Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.


Let’s take an example. Imagine we have two brokers A & B. B is the leader initially as in the below figure. (A) fetches message m2 from the leader (B). So the follower (A) has message m2, but has not yet got confirmation from the leader (B) that m2 has been committed (the second round of replication, which lets (A) move forward its high watermark past m2, has yet to happen). At this point the follower (A) restarts. It truncates its log to the high watermark and issues a fetch request to the leader (B). (B) then fails and A becomes the new leader. Message m2 has been lost permanently (regardless of whether B comes back or not).

Image Modified

So the essence of this problem is the follower takes an extra round of RPC to update its high watermark. This gap leaves the possibility for a fast leader change to result in data loss as a committed message can be truncated by the follower. There are a couple of simple solutions to this. One is to wait for the followers to move their High Watermark before updating it on the leader. This is not ideal as it adds an extra round of RPC latency to the protocol. Another would be to not truncate on the follower until the fetch request returns from the leader. This should work, but it doesn’t address the second problem discussed below.