
Easy, Scalable, Fault-tolerant
Stream Processing with
Structured Streaming

Big Data Streaming Meetup
Beijing, 2018

Tathagata “TD” Das
@tathadas

About Me

Started Spark Streaming project in AMPLab, UC Berkeley

Currently focused on building Structured Streaming

Member of the Apache Spark PMC

Software Engineer at Databricks

building robust
stream processing

apps is hard

Complexities in stream processing

Complex Data

Diverse data formats
(json, avro, binary, …)

Data can be dirty,
late, out-of-order

Complex Systems

Diverse storage systems
and formats (SQL, NoSQL,

parquet, ...)

System failures

Complex Workloads

Event time processing

Combining streaming with
interactive queries,
machine learning

Structured Streaming

stream processing on Spark SQL engine
fast, scalable, fault-tolerant

rich, unified, high level APIs
deal with complex data and complex workloads

rich ecosystem of data sources
integrate with many storage systems

you
should not have to

reason about streaming

you
should write simple queries

&

Spark
should continuously update the answer

Treat Streams as Unbounded Tables

data stream unbounded input table

new data in the
data stream

=
new rows appended
to a unbounded table

Anatomy of a Streaming Query

Example

Read JSON data from Kafka

Parse nested JSON

Store in structured Parquet table

Get end-to-end failure guarantees

ETL

Anatomy of a Streaming Query
spark.readStream.format("kafka")

.option("kafka.boostrap.servers",...)

.option("subscribe", "topic")

.load()

Source
Specify where to read data from

Built-in support for Files / Kafka /
Kinesis*

Can include multiple sources of
different types using join() / union()

*Available only on Databricks Runtime

returns a
DataFrame

https://databricks.com/product/databricks-runtime

static data =
bounded table

streaming data =
unbounded table

Single
API !

DataFrameó Table

DataFrame/Dataset
SQL

spark.sql("
SELECT type, sum(signal)
FROM devices
GROUP BY type

")

Most familiar to BI Analysts
Supports SQL-2003, HiveQL

val df: DataFrame =
spark.table("device-data")

.groupBy("type")

.sum("signal"))

Great for Data Scientists familiar
with Pandas, R Dataframes

DataFrame Dataset

val ds: Dataset[(String, Double)] =
spark.table("device-data")
.as[DeviceData]
.groupByKey(_.type)
.mapValues(_.signal)
.reduceGroups(_ + _)

Great for Data Engineers who
want compile-time type safety

Choose your hammer for whatever nail you have!
Same semantics, same performance

Anatomy of a Streaming Query
spark.readStream.format("kafka")

.option("kafka.boostrap.servers",...)

.option("subscribe", "topic")

.load()

Kafka DataFrame
key value topic partition offset timestamp

[binary] [binary] "topic" 0 345 1486087873

[binary] [binary] "topic" 3 2890 1486086721

Anatomy of a Streaming Query
spark.readStream.format("kafka")

.option("kafka.boostrap.servers",...)

.option("subscribe", "topic")

.load()

.selectExpr("cast (value as string) as json")

.select(from_json("json", schema).as("data"))

Transformations

Cast bytes from Kafka records to a
string, parse it as a json, and
generate nested columns

100s of built-in, optimized SQL
functions like from_json

user-defined functions, lambdas,
function literals with map, flatMap…

Anatomy of a Streaming Query

Sink
Write transformed output to
external storage systems

Built-in support for Files / Kafka

Use foreach to execute arbitrary
code with the output data

Some sinks are transactional and
exactly once (e.g. files)

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")

Anatomy of a Streaming Query

Processing Details

Trigger: when to process data
- Fixed interval micro-batches
- As fast as possible micro-batches
- Continuously (new in Spark 2.3)

Checkpoint location: for tracking the
progress of the query

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()

DataFrames,
Datasets, SQL

Logical
Plan

Read from
Kafka

Project
device, signal

Filter
signal > 15

Write to
Parquet

Spark automatically streamifies!

Spark SQL converts batch-like query to a series of incremental
execution plans operating on new batches of data

Kafka
Source

Optimized
Operator
codegen, off-

heap, etc.

Parquet
Sink

Optimized
Plan

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()

Series of Incremental
Execution Plans

pr
oc

es
s

ne
w

 d
at

a

t = 1 t = 2 t = 3

pr
oc

es
s

ne
w

 d
at

a

pr
oc

es
s

ne
w

 d
at

a

pr
oc

es
s

ne
w

 d
at

a

t = 1 t = 2 t = 3

pr
oc

es
s

ne
w

 d
at

a

pr
oc

es
s

ne
w

 d
at

a

Fault-tolerance with Checkpointing

Checkpointing

Saves processed offset info to stable storage like HDFS
Saved as JSON for forward-compatibility

Allows recovery from any failure
Can resume after limited changes to your streaming
transformations (e.g. adding new filters to drop corrupted
data, etc.)

end-to-end
exactly-once
guarantees

HDFS

Anatomy of a Streaming Query

ETL

Raw data from Kafka available
as structured data in seconds,
ready for querying

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()

3x
faster

Structured Streaming reuses
the Spark SQL Optimizer

and Tungsten Engine

Performance: Benchmark
40-core throughput

700K

22M

65M

0
10
20
30
40
50
60
70

Kafka
Streams

Apache Flink Structured
Streaming

M
ill

io
ns

 o
f r

ec
or

ds
/s

More details in our blog post

cheaper

https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-databricks-runtime-against-state-of-the-art-streaming-systems.html

Business Logic independent of Execution Mode

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()

Business logic
remains unchanged

Business Logic independent of Execution Mode

.selectExpr("cast (value as string) as json")

.select(from_json("json", schema).as("data"))
Business logic
remains unchanged

Peripheral code decides whether
it’s a batch or a streaming query

spark.read.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

.write

.format("parquet")

.option("path", "/parquetTable/")

.load()

Business Logic independent of Execution Mode
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))

Batch

high latency
(hours/minutes)

execute on-demand

high throughput

Micro-batch
Streaming

low latency
(seconds)

efficient resource allocation

high throughput

Continuous**
Streaming

ultra-low latency
(milliseconds)

static resource allocation

**experimental release in Spark 2.3, read our blog

https://databricks.com/blog/2018/03/20/low-latency-continuous-processing-mode-in-structured-streaming-in-apache-spark-2-3-0.html

Working With Time

Event time Aggregations

Windowing is just another type of grouping in Struct. Streaming

number of records every hour

Support UDAFs!

parsedData
.groupBy(window("timestamp","1 hour"))
.count()

parsedData
.groupBy(

"device",
window("timestamp","10 mins"))

.avg("signal")

avg signal strength of each
device every 10 mins

Stateful Processing for Aggregations

Aggregates has to be saved as
distributed state between triggers

Each trigger reads previous state and
writes updated state

State stored in memory,
backed by write ahead log in HDFS

Fault-tolerant, exactly-once guarantee!

pr
oc

es
s

ne
w

 d
at

a

t = 1

sink

src

t = 2

pr
oc

es
s

ne
w

 d
at

a

sink

src

t = 3

pr
oc

es
s

ne
w

 d
at

a

sink

src

state state

HDFS

state updates
are written to
log for checkpointing

state

Automatically handles Late Data

12:00 - 13:00 1 12:00 - 13:00 3

13:00 - 14:00 1

12:00 - 13:00 3

13:00 - 14:00 2

14:00 - 15:00 5

12:00 - 13:00 5

13:00 - 14:00 2

14:00 - 15:00 5

15:00 - 16:00 4

12:00 - 13:00 3

13:00 - 14:00 2

14:00 - 15:00 6

15:00 - 16:00 4

16:00 - 17:00 3

13:00 14:00 15:00 16:00 17:00 Keeping state allows
late data to update
counts of old windows

red = state updated
with late data

But size of the state increases indefinitely
if old windows are not dropped

Watermarking

Watermark - moving threshold of
how late data is expected to be
and when to drop old state

Trails behind max event time
seen by the engine

Watermark delay = trailing gap

event time

max event time

watermark data older
than

watermark
not expected

12:30 PM

12:20 PM

trailing gap
of 10 mins

Watermarking

Data newer than watermark may
be late, but allowed to aggregate

Data older than watermark is
"too late" and dropped

Windows older than watermark
automatically deleted to limit the
amount of intermediate state

max event time

event time

watermark

late data
allowed to
aggregate

data too
late,

dropped

watermark
delay
of 10 mins

Watermarking

max event time

event time

watermark

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()

late data
allowed to
aggregate

data too
late,

dropped

Useful only in stateful operations

Ignored in non-stateful streaming
queries and batch queries

watermark
delay
of 10 mins

Watermarking

data too late,
ignored in counts,
state dropped

Processing Time12:00

12:05

12:10

12:15

12:10 12:15 12:20

12:07

12:13

12:08

Ev
en

t T
im

e
12:15

12:18

12:04

watermark updated to
12:14 - 10m = 12:04
for next trigger,
state < 12:04 deleted

data is late, but
considered in
counts

system tracks max
observed event time

12:08

wm = 12:04

10
 m

in

12:14

More details in my blog post

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html

Arbitrary Stateful Operations

mapGroupsWithState
allows any user-defined
stateful function to a
user-defined state

Direct support for per-key
timeouts in event-time or
processing-time

Supports Scala and Java
32

ds.groupByKey(_.id)
.mapGroupsWithState

(timeoutConf)
(mappingWithStateFunc)

def mappingWithStateFunc(
key: K,
values: Iterator[V],
state: GroupState[S]): U = {

// update or remove state
// set timeouts
// return mapped value

}

Other interesting operations

Streaming Deduplication

Stream-batch Joins
Stream-stream Joins

eventStream.join(deviceStaticInfo, "deviceId")

eventStream.join(userActionStream, "deviceId")

parsedData.dropDuplicates("eventId")

More details in my Spark Summit talk
https://databricks.com/session/a-deep-dive-into-stateful-stream-processing-in-structured-streaming

https://databricks.com/session/a-deep-dive-into-stateful-stream-processing-in-structured-streaming

Building Complex
Streaming Apps

Information Security Platform @ Apple

Infrastructure generates
millions of log events per sec detect threats!

Information Security Platform @ Apple

1 Streaming ETL: raw logs to structured logs

2 Refinement and enrichment: enrich with other information

2

Platform Requirements

3 Mixed workloads: real-time alerting, historical reporting, ad-hoc analysis, ML

1

raw logs structured
logs

Real-time
Alerts

Historical
Reporting

Ad-hoc
Analysis

3

Solving Ops Challenges @ Apple
1 Streaming ETL: raw logs to structured logs

2 Refinement and enrichment: enrich with other information

3 Mixed workloads: real-time alerting, historical reporting, ad-hoc analysis, ML

Fast failure recovery with adaptive batch sizing
Large batches to catch up fast, small batches when caught up

Solving Ops Challenges @ Apple
1 Streaming ETL: raw logs to structured logs

2 Refinement and enrichment: enrich with other information

Arbitrary stateful operations allow tracking DHCP sessions, etc.

Stream-stream and stream-batch joins allow joining between
various fast and slow data with clear semantics

3 Mixed workloads: real-time alerting, historical reporting, ad-hoc analysis, ML

Solving Ops Challenges @ Apple
1 Streaming ETL: raw logs to structured logs

2 Refinement and enrichment: enrich with other information

3 Mixed workloads: real-time, historical reports, ad-hoc, ML

Same APIs allows shared codebase for all analysis, faster deployment
E.g. New threat patterns found in interactive analysis can be immediately
fined tunes on historical data and applied on real-time alerting application

Information Security Platform @ Apple
Real-time
Alerts

Reporting
1

1 Streaming ETL: raw logs to structured logs

2

2 Refinement and enrichment: enrich with other information

Ad-hoc
Analysis

Platform Requirements

3 Mixed workloads: real-time alerting, historical reporting, ad-hoc analysis

3

Pipeline built by 5 engineers in 2 weeks
(previous non-Spark version took 20 engineers and 6 months)

Processing millions events/sec,
few TBs/day

More Info
Structured Streaming Programming Guide

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Databricks blog posts for more focused discussions on streaming
https://databricks.com/blog/category/engineering/streaming

Databricks Delta
https://databricks.com/product/databricks-delta

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/product/databricks-delta

UNIFIED ANALYTICS PLATFORM

Try Apache Spark in Databricks!

• Collaborative cloud environment
• Free version (community edition)

DATABRICKS RUNTIME 3.0
• Apache Spark - optimized for the cloud
• Caching and optimization layer - DBIO
• Enterprise security - DBES

Try for free today
databricks.com

