
1.
2.

3.
4.

5.

a.

1.

Java Tips

FAQ
How do I configure SLF4J?
How to format code automatically and avoid spotless errors?
How to run a single test?
How to run Java Dataflow Hello World pipeline with compiled Dataflow Java worker.
How to run a User Defined Pipeline - Java Direct Runner example
How to use a snapshot Beam Java SDK version?

Common Errors
Continue on error
IntelliJ Proto Intellisense doesn't work.
Build errors due to inconsistent Gradle cache
What command should I run locally before creating a pull request?

Dependency Upgrades

FAQ

How do I configure SLF4J?

To configure SLF4J in Gradle project:

Add a under the directory of the java test.log4j-test.properties
Add the following snippets into your file.build.gradle

test {
systemProperty "log4j.configuration", "log4j-test.properties"
}

dependencies {
shadow library.java.slf4j_api
shadow library.java.slf4j_log4j14
// or shadow library.java.slf4j_jdk12
}

Note: as of Beam 2.53.0, Beam does not support slf4j 2.x. Make sure your slf4j dependencies are of version 1.x
The second dependency is not necessary if another library already provides this dependency. shadow library.java.slf4j_log4j14
Check the dependency included in the dependency tree, execute:

./gradlew dependencies.

Check If you encounter an error message like the following.

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation

If so, it means there is no SLF4J.Add or in the library.java.slf4j_log4j12 library.java.slf4j_jdk14 build.gradle fi
le.

To configure SLF4J in Maven project

Configure the dependency in pom.xml:

https://github.com/apache/beam/blob/7940259137e20d5eb35b4be142ff628e078fe6a1/sdks/java/io/hbase/src/test/resources/log4j-test.properties

1.

1.

2.
3.
4.
5.

1.
2.
3.

<properties>
<slf4j.version>1.7.30</slf4j.version>
</properties>

<dependencies>
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>${slf4j.version}</version>
</dependency>

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-jdk14</artifactId>
 <version>${slf4j.version}</version>
 <!-- When loaded at runtime this will wire up slf4j to the JUL backend -->
 <scope>runtime</scope>
</dependency>
<dependencies>

How to format code automatically and avoid spotless errors?

Set up a git pre-commit hook to always autoformat code, add the following in .git/hooks/pre-commit.

Set the executable bit.
For more information about git hooks, go to: https://git-scm.com/docs/githooks .
To skip it, use --no-verify.
To disable it, use `chmod u-x.

How to run a single test?

Example command (run from root):beam

./gradlew :examples:java:test --tests org.apache.beam.examples.subprocess.ExampleEchoPipelineTest --info

To break that line down a bit:

./gradlew
the Gradle wrapper that runs your code. It lives in the root, so wherever you run your command from, this path needs to beam
point there.

:examples:java:test
Everything before the last colon is the path from the project root to the root of the subproject the test is in (this directory will
contain a file)build.gradle
The last word after the colon will always be because it isn't a directory name, but the name of the Gradle task you're test
asking the wrapper to perform

--tests
this is the option that lets you declare which specific test(s) (or test suite(s)) to run, typically using their path(s) from the src

 folder of the subproject/test/java
--info (optional)

sets the log level to info
For more information see the documentation below on:

Gradle CLI
Java test filtering

How to run Java Dataflow pipeline with compiled Dataflow Java worker.Hello World

You can dump multiple definitions for a name and folder. They are present since different targets use different names.gcp project temp

Before running the command, .configure your gcloud credentials
Add to your variables.GOOGLE_APPLICATION_CREDENTIALS env
Execute:

./gradlew :runners:google-cloud-dataflow-java:examples:preCommitLegacyWorker -
PdataflowProject=<GcpProjectName> -Pproject=<GcpProjectName> -PgcpProject=<GcpProjectName> -PgcsTempRoot=<Gcs
location in format: gs://..., no trailing slash> -PdataflowTempRoot=<Gcs location in format: gs://...>

https://git-scm.com/docs/githooks
https://docs.gradle.org/current/userguide/command_line_interface.html
https://docs.gradle.org/current/userguide/java_testing.html#test_filtering
https://cloud.google.com/docs/authentication/getting-started

1.
2.

1.
2.

1.
2.

1.
2.

1.
2.
3.
4.
5.

1.

./gradlew :runners:google-cloud-dataflow-java:examples:preCommitFnApiWorker -PdataflowProject=<GcpProjectName> -
Pproject=<GcpProjectName> -PgcpProject=<GcpProjectName> -PgcsTempRoot=<Gcs location in format: gs://..., no
trailing slash> -PdataflowTempRoot=<Gcs location in format: gs://..., no trailing slash> -
PdockerImageRoot=<docker image store location in format gcr.io/...>

How to run a User Defined Pipeline - Java Direct Runner example

If you want to run your own pipeline, and in the meanwhile change beam repo code for dev/testing purposes. is an example for a simple runner like Here
directRunner:

Put your pipeline code under the folder.example
Add the following build target to the related : build.gradle

task execute(type:JavaExec) {
main = "org.apache.beam.examples.SideInputWordCount"
classpath = configurations."directRunnerPreCommit"
}

There are also alternative choices, with a slight difference:

Option 1

Create a maven project.
Use the following command to publish changed code to the local repository.

 ./gradlew -Ppublishing -PnoSigning publishMavenJavaPublicationToMavenLocal

Option 2

Make use of Integration tests.
Make your user-defined pipeline part of the integration test.

How to use a snapshot Beam Java SDK version?

To use snapshot BEAM new features prior to the next Beam release, you need to;

Add the repository to your Check this apache.snapshots pom.xml. . example
Set to a snapshot version, e.g. "2.24.0-SNAPSHOT" or later (beam.version listed here).

Common Errors

Continue on error

Use the flag makes to compileJava task and to dump all found errors, not stop on first.--continue

IntelliJ Proto Intellisense doesn't work.

This can happen when you start IntelliJ or (in my case) after modifying .protos

This is not a solved problem yet. But here are some current approaches:

Clean from consolebuild
Build from IntelliJ
Refresh Gradle Project in IntelliJ
Restart IntelliJ
Another option is if is not updated with 3 or 4 steps. For more information, go to .index Rebuild IntelliJ project indexes

A workaround that did the trick. Since many things were tried in the process and no clear way to reproduce the error, this might not be the correct or best
step. Update steps if you find a shorter or cleaner way to do the trick.

Refresh project in IntelliJ.gradle

https://github.com/HuangLED/beam/commit/98bc7404b9e1a668c4fd63dc2cc30cd14418675e
https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/bfd8b792985e9e6b3a56622d1531da14e9106c83/pom.xml#L890
https://repository.apache.org/content/groups/snapshots/org/apache/beam/beam-sdks-java-core/
https://stackoverflow.com/questions/6652540/rebuild-intellij-project-indexes

2.
3.

4.

Close Intellij.
Clean build project from the console. Execute>

./gradlew clean cleanTest build -x testWebsite -x :rat -x test

Open IntelliJ.

Build errors due to inconsistent Gradle cache

Sometimes build fails even for the main (master) branch either using IntelliJ or command line. If it worked before but now consistently failing, most likely
this is due to inconsistent Gradle cache. It could happen when switching branches back and forth. Run the build Gradle command line with "--rerun-tasks"
would do the trick.

What command should I run locally before creating a pull request?

We recommend running this command, in order to catch common style issues, potential bugs (using code analysis), and Javadoc issues before creating a
pull request. Running this takes 5 to 10 minutes.

./gradlew spotlessApply && ./gradlew -PenableCheckerFramework=true checkstyleMain checkstyleTest javadoc
spotbugsMain compileJava compileTestJava

If you don't run this locally Jenkins will run them during pre-submit. However, if these fail during pre-submit, you may not see the output of test failures. So
doing this first is recommended to make your development process a bit smoother and iterate on your PR until it passes the pre-submit.

Dependency Upgrades
Unable to render {include} The included page could not be found.Unable to render {include}

	Java Tips

