
Spring Support
We fully support Spring for configuration of the JMS client side as well as for configuring the JMS Message Broker.
There is a great on using Spring with ActiveMQ - I'd recommend reading it first.article

Configuring the JMS client

To configure an ActiveMQ JMS client in Spring it is just a simple matter of configuring an instance of ActiveMQConnectionFactory within a standard Spring
XML configuration file like any other bean. There are available and shows how to construct an several examples and test cases this one
ActiveMQConnectionFactory in Spring which is then passed into a Spring JmsTemplate for use by some POJOs.

e.g. the following fragment of XML shows us creating a JMS connection factory for ActiveMQ connecting to a remote broker on a specific host name and
port.

<bean id="jmsFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL">
 <value>tcp://localhost:61616</value>
 </property>
 </bean>

The following shows how to use Zeroconf to discover the available brokers to connect to.

<bean id="jmsFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL">
 <value>zeroconf://_activemq.broker.development.</value>
 </property>
 </bean>

From 1.1 of ActiveMQ onwards you can also use JNDI to configure ActiveMQ within Spring. shows how to configure Spring using This example
ActiveMQ's .JNDI Support

Using Spring

If you are using the new of Spring 2.0 you can embed the ActiveMQ broker XML inside any regular Spring.xml file XML Schema-based configuration
without requiring the above factory bean. e.g. here is an example of a regular Spring XML file in Spring 2.0 which also configures a broker.

<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:amq="http://activemq.apache.org/schema/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans
/spring-beans-2.0.xsd
 http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/activemq-core.xsd">

 <amq:broker useJmx="false" persistent="false">
 <amq:transportConnectors>
 <amq:transportConnector uri="tcp://localhost:0" />
 </amq:transportConnectors>
 </amq:broker>

 <amq:connectionFactory id="jmsFactory" brokerURL="vm://localhost"/>
</beans>

This allows you to configure JMS artifacts like destinations and connection factories together with the entire broker.

Working with Spring's JmsTemplate

Spring supports a handy abstraction, JmsTemplate, which allows you to hide some of the lower level JMS details when sending messages etc.

Please be aware that there are a number of to be careful of.JmsTemplate Gotchas

One thing to bear in mind with JmsTemplate is that by default it will create a new connection, session, producer for each message sent - then close them
all down again. This is very inefficient! It is done like this to work in EJB containers which tend to use a special ConnectionFactory which does pooling.

https://medium.com/@bdarfler/efficient-lightweight-jms-with-spring-and-activemq-51ff6a135946
https://svn.apache.org/repos/asf/activemq/trunk/activemq-unit-tests/src/test/java/org/apache/activemq/spring/
https://svn.apache.org/repos/asf/activemq/trunk/activemq-unit-tests/src/test/resources/org/apache/activemq/xbean/spring.xml
http://svn.apache.org/repos/asf/activemq/trunk/activemq-unit-tests/src/test/resources/spring-jndi.xml
https://cwiki.apache.org/confluence/display/ACTIVEMQ/JNDI+Support
http://static.springframework.org/spring/docs/2.0.x/reference/xsd-config.html
https://cwiki.apache.org/confluence/display/ACTIVEMQ/JmsTemplate+Gotchas

If you are not using a JCA container to manage your JMS connections, we recommend you use our pooling JMS connection provider, (org.apache.
activemq.pool.PooledConnectionFactory) from the library, which will pool the JMS resources to work efficiently with Spring's activemq-pool
JmsTemplate or with EJBs.

e.g.

<!-- a pooling based JMS provider -->
 <bean id="jmsFactory" class="org.apache.activemq.pool.PooledConnectionFactory" destroy-method="stop">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL">
 <value>tcp://localhost:61616</value>
 </property>
 </bean>
 </property>
 </bean>

 <!-- Spring JMS Template -->
 <bean id="myJmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory">
 <ref local="jmsFactory"/>
 </property>
 </bean>

The supports the pooling of Connection, Session and MessageProducer instances so it can be used with tools like PooledConnectionFactory Camel
and Spring's . Connections, sessions and producers are returned to a pool after use so that they can be JmsTemplate and MessagListenerContainer
reused later without having to undergo the cost of creating them again.

Note: while the does allow the creation of a collection of active consumers, it does not 'pool' consumers. Pooling makes PooledConnectionFactory
sense for connections, sessions and producers, which can be seldom-used resources, are expensive to create and can remain idle a minimal cost.
Consumers, on the other hand, are usually just created at startup and left going, handling incoming messages as they come. When a consumer is
complete, it's preferred to shut down it down rather than leave it idle and return it to a pool for later reuse: this is because, even if the consumer is idle,
ActiveMQ will keep delivering messages to the consumer's prefetch buffer, where they'll get held up until the consumer is active again.

If you are creating a collection of consumers (for example, for multi-threaded message consumption), you should consider keeping a low prefetch value (e.
g. 10 or 20), to ensure that all messages don't end up going to just one of the consumers.

We do also have a pooling JMS ConnectionFactory for use inside a JCA / MDB container (org.apache.activemq.ra.InboundConnectionProxyFactory),
when using our JCA Resource Adapter which will reuse the same JMS connection/session which is being used for inbound messages.

Consuming JMS from inside Spring

Spring's should be used for message consumption. This provides all the power of MDBs - efficient JMS consumption and MessagListenerContainer
pooling of the message listeners - but without requiring a full EJB container.

You can use the for efficient pooling of the connections and sessions activemq-pool org.apache.activemq.pool.PooledConnectionFactory
for your collection of consumers, or you can use the Spring JMS to org.springframework.jms.connection.CachingConnectionFactory
achieve the same effect.

More Information

Also check out the following blogs for information about using Spring JMS with ActiveMQ:

Synchronous Request Response with ActiveMQ and Spring
Using Spring to Send JMS Messages
Using Spring to Receive JMS Messages
Tuning JMS Message Consumption In Spring

http://camel.apache.org/activemq.html
http://activemq.apache.org/spring-support.html
http://static.springsource.org/spring/docs/2.5.x/reference/jms.html#jms-mdp
https://medium.com/@bdarfler/synchronous-request-response-with-activemq-and-spring-21359a438a86
http://bsnyderblog.blogspot.com/2010/02/using-spring-jmstemplate-to-send-jms.html
http://bsnyderblog.blogspot.com/2010/02/using-spring-to-receive-jms-messages.html
http://bsnyderblog.blogspot.com/2010/05/tuning-jms-message-consumption-in.html

	Spring Support

