
OSGi R4 Service Platform:
Java Modularity and Beyond

Dr. Richard S. Hall

akquinet fws, Berlin
March 21st, 2007

Agenda

OSGi R4 Service Platform Overview
OSGi as a Java Modularity Layer

Majority of the presentation

OSGi as a Service-Oriented Application Framework
Apache Felix Overview
Conclusion

OSGi Service Platform
Overview

OSGi Alliance

Formerly known as the Open Services Gateway
Initiative
Industry consortium
Defines OSGi Service Platform

Framework specification for hosting dynamically
downloadable services
Standard service specifications

Several expert groups define the specifications
Core Platform Expert Group (CPEG) – framework
Mobile Expert Group (MEG) – mobile telephony
Vehicle Expert Group (VEG) – automobile
Enterprise Expert Group (EEG) – enterprise issues

Original Home Services Gateway Vision

Service providers
and administrators

Application
servers

Set-top box

Television

Refrigerator

Digital
camera

Washer
and dryer

Computer

Multi-client
access

OSGi Architectural Overview

Hardware

Driver Driver Driver

Operating System

Java

OSGi

Fr
am

ew
or

k

Bundle

OSGi Framework (1/2)

Component-oriented framework
BundlesBundles (i.e., modules/components)
Package sharing and version management
Life-cycle management and notification

Service-oriented architecture
Publish/find/bind intra-VM service model

Open remote management architecture
No prescribed policy or protocol

OSGi Framework (2/2)

Runs multiple applications and services
Single VM instance
Separate class loader per bundle

Class loader graph
Independent namespaces
Class sharing at the Java package level

Java Permissions to secure framework
Explicitly considers dynamic scenarios

Run-time install, update, and uninstall of bundles

OSGi Framework Layering

CDC
CDC

Execution
Environment

L0 -
•OSGi Minimum Execution Environment
•CDC/Foundation
•JavaSE

MODULE
L1 - Creates the concept of modules
(aka. bundles) that use classes from
each other in a controlled way
according to system and bundle
constraints

LIFECYCLE
L2 - Manages the lifecycle of bundle in
a bundle repository without requiring
the VM be restarted

SERVICE MODEL L3 – Provides a publish/find/bind
service model to decouple bundles

OSGi Momentum

OSGi technology has moved beyond original target
domain
Initial success story was Eclipse RCP (three years
ago)
More recent success stories in enterprise scenarios

IBM
Spring
BEA
Oracle
JBoss
SAP (perhaps?)

OSGi as a Java
Modularity Layer

Standard Java Modularity Limitations (1/2)

Limited scoping mechanisms
No module access modifier

Simplistic version handling
Class path is first version found
JAR files assume backwards compatibility at best

Implicit dependencies
Dependencies are implicit in class path ordering
JAR files add improvements for extensions, but cannot
control visibility

Split packages by default
Class path approach searches until if finds, which can
lead to shadowing or mixing of versions
JAR files can provide sealing

Standard Java Modularity Limitations (2/2)

Low-level support for dynamics
Class loaders are complicated to use

Unsophisticated consistency model
Cuts across previous issues, it is difficult to ensure class
space consistency

Missing module concept
Classes are too fine grained, packages are too simplistic,
class loaders are too low level
JAR file is best candidates, but still inadequate
Modularity is a second-class concept

OSGi Framework Modularity Support

Resolves nearly all deficiencies associated with
standard Java support for modularity

The OSGi bundle defines an explicit boundary for a
module
Bundle metadata explicitly declares versioned
dependencies on other code
Framework automatically manages bundle code
dependencies
Framework enforces sophisticated consistency rules for
class loading within and among bundles

Bundle Life Cycle

INSTALLED

RESOLVEDUNINSTALLED

STARTING STOPPING

ACTIVE

explicit

automatic

install

updateuninstall resolve

uninstall

start

stop

Bundle Life Cycle

UNINSTALLED

STARTING STOPPING

ACTIVE

explicit

automatic

updateuninstall

uninstall

start

stop

INSTALLED

install

resolve

RESOLVED

Resolving a bundle, resolves
its code dependencies

Bundle Dependency Resolution

The framework automatically resolves dependencies
before a bundle is used

Matches bundle’s requirements to providers of those
requirements

Package imports/exports
Explicit bundle dependencies
Bundle fragment dependencies

Ensures consistency of requirements with respect to
versions and other constraints

If a bundle cannot be successfully resolved, then it
cannot be used

Dependency Resolution Illustration

A bundle represents a module contained in a JAR
file

OSGi framework

Provided package

existing
bundle

Dependency Resolution Illustration

A bundle represents a module contained in a JAR
file

OSGi framework

install
bundle.jar

existing
bundle

Dependency Resolution Illustration

A bundle represents a module contained in a JAR
file

OSGi framework

resolve
bundle

existing
bundle

Dependency Resolution Illustration

A bundle represents a module contained in a JAR
file

OSGi framework

automatic package
dependency resolution existing

bundle

OSGi R4 Modularity Details (1/7)

Multi-version support (i.e., side-by-side versions)
Possible to have more than one version of a shared
package in memory at the same time
Allows multiple applications to run in the same VM or a
subcomponents of a single application to depend on
different versions of the same libraries
Has impacts on the service-oriented aspects of the OSGi
framework

For a given bundle, the service registry is implicitly partitioned
according to the package versions visible to it

OSGi R4 Modularity Details (2/7)

Explicit code boundaries and dependencies
Explicitly expose packages from a bundle (i.e., export)

Exporters export precise package versions

Explicitly declare dependencies on external packages
(i.e., import)

Importers may specify an open or closed version range

OSGi R4 Modularity Details (2/7)

Explicit code boundaries and dependencies
Explicitly expose packages from a bundle (i.e., export)

Exporters export precise package versions

Explicitly declare dependencies on external packages
(i.e., import)

Importers may specify an open or closed version range

Export-Package: bar; version=“1.0.0”
Import-Package: foo; version=“[1.0.0,1.5.0)”

OSGi R4 Modularity Details (2/7)

Explicit code boundaries and dependencies
Explicitly expose packages from a bundle (i.e., export)

Exporters export precise package versions

Explicitly declare dependencies on external packages
(i.e., import)

Importers may specify an open or closed version range

Support for various sharing policies, e.g,
Implementation package with limited backwards
compatibility
Specification packages with defined backwards
compatibility

Export-Package: bar; version=“1.0.0”
Import-Package: foo; version=“[1.0.0,1.5.0)”

OSGi R4 Modularity Details (3/7)

Arbitrary export/import attributes for more control
Exporters may attach arbitrary attributes to their exports,
importers can match against these arbitrary attributes

Exporters may declare attributes as mandatory
Mandatory attributes provide simple means to limit package visibility

Importers influence package selection using arbitrary
attribute matching

OSGi R4 Modularity Details (3/7)

Arbitrary export/import attributes for more control
Exporters may attach arbitrary attributes to their exports,
importers can match against these arbitrary attributes

Exporters may declare attributes as mandatory
Mandatory attributes provide simple means to limit package visibility

Importers influence package selection using arbitrary
attribute matching

Export-Package: foo;
 version=“1.0.0”;
 myattr=“myvalue”

Export-Package: foo;
 version=“1.0.0”

A
foo
(myattr=“myvalue”) Bfoo

OSGi R4 Modularity Details (3/7)

Arbitrary export/import attributes for more control
Exporters may attach arbitrary attributes to their exports,
importers can match against these arbitrary attributes

Exporters may declare attributes as mandatory
Mandatory attributes provide simple means to limit package visibility

Importers influence package selection using arbitrary
attribute matching

A
foo
(myattr=“myvalue”) BfooCfoo

Import-Package: foo;
 version=“1.0.0”;
 myattr=“myvalue”

OSGi R4 Modularity Details (3/7)

Arbitrary export/import attributes for more control
Exporters may attach arbitrary attributes to their exports,
importers can match against these arbitrary attributes

Exporters may declare attributes as mandatory
Mandatory attributes provide simple means to limit package visibility

Importers influence package selection using arbitrary
attribute matching

A
foo
(myattr=“myvalue”)

Import-Package: foo;
 version=“1.0.0”;
 myattr=“myvalue”

Cfoo Bfoo

OSGi R4 Modularity Details (4/7)

Sophisticated class space consistency model
In addition to dependency resolution
Exporters may declare package “uses” dependencies

Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

OSGi R4 Modularity Details (4/7)

Sophisticated class space consistency model
In addition to dependency resolution
Exporters may declare package “uses” dependencies

Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo

Export-Package: foo Export-Package: foo

OSGi R4 Modularity Details (4/7)

Sophisticated class space consistency model
In addition to dependency resolution
Exporters may declare package “uses” dependencies

Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo C foobar

Import-Package: foo, bar

OSGi R4 Modularity Details (4/7)

Sophisticated class space consistency model
In addition to dependency resolution
Exporters may declare package “uses” dependencies

Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo B barfoo

Import-Package: foo
Export-Package: bar;
 uses:=“foo”

C foobar

OSGi R4 Modularity Details (4/7)

Sophisticated class space consistency model
In addition to dependency resolution
Exporters may declare package “uses” dependencies

Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo C foobarB barfoo

Import-Package: foo
Export-Package: bar;
 uses:=“foo”

OSGi R4 Modularity Details (4/7)

Sophisticated class space consistency model
In addition to dependency resolution
Exporters may declare package “uses” dependencies

Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo C foobarB barfoo

Import-Package: foo
Export-Package: bar;
 uses:=“foo”

OSGi R4 Modularity Details (4/7)

Sophisticated class space consistency model
In addition to dependency resolution
Exporters may declare package “uses” dependencies

Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo C foobarB barfoo

Import-Package: foo
Export-Package: bar;
 uses:=“foo”

OSGi R4 Modularity Details (4/7)

Sophisticated class space consistency model
In addition to dependency resolution
Exporters may declare package “uses” dependencies

Exported packages express dependencies on imported or other
exported packages, which constrain the resolve process

The framework must ensure that importers do not violate
constraints implied by “uses” dependencies

DfooA foo C foobarB barfoo

Import-Package: foo
Export-Package: bar;
 uses:=“foo”

OSGi R4 Modularity Details (5/7)

Package filtering for fine-grained class visibility
Exporters may declare that certain classes are
included/excluded from the exported package

OSGi R4 Modularity Details (5/7)

Package filtering for fine-grained class visibility
Exporters may declare that certain classes are
included/excluded from the exported package

foo
friend=“yes”
(include:=”*”)

foo
(exclude:=”*Impl”)

A

Export-Package: foo;
 exclude:=“*Impl”,
 foo; friend=“yes”;
 mandatory:=“friend”

OSGi R4 Modularity Details (5/7)

Package filtering for fine-grained class visibility
Exporters may declare that certain classes are
included/excluded from the exported package

foo
(exclude:=“*Impl”)

A CfooB foo

Import-Package: foo;
 friend=“yes”

Import-Package: foo

foo
friend=“yes”
(include:=”*”)

OSGi R4 Modularity Details (5/7)

Package filtering for fine-grained class visibility
Exporters may declare that certain classes are
included/excluded from the exported package

A

Import-Package: foo

CfooB foo

foo
friend=“yes”
(include:=”*”)

foo
(exclude:=”*Impl”)

Import-Package: foo;
 friend=“yes”

OSGi R4 Modularity Details (5/7)

Package filtering for fine-grained class visibility
Exporters may declare that certain classes are
included/excluded from the exported package

A

Import-Package: foo

CfooB foo

foo
friend=“yes”
(include:=”*”)

foo
(exclude:=”*Impl”)

Import-Package: foo;
 friend=“yes”

OSGi R4 Modularity Details (6/7)

Bundle fragments
Allows bundle content to be extended
A special bundle that attaches to a host bundle and uses
the same class loader

Conceptually becomes part of the host bundle, allowing a logical
bundle to be delivered in multiple physical bundles

OSGi R4 Modularity Details (6/7)

Bundle fragments
Allows bundle content to be extended
A special bundle that attaches to a host bundle and uses
the same class loader

Conceptually becomes part of the host bundle, allowing a logical
bundle to be delivered in multiple physical bundles

fooAbaz barBwoz

Fragment-Host: B
Export-Package: foo
Import-Package: baz

Bundle-SymbolicName: B
Export-Package: bar
Import-Package: woz

OSGi R4 Modularity Details (6/7)

Bundle fragments
Allows bundle content to be extended
A special bundle that attaches to a host bundle and uses
the same class loader

Conceptually becomes part of the host bundle, allowing a logical
bundle to be delivered in multiple physical bundles

fooAbaz barBwoz

OSGi R4 Modularity Details (6/7)

Bundle fragments
Allows bundle content to be extended
A special bundle that attaches to a host bundle and uses
the same class loader

Conceptually becomes part of the host bundle, allowing a logical
bundle to be delivered in multiple physical bundles

barBwoz
fooAbaz

OSGi R4 Modularity Details (6/7)

Bundle fragments
Allows bundle content to be extended
A special bundle that attaches to a host bundle and uses
the same class loader

Conceptually becomes part of the host bundle, allowing a logical
bundle to be delivered in multiple physical bundles

barBwoz
fooAbaz

OSGi R4 Modularity Details (6/7)

Bundle fragments
Allows bundle content to be extended
A special bundle that attaches to a host bundle and uses
the same class loader

Conceptually becomes part of the host bundle, allowing a logical
bundle to be delivered in multiple physical bundles

bar

foo

B
fooAbaz

woz

baz

OSGi R4 Modularity Details (7/7)

Bundle dependencies
Allows for tight coupling of bundles when required
Import everything that another, specific bundle exports
Allows re-exporting and split packages

OSGi R4 Modularity Details (7/7)

Bundle dependencies
Allows for tight coupling of bundles when required
Import everything that another, specific bundle exports
Allows re-exporting and split packages

B barfoo

bar

A

Require-Bundle: A
Export-Package: bar

Bundle-SymbolicName: A
Export-Package: bar, foo

OSGi R4 Modularity Details (7/7)

Bundle dependencies
Allows for tight coupling of bundles when required
Import everything that another, specific bundle exports
Allows re-exporting and split packages

foo

bar

A

Require-Bundle: A
Export-Package: bar

Bundle-SymbolicName: A
Export-Package: bar, foo

B bar

OSGi R4 Run-time Class Search Order

found?

delegate to
exporter’s class loader

belongs to an
imported package?

no

no

found?

delegate to exporters’
class loaders

found?

search local
class path

no
found?

lookup
failed

lookup
succeeded

no

no

yes

yes

yes

yes

load class
or find resource

yes

delegate to
parent class loader

belongs to a package
exported by a

required bundle?

yes

nobelongs to a java.*
package?

no

yes

OSGi Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 osgi.service.log; version=“[1.0.0,1.1.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

OSGi Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 osgi.service.log; version=“[1.0.0,1.1.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Indicates R4
semantics and syntax

OSGi Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 osgi.service.log; version=“[1.0.0,1.1.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Indicates R4
semantics and syntaxGlobally unique ID

OSGi Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 osgi.service.log; version=“[1.0.0,1.1.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Life cycle entry point

OSGi Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 osgi.service.log; version=“[1.0.0,1.1.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Internal bundle class path

OSGi Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 osgi.service.log; version=“[1.0.0,1.1.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Native code dependencies

OSGi Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 osgi.service.log; version=“[1.0.0,1.1.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Optional dependency on a
package version range

OSGi Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 osgi.service.log; version=“[1.0.0,1.1.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Provided package with
arbitrary attribute and

excluded classes

OSGi Bundle Manifest Example

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.simplebundle
Bundle-Version: 1.0.0
Bundle-Activator: org.foo.Activator
Bundle-ClassPath: .,org/foo/embedded.jar
Bundle-NativeCode:
 libfoo.so; osname=Linux; processor=x86,
 foo.dll; osname=Windows 98; processor=x86
Import-Package:
 osgi.service.log; version=“[1.0.0,1.1.0)”;
 resolution:=“optional”
Export-Package:
 org.foo.service; version=1.1;
 vendor=“org.foo”; exclude:=“*Impl”,
 org.foo.service.bar; version=1.1;
 uses:=“org.foo.service”

Provided package with
dependency on exported

package

OSGi Modularity Best Practices

Partition public and non-public classes into separate
packages

Packages with public classes can be exported
Non-public classes are not exported

Use package imports rather than bundle
dependencies

Allows substitutability of package providers

Limit fragment use
Avoid use of dynamic imports

Special type of optional import that is resolved at run
time, instead of resolve time
Intended for Class.forName() or SPI-like use cases

OSGi Modularity Tool Support

Leveraging OSGi modularity
Text editor + jar

Just add metadata to your JAR file's manifest

Eclipse
Plug-in Development Environment directly supports bundles

Bundle packaging tools
BND from Peter Kriens
Apache Felix maven-bundle-plugin based on BND

OSGi as a Service-
Oriented Application

Framework

Service Orientation

The OSGi framework promotes a service-oriented
interaction pattern among bundles

Publish Find

Interact

Service
Registry

Service
Provider

Service
Requester

Service
Description

OSGi Applications

A collection of bundles that interact via service
interfaces

Bundles may be independently developed and deployed
Bundles and their associated services may appear or
disappear at any time

Resulting application follows a Service-Oriented
Component Model approach

Combines ideas from both component and service
orientation

Bundle Life Cycle (Revisited)

INSTALLED

RESOLVEDUNINSTALLED

STARTING STOPPING

ACTIVE

explicit

automatic

install

updateuninstall resolve

uninstall

start

stop

Bundle Life Cycle (Revisited)

UNINSTALLED

explicit

automatic

updateuninstall

uninstall

INSTALLED

install

resolve

STARTING STOPPING

ACTIVE

start

stop

RESOLVED

Activating a bundle allows it
to provide and use services

Service Provision Illustration

Conceptually, a bundle contains a single component
which is the bundle activator

OSGi framework

Provided service

Provided package

existing
bundle

component

Service Provision Illustration

Conceptually, a bundle contains a single component
which is the bundle activator

OSGi framework

install
bundle.jar

existing
bundle

component

Service Provision Illustration

Conceptually, a bundle contains a single component
which is the bundle activator

OSGi framework

activate
bundle

existing
bundle

component

Service Provision Illustration

Conceptually, a bundle contains a single component
which is the bundle activator

OSGi framework

automatic package
dependency resolution existing

bundle
component

Service Provision Illustration

Conceptually, a bundle contains a single component
which is the bundle activator

OSGi framework

manual service
dependency resolution

existing
bundle

component

Service-Oriented Application Advantages

Lightweight services
Direct method invocation

Structured code
Promotes separation of interface from implementation
Enables reuse, substitutability, loose coupling, and late
binding

Dynamics
Loose coupling and late binding make it possible to
support run-time management of modules

Application's architectural configuration is defined by
the set of deployed bundles

Just deploy the bundles that you need

Service-Oriented Application Issues

Complicated
Requires a different way of thinking

Things you need might not be there or go away at any moment

Must manually resolve service dependencies
Must track and manage service dynamics

There is help
Service Tracker

Still somewhat of a manual approach
Old-fashioned approach

Declarative Services (DS), Spring-OSGi, iPOJO
Sophisticated service-oriented component frameworks
Automated dependency injection
More modern, POJO-oriented approaches

Service-Oriented Application Illustration

OSGi framework

install
bundle.jar

existing
bundle

component

Bundles are deployment units for component types
that can be automatically instantiated, resolved, and
managed

Service-Oriented Application Illustration

activate
bundle

OSGi framework

existing
bundle

component

Bundles are deployment units for component types
that can be automatically instantiated, resolved, and
managed

Service-Oriented Application Illustration

OSGi framework

automatic package
dependency resolution

existing
bundle

component

Bundles are deployment units for component types
that can be automatically instantiated, resolved, and
managed

Service-Oriented Application Illustration

OSGi framework

instantiate
components

existing
bundle

component

Bundles are deployment units for component types
that can be automatically instantiated, resolved, and
managed

Service-Oriented Application Illustration

OSGi framework

automatic service
dependency resolution
and maintenance with
DS, Spring-OSGi, or

iPOJO

existing
bundle

component

Bundles are deployment units for component types
that can be automatically instantiated, resolved, and
managed

Declarative Services Example (1/2)

package foo.impl;
public class HelloImpl implements foo.HelloService {
 LogService log;
 protected void setLog(LogService l) {
 log = l;
 }
 protected void unsetLog(LogService l) {
 log = null;
 }
 public void sayHello(String s) {
 log.log(LogService.LOG_INFO, “Hello ” + s);
 }
}

Declarative Services provides a minimally intrusive
way to

Define components that provide and use services
Automate dependency resolution and maintenance

Declarative Services Example (2/2)

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.hello">
 <implementation class="foo.impl.HelloImpl"/>
 <service>
 <provide interface="foo.HelloService"/>
 </service>
 <reference name="LOG"
 interface="org.osgi.service.log.LogService"
 bind="setLog"
 unbind="unsetLog"
 />
</component>

Declarative Services component metadata

iPOJO Example (1/2)

package foo.impl;
public class HelloImpl implements foo.HelloService {
 LogService log;
 public void sayHello(String s) {
 log.log(LogService.LOG_INFO, “Hello ” + s);
 }
}

iPOJO provides an extensible POJO-based way to
Define components that provide and use services
Automate dependency resolution and maintenance
Define composite components with sub-service visibility
scoping

iPOJO Example (2/2)

<?xml version="1.0" encoding="UTF-8"?>
<component className="foo.impl.HelloImpl">
 <provides/>
 <dependency field="log"/>
</component>
<instance component="foo.impl.HelloImpl"
 name="example.hello"/>

iPOJO component metadata

OSGi Application Development Approach

Modules vs. “Modules + Services”
It is possible to use only the modularity aspects of the
OSGi framework and not use services as a way of
structuring your application
May be necessary if another component model is already
in use or application interaction is structured differently

“On Top” vs. Embedded
An application can be a set of collaborating bundles that
can be deployed on any framework or an application can
embed an instance of the framework to create an
extensibility/plugin mechanism, which will often tie the
application to a specific framework implementation

Apache Felix Overview

Apache Felix (1/4)

Currently in the Apache Incubator
Graduation to top-level project anticipated this month

Apache licensed open source implementation of
OSGi R4

Framework (in progress, stable and functional)
Version 0.8.0 currently available

Services (in progress, stable and functional)
Package Admin, Start Level, URL Handlers, Declarative
Services, UPnP Device, HTTP Service, Configuration Admin,
Preferences, User Admin, Wire Admin, Event Admin, Meta
Type, and Log
OSGi Bundle Repository (OBR), Dependency Manager, Service
Binder, Shell (TUI and GUI), iPOJO, Mangen

Apache Felix (2/4)

Felix community is growing strong
20 committers
Code granted and contributed from several organizations
and communities

Grenoble University, ObjectWeb, CNR-ISTI, Ascert, Luminis,
Apache Directory, INSA, DIT UPM, Day Management AG
Several community member contributions

Apache projects interested in Felix and/or OSGi
Directory, Cocoon, JAMES, Jackrabbit, Harmony, Derby

Apache Felix (3/4)

Felix bundle developer support
Apache Maven2 bundle plugin

Merges OSGi bundle manifest with Maven2 POM file
Automatically generates metadata, such as Bundle-ClassPath,
Import-Package, and Export-Package

Greatly simplifies bundle development by eliminating error-prone
manual header creation process

Automatically creates final bundle JAR file
Also supports embed required packages, instead of importing them

Felix Commons
Effort to bundle-ize common open source libraries

Recently started

Includes 13 bundles, such as antlr, cglib, commons-
collections, etc.
All community donated wrappers

Apache Felix (4/4)

Roadmap
Incubator graduation hopefully this month
Version 1.0.0 release shortly after graduation

To include major portions of R4 specification functionality
Largely only missing support for fragments

Also focusing on security aspects

Conclusions

Conclusions

Java needs improved modularity support
The OSGi R4 framework provides it now

Importance and relevance is growing
Industry support in mobile and enterprise scenarios

Several related JCP JSRs
JSR-291 introduces the OSGi framework into JCP

Will result in OSGi R4.1

JSR-294 to introduce VM modularity support in Java 7
Super packages and separate compilation

JSR-277 to introduce somewhat overlapping JAR file-
based modularity in Java 7

Overlaps in packaging and deployment
Differs in dynamics/life cycle, support for existing JREs

Questions?

