
1.
a.
b.

2.
a.
b.
c.
d.
e.
f.

3.
a.

1.
2.
3.
4.
5.

1.
2.
3.
4.

Character Encoding
Character Encoding Issues
Permalink to this page: https://cwiki.apache.org/confluence/x/liklBg

Questions

Why
What is the default character encoding of the request or response body?
Why does everything have to be this way?

How
How do I change how GET parameters are interpreted?
How do I change how POST parameters are interpreted?
What can you recommend to just make everything work? (How to use UTF-8 everywhere).
How can I test if my configuration will work correctly?
How can I send higher characters in HTTP headers?
How to configure the BASIC authentication scheme to use UTF-8

Troubleshooting
I'm having a problem with character encoding in Tomcat 5

Answers

Why

What is the default character encoding of the request or response body?

If a character encoding is not specified, the Servlet specification requires that an encoding of ISO-8859-1 is used. The character encoding for the body of
an HTTP message (request response) is specified in the header field. An example of such a header is or Content-Type Content-Type: text

 which explicitly states that the default (ISO-8859-1) is being used./html; charset=ISO-8859-1

References: HTTP 1.1 Specification, Section 3.7.1

The above general rules apply to Servlets. The behaviour of JSP pages is further specified by the JSP specification. The request character encoding
handling is the same, but response character encoding behaves a bit differently. See chapter "JSP.4.2 Response Character Encoding". For JSP pages in
standard syntax the default response charset is the usual , but for the ones in XML syntax it is .ISO-8859-1 UTF-8

Why does everything have to be this way?

Everything covered in this page comes down to practical interpretation of a number of specifications. When working with Java servlets, the Java Servlet
Specification is the primary reference, but the servlet spec itself relies on older specifications such as HTTP for its foundation. Here are a couple of
references before we cover exactly where these items are located in them. A more detailed list can be found on the page.Specifications

Java Servlet Specification 4.0
HTTP 1.1 Protocol: Message Syntax and Routing, …HTTP 1.1 Protocol: Semantics and Content
URI Syntax
ARPA Internet Text Messages
HTML 4, HTML 5

Default encoding for request and response bodies

See 'Default Encoding for POST' below.

Default encoding for GET

The character set for HTTP query strings (that's the technical term for 'GET parameters') can be found in sections 2 and 2.1 the "URI Syntax" specification.
The character set is defined to be . Any character that does not map to US-ASCII must be encoded in some way. Section 2.1 of the URI Syntax US-ASCII
specification says that characters outside of US-ASCII must be encoded using escape sequences: each character is encoded as a literal followed by % %
the two hexadecimal codes which indicate its character code. Thus, (US-ASCII character code 97 = 0x61) is equivalent to . Although the URI a %61
specification does not mandate a default encoding for percent-encoded octets, it recommends UTF-8 especially for new URI schemes, and most modern
user agents have settled on UTF-8 for percent-encoding URI characters.

Some notes about the character encoding of URIs:

ISO-8859-1 and ASCII are compatible for character codes 0x20 to 0x7E, so they are often used interchangeably.
Modern browsers encoding URIs using UTF-8. Some browsers appear to use the encoding of the current page to encode URIs for links.
HTML 4.0 recommends the use of UTF-8 to encode the query string.
When in doubt, use POST for any data you think might have problems surviving a trip through the query string.

Default Encoding for POST

https://cwiki.apache.org/confluence/x/liklBg
https://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.7.1
https://cwiki.apache.org/confluence/display/TOMCAT/Specifications
https://www.jcp.org/en/jsr/detail?id=369
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc822
https://www.w3.org/TR/html4/
https://www.w3.org/TR/html/
https://en.wikipedia.org/wiki/ASCII
https://www.w3.org/TR/html401/appendix/notes.html#non-ascii-chars

1.

2.

1.
2.

Older versions of the HTTP/1.1 specification (e.g.) indicated that is the default charset for text-based HTTP request and response RFC 2616 ISO-8859-1
bodies if no charset is indicated. Although removed this default, the servlet specification continues to follow suit. Thus the servlet specification RFC 7231
indicates that if a request does not indicate an encoding, it must be processed as , except for POST ISO-8859-1 application/x-www-form-

, which by default should be interpreted as {{`}}US-ASCII` (as it by definition should contain only characters within the ASCII range to begin urlencoded
with).

Some notes about the character encoding of a POST request:

RFC 2616 Section 3.4.1 stated that recipients of an HTTP message respect the character encoding specified by the sender in the must Content-
 header if the encoding is supported. A missing character allows the recipient to "guess" what encoding is appropriate.Type

Most web browsers today specify the character set of a request, even when it is something other than ISO-8859-1. This seems to be in do not
violation of the HTTP specification. Most web browsers appear to send a request body using the encoding of the page used to generate the
POST (for instance, the <form> element came from a page with a specific encoding... it is encoding which is used to submit the POST data that
for that form).

Percent Encoding for application/x-www-form-urlencoded

The specification indicated that percent-encoding of any non alphanumeric characters of (the HTML 4.01 application/x-www-form-urlencoded
default content type for HTML form submissions) should be performed using byte sequences. However changed this to use UTF-8 US-ASCII HTML 5
byte sequences, matching the modern percent encoding for URLs. Modern browsers therefore percent-encode UTF-8 sequences when submitting forms
using .application/x-www-form-urlencoded

The servlet specification, however, requires servlet containers to interpret percent-encoded sequences in as application/x-www-form-urlencoded I
, which in a default configuration will result in corrupted content because of the charset mismatch. See below for how this can be reconfigured SO-8859-1

in Tomcat.

HTTP Headers

Section 3.1 of the ARPA Internet Text Messages spec states that headers are always in US-ASCII encoding. Anything outside of that needs to be
encoded. See the section above regarding query strings in URIs.

How

How do I change how GET parameters are interpreted?

Tomcat will use ISO-8859-1 as the default character encoding of the entire URL, including the query string ("GET parameters") (though see Tomcat 8
notice below).

There are two ways to specify how GET parameters are interpreted:

Set the attribute on the <Connector> element in server.xml to something specific (e.g.).URIEncoding URIEncoding="UTF-8"
Set the attribute on the <Connector> element in server.xml to . This will cause the Connector to use the useBodyEncodingForURI true
request body's encoding for GET parameters.

In Tomcat 8 starting with 8.0.0 (8.0.0-RC3, to be specific), the default value of attribute on the <Connector> element depends on "strict URIEncoding
servlet compliance" setting. The default value (strict compliance is off) of is now . If "strict servlet compliance" is enabled, the default URIEncoding UTF-8
value is .ISO-8859-1

References: , , , Tomcat 7 HTTP Connector Tomcat 7 AJP Connector Tomcat 8.5 HTTP Connector Tomcat 8.5 AJP Connector

How do I change how POST parameters are interpreted?

POST requests should specify the encoding of the parameters and values they send. Since many clients fail to set an explicit encoding, the default used is U
 for and for all other content types.S-ASCII application/x-www-form-urlencoded ISO-8859-1

In addition, the servlet specification requires that percent-encoded sequences of be interpreted as application/x-www-form-urlencoded ISO-
 by default which, as explained above, does not match the HTML 5 specification and modern user agent practice of using UTF-8 to percent encode 8859-1

characters. Nevertheless the servlet specification requires the servlet container's interpretation of percent-encoded sequences of application/x-www-
 to follow any configured character encoding. Thus appropriate intepretation of byte form-urlencoded application/x-www-form-urlencoded

sequences can be achieved by setting the request character encoding to .UTF-8

The container-agnostic approach for specifying the request character encoding for applications using Servlet 4.0 or later (which would correspond to
Tomcat 9.0 and later) is to set the element in the web application file:<request-character-encoding> web.xml

<request-character-encoding>UTF-8</request-character-encoding>

Note: If you are using the Eclipse integrated development environment, as of Eclipse Enterprise Java Developers 2019-03 M1 (4.11.0 M1) the IDE does
not recognize the setting and will temporarily freeze the IDE and generate errors with any edit of web application <request-character-encoding>
files. You can track the latest status of this problem at .Eclipse Bug 543377

Otherwise one can employ a . Writing such a filter is trivial.javax.servlet.Filter

6.x, 7.x::
Tomcat already comes with such an example filter. Please take a look at webapps/examples/WEB-INF/classes/filters

./SetCharacterEncodingFilter.java

https://tools.ietf.org/html/rfc2616
https://en.wikipedia.org/wiki/ISO/IEC_8859-1
https://tools.ietf.org/html/rfc7231
https://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1
https://url.spec.whatwg.org/#concept-urlencoded-serializer
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html
https://tomcat.apache.org/tomcat-7.0-doc/config/ajp.html
https://tomcat.apache.org/tomcat-8.5-doc/config/http.html
https://tomcat.apache.org/tomcat-8.5-doc/config/ajp.html
https://bugs.eclipse.org/bugs/show_bug.cgi?id=543377

1.

2.

3.

4.

5.

6.

5.5.36+, 6.0.36+, 7.0.20+, 8.x and later::
Since Tomcat 7.0.20, 6.0.36 and 5.5.36 the filter became first-class citizen and was moved from the examples into core Tomcat and is available to any
web application without the need to compile and bundle it separately, although this will not allow the web application to be deployed in non-Tomcat servlet
containers that do not have this filter available, if the servlet is defined in the web application's own file. See documentation for the list of web-xml filters
provided by Tomcat. The class name is .org.apache.catalina.filters.SetCharacterEncodingFilter

It is also possible to define such a filter in the Tomcat installation configuration file , which would set the request character encoding across conf/web.xml
all web applications without the need for any modifications. In fact the latest Tomcat versions come with sections in that already web.xml conf/web.xml
configure a filter to set the request character encoding to . Simply edit and uncomment both the definition and the mapping of the UTF-8 conf/web.xml
filter named .setCharacterEncodingFilter

Note: The request encoding setting is effective only if it is done earlier than parameters are parsed. Once parsing happens, there is no way back.
Parameters parsing is triggered by the first method that asks for parameter name or value. Make sure that the filter is positioned before any other filters
that ask for request parameters. The positioning depends on the order of declarations in the WEB-INF/web.xml file, though since filter-mapping
Servlet 3.0 specification there are additional options to control the order. To check the actual order you can throw an Exception from your page and check
its stack trace for filter names.

Tomcat 9.x and later: do not use a at all and instead specify in your application's web.xml file.<filter> <request-character-encoding>

What can you recommend to just make everything work? (How to use UTF-8 everywhere).

Using as your character encoding for everything is a safe bet. This should work for pretty much every situation.UTF-8

In order to completely switch to using UTF-8, you need to make the following changes:

Set on your <Connector> in . References: , , URIEncoding="UTF-8" server.xml Tomcat 7 HTTP Connector Tomcat 7 AJP Connector Tomcat
, .8.5 HTTP Connector Tomcat 8.5 AJP Connector

Set the either in the Tomcat file or in the web app file; either by setting default request character encoding conf/web.xml web.xml <request-
 (for applications using Servlet 4.0 / Tomcat 9.x+) or by using a character encoding filter.character-encoding>

Change all your JSPs to include charset name in their contentType. For example, use <%@page contentType="text/html; charset=UTF-
 for the usual JSP pages and for the pages in XML 8" %> <jsp:directive.page contentType="text/html; charset=UTF-8" />

syntax (aka JSP Documents).
Change all your servlets to set the content type for responses and to include charset name in the content type to be UTF-8. Use response.

 or .setContentType("text/html; charset=UTF-8") response.setCharacterEncoding("UTF-8")
Change any content-generation libraries you use (Velocity, Freemarker, etc.) to use UTF-8 and to specify UTF-8 in the content type of the
responses that they generate.
Disable any valves or filters that may read request parameters before your character encoding filter or jsp page has a chance to set the encoding
to UTF-8. For more information see . https://www.mail-archive.com/users@tomcat.apache.org/msg21117.html

How can I test if my configuration will work correctly?

The following sample JSP should work on a clean Tomcat install for any input. If you set the URIEncoding="UTF-8" on the connector, it will also work with
method="GET".

<%@ page contentType="text/html; charset=UTF-8" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <title>Character encoding test page</title>
 </head>
 <body>
 <p>Data posted to this form was:
 <%
 request.setCharacterEncoding("UTF-8");
 out.print(request.getParameter("mydata"));
 %>

 </p>
 <form method="POST" action="index.jsp">
 <input type="text" name="mydata">
 <input type="submit" value="Submit" />
 <input type="reset" value="Reset" />
 </form>
 </body>
</html>

How can I send higher characters in my HTTP headers?

You have to encode them in some way before you insert them into a header. Using url-encoding (+ high byte number + low byte number) would be a %
good idea.

https://tomcat.apache.org/tomcat-8.5-doc/config/filter.html
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html
https://tomcat.apache.org/tomcat-7.0-doc/config/ajp.html
https://tomcat.apache.org/tomcat-8.5-doc/config/http.html
https://tomcat.apache.org/tomcat-8.5-doc/config/http.html
https://tomcat.apache.org/tomcat-8.5-doc/config/ajp.html
https://www.mail-archive.com/users@tomcat.apache.org/msg21117.html

How to configure the BASIC authentication scheme to use UTF-8

If a web application is configured to use the BASIC authentication scheme (e.g. configured with in its web.xml <auth-method>BASIC</auth-method>
file), it means that an instance of will be automatically created and inserted into the chain of Valves for this web application (this BasicAuthenticator
Context), unless any other Authenticator valve has already been explicitly configured.

To enable support for UTF-8 in a BasicAuthenticator, you can configure it explicitly, by inserting the following line into the Context configuration file of your
web application (usually META-INF/context.xml):

 <Valve className="org.apache.catalina.authenticator.BasicAuthenticator" charset="UTF-8" />

If you do so, the BasicAuthenticator will append "charset=UTF-8" to the value of WWW-Authenticate header that it sends and will interpret the values sent
by clients as UTF-8.

See also:

Configuration Reference (Tomcat 9): , .Valves (Authentication) Context (Defining a context)
Bug 61280
Bug 66174
Specifications (RFC 7617)

Troubleshooting

I'm having a problem with character encoding in Tomcat 5

In Tomcat 5 - there have been issues reported with respect to character encoding (usually of the the form "request.setCharacterEncoding(String) doesn't
work"). Odds are, its not a bug. Before filing a bug report, see these bug reports as well as any bug reports linked to these bug reports:

23929
25360
25231
25235
22666
24557
24345
25848

https://tomcat.apache.org/tomcat-9.0-doc/config/valve.html#Authentication
https://tomcat.apache.org/tomcat-9.0-doc/config/context.html#Defining_a_context
https://bz.apache.org/bugzilla/show_bug.cgi?id=61280
https://bz.apache.org/bugzilla/show_bug.cgi?id=66174
https://cwiki.apache.org/confluence/display/TOMCAT/Specifications#Specifications-HTTP-RelatedSpecifications
https://bz.apache.org/bugzilla/show_bug.cgi?id=23929
https://bz.apache.org/bugzilla/show_bug.cgi?id=25360
https://bz.apache.org/bugzilla/show_bug.cgi?id=25231
https://bz.apache.org/bugzilla/show_bug.cgi?id=25235
https://bz.apache.org/bugzilla/show_bug.cgi?id=22666
https://bz.apache.org/bugzilla/show_bug.cgi?id=24557
https://bz.apache.org/bugzilla/show_bug.cgi?id=24345
https://bz.apache.org/bugzilla/show_bug.cgi?id=25848

	Character Encoding

