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About Me

Started Spark Streaming project in AMPLab, UC Berkeley

Currently focused on building Structured Streaming

Member of the Apache Spark PMC

Software Engineer at Databricks



building robust 
stream processing 

apps is hard



Complexities in stream processing

Complex Data

Diverse data formats 
(json, avro, binary, …)

Data can be dirty, 
late, out-of-order

Complex Systems

Diverse storage systems 
and formats (SQL, NoSQL, 

parquet, ... )

System failures

Complex Workloads

Event time processing

Combining streaming with 
interactive queries, 
machine learning



Structured Streaming

stream processing on Spark SQL engine
fast, scalable, fault-tolerant

rich, unified, high level APIs 
deal with complex data and complex workloads

rich ecosystem of data sources
integrate with many storage systems 



you 
should not have to 

reason about streaming



you 
should write simple queries

&

Spark 
should continuously update the answer



Treat Streams as Unbounded Tables

data stream unbounded input table

new data in the 
data stream

= 
new rows appended 
to a unbounded table



Anatomy of a Streaming Query

Example

Read JSON data from Kafka

Parse nested JSON 

Store in structured Parquet table

Get end-to-end failure guarantees

ETL



Anatomy of a Streaming Query
spark.readStream.format("kafka")

.option("kafka.boostrap.servers",...)

.option("subscribe", "topic")

.load()

Source 
Specify where to read data from

Built-in support for Files / Kafka / 
Kinesis*

Can include multiple sources of 
different types using join() / union()

*Available only on Databricks Runtime

returns a 
DataFrame

https://databricks.com/product/databricks-runtime


static data =
bounded table

streaming data =
unbounded table

Single 
API !

DataFrameó Table



DataFrame/Dataset
SQL

spark.sql("
SELECT type, sum(signal)
FROM devices
GROUP BY type

")

Most familiar to BI Analysts
Supports SQL-2003, HiveQL

val df: DataFrame = 
spark.table("device-data")

.groupBy("type")

.sum("signal"))

Great for Data Scientists familiar 
with Pandas, R Dataframes

DataFrame Dataset

val ds: Dataset[(String, Double)] =
spark.table("device-data")
.as[DeviceData]
.groupByKey(_.type)
.mapValues(_.signal)
.reduceGroups(_ + _)

Great for Data Engineers who 
want compile-time type safety

Choose your hammer for whatever nail you have!
Same semantics, same performance



Anatomy of a Streaming Query
spark.readStream.format("kafka")

.option("kafka.boostrap.servers",...)

.option("subscribe", "topic")

.load()

Kafka DataFrame
key value topic partition offset timestamp

[binary] [binary] "topic" 0 345 1486087873

[binary] [binary] "topic" 3 2890 1486086721



Anatomy of a Streaming Query
spark.readStream.format("kafka")

.option("kafka.boostrap.servers",...)

.option("subscribe", "topic")

.load()

.selectExpr("cast (value as string) as json")

.select(from_json("json", schema).as("data"))

Transformations

Cast bytes from Kafka records to a 
string, parse it as a json, and 
generate nested columns

100s of built-in, optimized SQL 
functions like from_json

user-defined functions, lambdas, 
function literals with map, flatMap…



Anatomy of a Streaming Query

Sink
Write transformed output to 
external storage systems

Built-in support for Files / Kafka

Use foreach to execute arbitrary 
code with the output data

Some sinks are transactional and 
exactly once (e.g. files)

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")



Anatomy of a Streaming Query

Processing Details

Trigger: when to process data 
- Fixed interval micro-batches
- As fast as possible micro-batches
- Continuously (new in Spark 2.3)

Checkpoint location: for tracking the 
progress of the query

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()



DataFrames,
Datasets, SQL

Logical 
Plan

Read from 
Kafka

Project
device, signal

Filter
signal > 15

Write to 
Parquet

Spark automatically streamifies!

Spark SQL converts batch-like query to a series of incremental 
execution plans operating on new batches of data

Kafka 
Source

Optimized 
Operator
codegen, off-

heap, etc.

Parquet
Sink

Optimized
Plan

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()

Series of Incremental
Execution Plans
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Fault-tolerance with Checkpointing

Checkpointing 

Saves processed offset info to stable storage like HDFS
Saved as JSON for forward-compatibility

Allows recovery from any failure
Can resume after limited changes to your streaming 
transformations (e.g. adding new filters to drop corrupted 
data, etc.)

end-to-end 
exactly-once 
guarantees

HDFS



Anatomy of a Streaming Query

ETL

Raw data from Kafka available 
as structured data in seconds, 
ready for querying

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()



3x
faster

Structured Streaming reuses 
the Spark SQL Optimizer 

and Tungsten Engine

Performance:                       Benchmark
40-core throughput
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More details in our blog post

cheaper

https://databricks.com/blog/2017/10/11/benchmarking-structured-streaming-on-databricks-runtime-against-state-of-the-art-streaming-systems.html


Business Logic independent of Execution Mode

spark.readStream.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.writeStream
.format("parquet")
.option("path", "/parquetTable/")
.trigger("1 minute")
.option("checkpointLocation", "…")
.start()

Business logic 
remains unchanged



Business Logic independent of Execution Mode

.selectExpr("cast (value as string) as json")

.select(from_json("json", schema).as("data"))
Business logic 
remains unchanged

Peripheral code decides whether 
it’s a batch or a streaming query

spark.read.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

.write

.format("parquet")

.option("path", "/parquetTable/")

.load()



Business Logic independent of Execution Mode
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))

Batch

high latency
(hours/minutes)

execute on-demand

high throughput

Micro-batch
Streaming

low latency
(seconds)

efficient resource allocation

high throughput

Continuous**
Streaming

ultra-low latency
(milliseconds)

static resource allocation

**experimental release in Spark 2.3, read our blog

https://databricks.com/blog/2018/03/20/low-latency-continuous-processing-mode-in-structured-streaming-in-apache-spark-2-3-0.html


Working With Time



Event time Aggregations

Windowing is just another type of grouping in Struct. Streaming

number of records every hour

Support UDAFs!

parsedData
.groupBy(window("timestamp","1 hour"))
.count()

parsedData
.groupBy(

"device", 
window("timestamp","10 mins"))

.avg("signal")

avg signal strength of each 
device every 10 mins



Stateful Processing for Aggregations

Aggregates has to be saved as 
distributed state between triggers

Each trigger reads previous state and 
writes updated state

State stored in memory, 
backed by write ahead log in HDFS

Fault-tolerant, exactly-once guarantee!
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state updates 
are written to 
log for checkpointing
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Automatically handles Late Data

12:00 - 13:00 1 12:00 - 13:00 3

13:00 - 14:00 1

12:00 - 13:00 3

13:00 - 14:00 2

14:00 - 15:00 5

12:00 - 13:00 5

13:00 - 14:00 2

14:00 - 15:00 5

15:00 - 16:00 4

12:00 - 13:00 3

13:00 - 14:00 2

14:00 - 15:00 6

15:00 - 16:00 4

16:00 - 17:00 3

13:00 14:00 15:00 16:00 17:00 Keeping state allows 
late data to update 
counts of old windows

red = state updated 
with late data

But size of the state increases indefinitely 
if old windows are not dropped



Watermarking 

Watermark - moving threshold of 
how late data is expected to be 
and when to drop old state

Trails behind max event time 
seen by the engine

Watermark delay = trailing gap

event time 

max event time

watermark data older 
than 

watermark 
not expected

12:30 PM

12:20 PM

trailing gap
of 10 mins



Watermarking

Data newer than watermark may 
be late, but allowed to aggregate

Data older than watermark is 
"too late" and dropped

Windows older than watermark 
automatically deleted to limit the 
amount of intermediate state

max event time

event time 

watermark

late data
allowed to 
aggregate

data too 
late, 

dropped

watermark 
delay
of 10 mins



Watermarking

max event time

event time 

watermark

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()

late data
allowed to 
aggregate

data too 
late, 

dropped

Useful only in stateful operations

Ignored in non-stateful streaming 
queries and batch queries

watermark 
delay
of 10 mins



Watermarking

data too late, 
ignored in counts, 
state dropped

Processing Time12:00
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watermark updated to 
12:14 - 10m = 12:04
for next trigger, 
state < 12:04 deleted

data is late, but 
considered in 
counts

system tracks max 
observed event time

12:08

wm = 12:04
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More details in my blog post

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html


Arbitrary Stateful Operations

mapGroupsWithState
allows any user-defined
stateful function to a 
user-defined state

Direct support for per-key 
timeouts in event-time or 
processing-time

Supports Scala and Java
32

ds.groupByKey(_.id)
.mapGroupsWithState

(timeoutConf)
(mappingWithStateFunc)

def mappingWithStateFunc(
key: K,
values: Iterator[V],
state: GroupState[S]): U = {

// update or remove state
// set timeouts
// return mapped value 

}



Other interesting operations

Streaming Deduplication 

Stream-batch Joins
Stream-stream Joins

eventStream.join(deviceStaticInfo, "deviceId")

eventStream.join(userActionStream, "deviceId")

parsedData.dropDuplicates("eventId")

More details in my Spark Summit talk
https://databricks.com/session/a-deep-dive-into-stateful-stream-processing-in-structured-streaming

https://databricks.com/session/a-deep-dive-into-stateful-stream-processing-in-structured-streaming


Building Complex 
Streaming Apps



Information Security Platform  @ Apple

Infrastructure generates 
millions of log events per sec detect threats!



Information Security Platform  @ Apple

1 Streaming ETL: raw logs to structured logs

2 Refinement and enrichment: enrich with other information

2

Platform Requirements

3 Mixed workloads: real-time alerting, historical reporting, ad-hoc analysis, ML

1

raw logs structured 
logs

Real-time
Alerts

Historical
Reporting

Ad-hoc 
Analysis

3



Solving Ops Challenges @ Apple
1 Streaming ETL: raw logs to structured logs

2 Refinement and enrichment: enrich with other information

3 Mixed workloads: real-time alerting, historical reporting, ad-hoc analysis, ML

Fast failure recovery with adaptive batch sizing
Large batches to catch up fast, small batches when caught up



Solving Ops Challenges @ Apple
1 Streaming ETL: raw logs to structured logs

2 Refinement and enrichment: enrich with other information

Arbitrary stateful operations allow tracking DHCP sessions, etc.

Stream-stream and stream-batch joins allow joining between 
various fast and slow data with clear semantics

3 Mixed workloads: real-time alerting, historical reporting, ad-hoc analysis, ML



Solving Ops Challenges @ Apple
1 Streaming ETL: raw logs to structured logs

2 Refinement and enrichment: enrich with other information

3 Mixed workloads: real-time, historical reports, ad-hoc, ML

Same APIs allows shared codebase for all analysis, faster deployment
E.g. New threat patterns found in interactive analysis can be immediately 
fined tunes on historical data and applied on real-time alerting application



Information Security Platform  @ Apple
Real-time
Alerts

Reporting
1

1 Streaming ETL: raw logs to structured logs

2

2 Refinement and enrichment: enrich with other information

Ad-hoc 
Analysis

Platform Requirements

3 Mixed workloads: real-time alerting, historical reporting, ad-hoc analysis

3

Pipeline built by 5 engineers in 2 weeks
(previous non-Spark version took 20 engineers and 6 months)

Processing millions events/sec, 
few TBs/day



More Info
Structured Streaming Programming Guide

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Databricks blog posts for more focused discussions on streaming
https://databricks.com/blog/category/engineering/streaming

Databricks Delta
https://databricks.com/product/databricks-delta

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://databricks.com/blog/category/engineering/streaming
https://databricks.com/product/databricks-delta


UNIFIED ANALYTICS PLATFORM

Try Apache Spark in Databricks!

• Collaborative cloud environment
• Free version (community edition)

DATABRICKS RUNTIME 3.0
• Apache Spark - optimized for the cloud
• Caching and optimization layer - DBIO
• Enterprise security - DBES

Try for free today
databricks.com


