
1.

2.
3.

KIP-133: Describe and Alter Configs Admin APIs
Note that this KIP proposal is derived from a proposal by that was part of .Grant Henke KIP-4 - Command line and centralized administrative operations

Status
Motivation
Public Interfaces

ACLs
Protocol APIs

Wire Format types
Describe Configs
Alter Configs

AdminClient APIs
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives
Future work

Status
Current state: Adopted

Discussion thread: here

JIRA: - KAFKA-3267 Getting issue details... STATUS

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
KIP-4 - Command line and centralized administrative operations outlines the motivation for exposing admin operations via the protocol:

Allows clients in any language to administrate Kafka
Wire protocol is supported by any language

Provides public client for performing admin operations
Ensures integration test code in other projects and clients maintains compatibility
Prevents users from needing to use the Command classes and work around standard output and system exits

Removing the need for admin scripts (kafka-configs.sh, etc) to talk directly to Zookeeper. kafka-topics.sh,
Allows ZNodes to be completely locked down via ACLs
Further hides the Zookeeper details of Kafka

A few specific use cases worth pointing out:

The Metadata request exposes topic metadata, but it does not expose topic configs. DescribeConfigs will make that information available to any
client of the Kafka protocol and the AdminClient will expose it to normal users.
AlterConfigs would make it possible to update topic configs.
One should be able to tell how a topic or broker is configured including defaults and overrides.

Public Interfaces

ACLs

We will introduce 2 new ACL operations: DescribeConfigs and AlterConfigs. These operations apply to resources that have configs (i.e. Broker and Topic).
In addition, DescribeConfigs/AlterConfigs on the Cluster resource allows one to read and write configs on any resource with configs. Finally, the
DescribeConfigs and AlterConfigs operations are included in the `All` operation.

Protocol APIs

Wire Format types

KIP-140: Add administrative RPCs for adding, deleting, and listing ACLs introduced a wire format representation for ResourceType and AclOperation. We
weill add new values to both types as follows:

AclOperation

0: Unknown

1: Any

https://cwiki.apache.org/confluence/display/~granthenke
https://cwiki.apache.org/confluence/display/KAFKA/KIP-4+-+Command+line+and+centralized+administrative+operations
https://lists.apache.org/thread.html/6d989c42117c8199a6c629ebd46fe2a134d3284e47375a612fe4a59e@%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-3267
https://cwiki.apache.org/confluence/display/KAFKA/KIP-4+-+Command+line+and+centralized+administrative+operations
https://cwiki.apache.org/confluence/display/KAFKA/KIP-140%3A+Add+administrative+RPCs+for+adding%2C+deleting%2C+and+listing+ACLs

1.
2.

3.
4.
5.

6.
7.

a.

b.

8.

2: All

3: Read

4: Write

5: Create

6: Delete

7: Alter

8: Describe

9: ClusterAction

10: DescribeConfigs (new)

11: AlterConfigs (new)

ResourceType

0: Unknown

1: Any

2: Topic

3: Group

4: Cluster

5: Broker (new)

Describe Configs

DescribeConfigs Request

DescribeConfigs Request (Version: 0) => [resource [config_name]]
 resource => resource_type resource_name
 resource_type => INT8
 resource_name => STRING
 config_name => STRING

Request semantics:

Can be sent to any broker
If there are multiple instructions for the same resource in one request the extra request will be ignored

This is because the list of resources is modeled server side as a set
Multiple resources results in the same end goal, so handling this error for the user should be okay
This is similar to how delete topics handles requests

If the config_name array is null, all configs are returned. Otherwise, configs with the provided names are returned.
Valid resource types are "Topic" and "Broker".
If resource_type is "Broker", the resource_name must be the id of the broker processing the request as the brokers don't have any dynamic
configs currently (apart from replication quotas configs, which are excluded). All broker configs are read-only. Conversely, there are no read-only
topic configs at the moment.
Replication, User and Client Quota configs are not supported. See "Future work" for more details.
Authorization is as follows:

Topic configs: "DescribeConfigs" on the "Topic" or "Cluster" resource ("DescribeConfigs" is also included in the "All" operation).
Unauthorized requests will receive an appropriate AuthorizationFailed error code.
Broker configs: "DescribeConfigs" on the "Broker" or "Cluster" resource ("DescribeConfigs" is also included in the "All" operation).
Unauthorized requests will receive an appropriate AuthorizationFailed error code.

Errors are reported independently per resource.

1.
2.

3.

4.
5.

a.

b.

6.
7.

a.
b.

8.

DescribeConfigs Response

DescribeConfigs Response (Version: 0) => error_code [entities]
 entities => error_code resource_type resource_name [configs]
 error_code => INT16
 resource_type => INT8
 resource_name => STRING
 configs =>
 config_name => STRING
 config_value => STRING
 read_only => BOOLEAN
 is_default => BOOLEAN
 is_sensitive => BOOLEAN

Alter Configs

AlterConfigs Request

AlterConfigs Request (Version: 0) => [resources] validate_only
 validate_only => BOOLEAN
 resources => resource_type resource_name [configs]
 resource_type => INT8
 resource_name => STRING
 configs =>
 config_name => STRING
 config_value => STRING

Request Semantics

Can be sent to any broker
If there are multiple instructions for the same resource in one request, an InvalidRequestException will be logged on the broker and a single error
code for that topic will be returned to the client

This is because the list of resources is modeled server side as a map with the resource as the key
Valid resource types are "Topic" and "Broker". However, since all broker configs are currently read_only, only the former makes sense until that
changes.
If an operation is attempted on a read-only config, an error will be returned for the relevant resource.Alter UnsupportedOperation
Authorization is as follows:

Topic configs: "AlterConfigs" on the "Topic" or "Cluster" resource ("AlterConfigs" is also included in the "All" operation). Unauthorized
requests will receive an appropriate AuthorizationFailed error code.
Broker configs: "AlterConfigs" on the "Broker" or "Cluster" resource ("AlterConfigs" is also included in the "All" operation). Unauthorized
requests will receive an appropriate AuthorizationFailed error code.

Replication, User and Client Quota configs are not supported. See "Future work" for more details.
The request is not transactional.

If an error occurs for an resource, others could still be updated.
Errors are reported independently per resource.

For tools that allow users to alter configs, a validation/dry-run mode where validation errors are reported but no creation is attempted is available
via the validate_only parameter.

AlterConfigs Response

AlterConfigs Response (Version: 0) => [responses]
 responses => resource_type resource_name error_code error_message
 resource_type => INT8
 resource_name => STRING
 error_code => INT16
 error_message => NULLABLE_STRING

Policy
In a similar fashion to , we allow users to define a policy class to validate alter configs requests. The config name will be KIP-108: Create Topic Policy alte

and the interface follows:r.configs.policy.class.name

https://cwiki.apache.org/confluence/display/KAFKA/KIP-108%3A+Create+Topic+Policy

AlterConfigPolicy

package org.apache.kafka.server.policy;

public interface AlterConfigsPolicy extends Configurable, AutoCloseable {

 /**
 * Class containing the create request parameters.
 */
 class RequestMetadata {
 /**
 * Create an instance of this class with the provided parameters.
 *
 * This constructor is public to make testing of <code>AlterConfigPolicy</code> implementations easier.
 */
 public RequestMetadata(ConfigResource resource, Config config) { ... }

 /**
 * Return the Config in the request.
 */
 public Config config() { ... }
 }

 /**
 * Validate the request parameters and throw a <code>PolicyViolationException</code> with a suitable error
 * message if the alter configs request parameters for the provided resource do not satisfy this policy.
 *
 * Clients will receive the POLICY_VIOLATION error code along with the exception's message. Note that
validation
 * failure only affects the relevant resource, other resources in the request will still be processed.
 *
 * @param requestMetadata the alter configs request parameters for the provided resource.
 * @throws PolicyViolationException if the request parameters do not satisfy this policy.
 */
 void validate(RequestMetadata requestMetadata) throws PolicyViolationException;
}

Users will have to ensure that the policy implementation code is in the broker's classpath. Implementations should throw the existing PolicyViolationE
 with an appropriate error message if the request does not fulfill the policy requirements. We chose a generic name for the only parameter of the xception
 method in case we decide to add parameters that are not strictly related to the topic (e.g. session information) in the future. The constructor of validate R

 is public to make testing convenient for users. Under normal circumstances, it should only be instantiated by Kafka. We chose to create equestMetadata
separate API classes instead of reusing request classes to make it easier to evolve the latter.

AdminClient APIs

They follow a similar pattern as existing AdminClient APIs:

org.apache.kafka.clients.admin

public class AdminClient {
 public DescribeConfigsResult describeConfigs(Collection<ConfigResource> resources, DescribeConfigsOptions
options);
 public AlterConfigsResult alterConfigs(Map<ConfigResource, Config> configs, AlterConfigsOptions options);
}

public class DescribeConfigsOptions {
 public DescribeConfigsOptions timeoutMs(Integer timeout);
}

public class DescribeConfigsResult {
 public Map<ConfigResource, KafkaFuture<Config>> results()
 public KafkaFuture<Map<ConfigResource, Config>> all();
}

public class AlterConfigsOptions {
 public AlterConfigsOptions timeoutMs(Integer timeout);
 public AlterConfigsOptions validateOnly(boolean validateOnly);
}

public class AlterConfigsResult {
 public KafkaFuture<Void> all();
 public Map<ConfigResource, KafkaFuture<Void>> results();
}

public class ConfigResource {
 enum Type {
 BROKER, TOPIC, UNKNOWN;
 }

 public ConfigResource(Type type, String name) { ... }

 public Type type() { ... }
 public String name() { ... }
}

public class Config {
 public Config(Collection<ConfigEntry> configs) { ... }
 public Collection<ConfigEntry> entries() { ... }
 public Config get(String name) { ... }
}
public class ConfigEntry {
 public ConfigEntry(String name, String value) {
 this(name, value, false, false, false);
 }
 public ConfigEntry(String name, String value, boolean isDefault, boolean isSensitive, boolean isReadOnly) {
... }
 public String name() { ... }
 public String value() { ... }
 public boolean isDefault { ... }
 public boolean isSensitive { ... }
 public boolean isReadOnly { ... }
}

Proposed Changes
In addition to what is mentioned in the "Public Interfaces" section, it's worth mentioning that the describeConfigs implementation will perform requests to
min(1, N) brokers where N is the number of ConfigResources that have a Broker resource type.

Compatibility, Deprecation, and Migration Plan

1.

2.

1.
2.

We are adding new ACL Operations and a new ACL Resource Type, so third-party Authorizer implementations will potentially have to be updated in order
to support them. Since this only affects newly introduced protocol and AdminClient APIs, it's not a compatibility issue. It simply means that the new
functionality won't be available for users of such Authorizer implementations until they are updated.

With regards to forwards compatibility, ConfigResource.Type has an UNKNOWN element in case it receives data from a newer broker that cannot be
mapped to one of the existing enum types.

Rejected Alternatives
Allowing sensitive data to be returned: it's good security practice to never expose sensitive data. If necessary, the user can reset the relevant
sensitive data (e.g. a password).
Introducing a new Configs resource instead of DescribeConfigs and AlterConfigs operations: there is always a one to one mapping between a
resource and its configs, so there isn't much value in creating a separate resource for Configs. By adding new operations to existing resources,
it's easier to see all the ACLs that affect a given resource.

Future work
Forward requests to the relevant brokers in order to return `read-only` broker configs.
Support for reading and updating client, user and replication quotas. We initially included that in the KIP, but it subsequently became apparent
that a separate protocol and AdminClient API would be more appropriate. The reason is that client/user quotas can be applied on a client id, user
or (client id, user) tuple. In the future, the hierarchy may get even more complicated. So, it makes sense to keeping the API simple for the simple
cases while introducing a more sophisticated API for the more complex case.

	KIP-133: Describe and Alter Configs Admin APIs

