
1.
2.

1.

1.

1.
2.

2.

3.

4.

[DISCUSS] Code re-organization

With , the source tree was restructured in order to ease maintenance, allow easier extendability and SYNCOPE-620 obtain more modularity.

Source tree <= 1.2.X
Source tree >= 2_0_X

The upgraded archetype

Source tree <= 1.2.X
Up to , the effective source tree (e.g. excluding utility modules providing the standalone distribution, .deb artifacts, installer, ...) is organized 1.2.X
into four main modules:

common
JAR library including

JAX-RS 2.0 REST services definition
Java transfer objects (TO) to be used with REST services

client
JAR library with utilities for invoking REST services
core
WAR web application exposing the REST interface and implementing the whole business logic including provisioning, workflow
management and persistence to an internal RDBMS via JPA.
console
WAR web application providing rich GUI for interacting with core

When , the and sub-modules generated are actually web applications empowering the creating a new project from archetype core console WAR
 feature.overlays

The nice part about this is that generated projects can easily override any single file from the official Syncope Maven artifacts; the major
drawbacks are that the whole Maven artifacts need to be downloaded, and that any single feature to be implemented must be thought as a
"deviation" from the standard behavior; moreover, even if some features are not required in the specific project (Activiti workflow adapter, Camel
integration, ...) the related dependencies are still to be carried over, because they are part of the official artifacts.

Source tree >= 2_0_X
Starting with , the modules were re-organized according to the following package diagram (where packages are Maven modules, actually):2.0.0

The general approach taken with this refactoring was to split, wherever possible and meaningful, the existing code into API and implementation,
and to introduce new modules for each relevant feature.

This page contains topics supporting ongoing discussion at .dev@syncope.apache.org

https://issues.apache.org/jira/browse/SYNCOPE-620
https://git-wip-us.apache.org/repos/asf?p=syncope.git;a=tree;h=refs/heads/1_2_X;hb=refs/heads/1_2_X
https://cwiki.apache.org/confluence/display/SYNCOPE/Create+a+new+Syncope+project
https://maven.apache.org/plugins/maven-war-plugin/overlays.html
https://maven.apache.org/plugins/maven-war-plugin/overlays.html
https://git-wip-us.apache.org/repos/asf?p=syncope.git;a=tree;h=refs/heads/master;hb=refs/heads/master
mailto:dev@syncope.apache.org

1.

2.

3.

4.

1.

2.

3.

1.

1.

Moreover, a proper mechanism for handling extensions was introduced, for which the reference implementation for Camel integration was also
provided.

The upgraded archetype

The upgraded archetype for 2.0.X is still generating the and sub-modules as web applications; differently from the past, however, core console
such applications enlist as dependencies one or more Syncope JAR artifacts (no more WAR overlays).

Core

The following dependencies are set:

syncope-core-rest-cxf
Provides a with REST interface; depends on syncope-core-logic (general business logic) which in turn relies on syncope-web-fragment
provisioning-java (default provisioning management engine)
syncope-core-workflow-java
Bare workflow adapter implementation; also includes common features for workflow management
syncope-core-workflow-activiti
Activiti-based workflow adapter implementation
syncope-core-persistence-jpa
OpenJPA-based internal persistence module

From the list above, any generated project can remove syncope-core-workflow-activiti to avoid embedding Activiti dependencies or provide its
own workflow adapter implementing the API defined in syncope-core-workflow-api.

Moreover, if integration with Camel is desired, the following dependencies can be added:

syncope-ext-camel-rest-cxf
Provides implementation of additional REST interface methods
syncope-ext-camel-provisioning
Camel-based implementation of syncope-provisioning-api
syncope-ext-camel-persistence-jpa
OpenJPA extensions for managing additional persistence table

Console

The following dependency is set:

syncope-client-console
Provides the whole Wicket-based GUI, again as web-fragment; depends on syncope-client-lib for the actual communication with core

If integration with Camel is desired, the following dependency can be added:

syncope-ext-camel-client-console
This will enable an additional tab under Configuration > Extensions with facilities for handling Camel integration

Even if not likely at the moment, one can think to provide an alternative, LDAP or based, implementation for syncope-core-MyBatis
persistence-api.

https://blogs.oracle.com/swchan/entry/servlet_3_0_web_fragment
http://www.mybatis.org/

	[DISCUSS] Code re-organization

