory
Mandatory attributes provide simple means to limit package visibility

Importers influence package selection using arbitrary
attribute matching

A
foo
(myattr=myvalue) BfooCfoo

Import-Package: foo;
 version=“1.0.0”;
 myattr=“myvalue”

OSGi R4 Modularity (3)

Limitation: Limitation: Provider selection is always anonymousProvider selection is always anonymous
Arbitrary export/import attributes

Exporters may attach arbitrary attributes to their exports,
importers can match against these arbitrary attributes

Exporters may declare attributes as mandatory
Mandatory attributes provide simple means to limit package visibility

Importers influence package selection using arbitrary
attribute matching

A
foo
(myattr=myvalue)

Import-Package: foo;
 version=“1.0.0”;
 myattr=“myvalue”

Cfoo Bfoo

OSGi R4 Modularity (4)

Limitation: Simplistic consistency modelLimitation: Simplistic consistency model

OSGi R4 Modularity (4)

Limitation: Limitation: Simplistic consistency modelSimplistic consistency model
Sophisticated package consistency model

Exporters may declare package “uses” dependencies
Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

OSGi R4 Modularity (4)

Limitation: Limitation: Simplistic consistency modelSimplistic consistency model
Sophisticated package consistency model

Exporters may declare package “uses” dependencies
Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo

Export-Package: foo Export-Package: foo

OSGi R4 Modularity (4)

Limitation: Limitation: Simplistic consistency modelSimplistic consistency model
Sophisticated package consistency model

Exporters may declare package “uses” dependencies
Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo C foobar

Import-Package: foo, bar

OSGi R4 Modularity (4)

Limitation: Limitation: Simplistic consistency modelSimplistic consistency model
Sophisticated package consistency model

Exporters may declare package “uses” dependencies
Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo B barfoo

Import-Package: foo
Export-Package: bar;
 uses:=“foo”

C foobar

OSGi R4 Modularity (4)

Limitation: Limitation: Simplistic consistency modelSimplistic consistency model
Sophisticated package consistency model

Exporters may declare package “uses” dependencies
Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo C foobarB barfoo

Import-Package: foo
Export-Package: bar;
 uses:=“foo”

OSGi R4 Modularity (4)

Limitation: Limitation: Simplistic consistency modelSimplistic consistency model
Sophisticated package consistency model

Exporters may declare package “uses” dependencies
Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo C foobarB barfoo

Import-Package: foo
Export-Package: bar;
 uses:=“foo”

OSGi R4 Modularity (4)

Limitation: Limitation: Simplistic consistency modelSimplistic consistency model
Sophisticated package consistency model

Exporters may declare package “uses” dependencies
Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo C foobarB barfoo

Import-Package: foo
Export-Package: bar;
 uses:=“foo”

OSGi R4 Modularity (4)

Limitation: Limitation: Simplistic consistency modelSimplistic consistency model
Sophisticated package consistency model

Exporters may declare package “uses” dependencies
Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo C foobarB barfoo

Import-Package: foo
Export-Package: bar;
 uses:=“foo”

OSGi R4 Modularity (5)

Limitation: Coarse-grained package visibility rulesLimitation: Coarse-grained package visibility rules

OSGi R4 Modularity (5)

Limitation: Limitation: Coarse-grained package visibility rulesCoarse-grained package visibility rules
Package filtering

Exporters may declare that certain classes are
included/excluded from the exported package

OSGi R4 Modularity (5)

Limitation: Limitation: Coarse-grained package visibility rulesCoarse-grained package visibility rules
Package filtering

Exporters may declare that certain classes are
included/excluded from the exported package

foo
friend=“yes”
(include:=”*”)

foo
(exclude:=”*Impl”)

A

Export-Package: foo;
 exclude:=“*Impl”,
 foo; friend=“yes”;
 mandatory:=“friend”

OSGi R4 Modularity (5)

Limitation: Limitation: Coarse-grained package visibility rulesCoarse-grained package visibility rules
Package filtering

Exporters may declare that certain classes are
included/excluded from the exported package

foo
(exclude:=“*Impl”)

A CfooB foo

Import-Package: foo;
 friend=“yes”

Import-Package: foo

foo
friend=“yes”
(include:=”*”)

OSGi R4 Modularity (5)

Limitation: Limitation: Coarse-grained package visibility rulesCoarse-grained package visibility rules
Package filtering

Exporters may declare that certain classes are
included/excluded from the exported package

A

Import-Package: foo

CfooB foo

foo
friend=“yes”
(include:=”*”)

foo
(exclude:=”*Impl”)

Import-Package: foo;
 friend=“yes”

OSGi R4 Modularity (5)

Limitation: Limitation: Coarse-grained package visibility rulesCoarse-grained package visibility rules
Package filtering

Exporters may declare that certain classes are
included/excluded from the exported package

A

Import-Package: foo

CfooB foo

foo
friend=“yes”
(include:=”*”)

foo
(exclude:=”*Impl”)

Import-Package: foo;
 friend=“yes”

OSGi R4 Modularity (6)

Limitation: Module content is not extensibleLimitation: Module content is not extensible

OSGi R4 Modularity (6)

Limitation: Limitation: Module content is not extensibleModule content is not extensible
Bundle fragments

A special bundle that attaches to a host bundle and uses
the same class loader

Conceptually becomes part of the host bundle, allowing a logical
bundle to be delivered in multiple physical bundles

OSGi R4 Modularity (6)

Limitation: Limitation: Module content is not extensibleModule content is not extensible
Bundle fragments

A special bundle that attaches to a host bundle and uses
the same class loader

Conceptually becomes part of the host bundle

fooAbaz barBwoz

Fragment-Host: B
Export-Package: foo
Import-Package: baz

Bundle-SymbolicName: B
Export-Package: bar
Import-Package: woz

OSGi R4 Modularity (6)

Limitation: Limitation: Module content is not extensibleModule content is not extensible
Bundle fragments

A special bundle that attaches to a host bundle and uses
the same class loader

Conceptually becomes part of the host bundle

fooAbaz barBwoz

OSGi R4 Modularity (6)

Limitation: Limitation: Module content is not extensibleModule content is not extensible
Bundle fragments

A special bundle that attaches to a host bundle and uses
the same class loader

Conceptually becomes part of the host bundle

barBwoz
fooAbaz

OSGi R4 Modularity (6)

Limitation: Limitation: Module content is not extensibleModule content is not extensible
Bundle fragments

A special bundle that attaches to a host bundle and uses
the same class loader

Conceptually becomes part of the host bundle

barBwoz
fooAbaz

OSGi R4 Modularity (6)

Limitation: Limitation: Module content is not extensibleModule content is not extensible
Bundle fragments

A special bundle that attaches to a host bundle and uses
the same class loader

Conceptually becomes part of the host bundle

bar

foo

B
fooAbaz

woz

baz

OSGi R4 Modularity (7)

Limitation: Package dependencies are not always Limitation: Package dependencies are not always
appropriateappropriate

OSGi R4 Modularity (7)

Limitation: Limitation: Package dependencies are not always Package dependencies are not always
appropriateappropriate
Bundle dependencies

Import everything that another, specific bundle exports
Allows re-exporting

OSGi R4 Modularity (7)

Limitation: Limitation: Package dependencies are not always Package dependencies are not always
appropriateappropriate
Bundle dependencies

Import everything that another, specific bundle exports
Allows re-exporting

B barfoo

bar

A

Require-Bundle: A
Export-Package: bar

Bundle-SymbolicName: A
Export-Package: bar, foo

OSGi R4 Modularity (7)

Limitation: Limitation: Package dependencies are not always Package dependencies are not always
appropriateappropriate
Bundle dependencies

Import everything that another, specific bundle exports
Allows re-exporting

foo

bar

A

Require-Bundle: A
Export-Package: bar

Bundle-SymbolicName: A
Export-Package: bar, foo

B bar

OSGi R4 Run-time Class Search Order

found?

delegate to
exporter’s class loader

belongs to an
imported package?

no

no

found?

delegate to exporters’
class loaders

found?

search local
class path

no
found?

lookup
failed

lookup
succeeded

no

no

yes

yes

yes

yes

load class
or find resource

yes

delegate to
parent class loader

belongs to a package
exported by a

required bundle?

yes

nobelongs to a java.*
package?

no

yes

OSGi R4 Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet; version=“[2.0.0,2.4.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

OSGi R4 Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet; version=“[2.0.0,2.4.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Indicates R4
semantics and syntax

OSGi R4 Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet; version=“[2.0.0,2.4.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Indicates R4
semantics and syntax

Globally unique ID

OSGi R4 Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet; version=“[2.0.0,2.4.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Life cycle entry point

OSGi R4 Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet; version=“[2.0.0,2.4.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Internal module class path

OSGi R4 Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet; version=“[2.0.0,2.4.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Native code dependencies

OSGi R4 Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet; version=“[2.0.0,2.4.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Optional dependency on a
package version range

OSGi R4 Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet; version=“[2.0.0,2.4.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Provided package with
arbitrary attribute and

excluded classes

OSGi R4 Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 javax.servlet; version=“[2.0.0,2.4.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Provided package with
dependency on exported

package

Challenges

Manage the complexity
Maintain conceptual integrity
Keep the simple cases simple
Complexity should only be visible when it is required
Avoid bloat to support small devices

Challenges

Manage the complexity
Maintain conceptual integrity
Keep the simple cases simple
Complexity should only be visible when it is required
Avoid bloat to support small devices

The “good news” is that these changes generallyThe “good news” is that these changes generally
only affect the dependency resolving algorithmonly affect the dependency resolving algorithm

Conclusions

Java needs improved modularity support
We need to stop re-inventing the wheel
Improve application structure
Simplify deployment and management especially in
technological areas where deployment is inherent

e.g., component orientation, extensible systems, and service
orientation (to some degree)

OSGi R1/R2/R3 were all steps in the right direction
OSGi R4 goes even further in providing
sophisticated Java modularity

OSGi technology is cited in JSR 277, an initiative by Sun
to define a module system for Java, whose expert group
includes OSGi members

Questions?

