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Preface

Please see the  for other pages describing how they were able to link Tomcat with a connector. With luck, someone documented Other Resources Link
their experience in an environment which is similar to yours.

Here is a link to the  (aka JK Connectors) project page. It contains more configuration and installation information.Apache Tomcat Connectors

Please note, jk2 is no longer supported. Please use mod_jk instead.

Questions

What is JK (or AJP)?
Which connector: mod_jk or mod_proxy?
What about mod_jserv, mod_jk2, mod_webapp (aka warp)?
Why should I integrate Apache HTTP Server with Apache Tomcat? (or not)
At boot, is order of start up (Apache HTTP Server vs Apache Tomcat) important?
Is there any way to control the content of automatically generated mod_jk.conf-auto?
How do I bind to a specific IP address?
Where can I download a binary distribution of my connector?
I'm having strange UTF-8 issues with my request parameters.
How do I configure apache tomcat connectors for a heavy load site?

Answers

What is JK (or AJP)?

AJP is a wire protocol. It an optimized version of the HTTP protocol to allow a standalone web server such as  to talk to Tomcat. Historically, Apache
Apache has been much faster than Tomcat at serving static content. The idea is to let Apache serve the static content when possible, but proxy the 
request to Tomcat for Tomcat related content.

Which connector: mod_jk or mod_proxy?

mod_jk is mature, stable and extremely flexible. It is under active development by members of the Tomcat community.
mod_proxy_ajp is distributed with Apache httpd 2.2 and later. Note that the communication protocol used is AJP.
mod_proxy_http is a cheap way to proxy without the hassles of configuring JK. If you don't need some of the features of mod_jk, this is a very 
simple alternative. Note that the communication protocol used is HTTP/1.1.
mod_proxy_http2 uses HTTP/2 as communication protocol. I has support for both secure (h2) and cleartext (h2c) variants of HTTP/2. Both are 
understood by Tomcat 8.5 and later.

Here are some anecdotal comments from members of the Tomcat community:

_ I have been using mod_jk for a very long time and I saw (at the time) only one reason to make the switch to mod_proxy_ajp: it is bundled with 
Apache and so you (likely) don't have to build the module yourself.

That said, simple configurations are *way* more simple in mod_proxy_ajp than with mod_jk, although the (somewhat) recent addition of JkWorkerP
 and  "extensions" do help quite a bit.roperty JkMount

mod_proxy_ajp can also be trivially swapped-out with mod_proxy_http just by changing the URLs in your  and  ProxyPass ProxyPassReverse
directives to say http:// (or https://) instead of ajp://. This might help you if you need to switch protocols for debugging purposes or if you suddenly 
need switch to HTTPS to secure the traffic without any external configuration (e.g. stunnel or VPN). (See .)AJP with stunnel

mod_proxy also supports  directive which lets you use regular expressions in your URL mappings, which mod_jk's  ProxyPassMatch JkMount
does not (though you *can* use  along with  in order to achieve the same result, it's a cleaner configuration with <LocationMatch> SetHandler
mod_proxy).

That said, I have found that mod_jk supports more complicated configurations where I have struggled to get mod_proxy_ajp to do the same. 
Specifically, overlapping URL spaces that must be mapped to separate workers. Technically speaking, I suppose you could use lots of ProxyPassM

 directives and/or have a complex regular expression to direct the various URLs, but again you end up with a rather messy configuration that atch
way. Messy configurations are a maintenance risk as well as at risk of becoming "arcane knowledge" that nobody actually understands and so they 
are afraid to modify it for any reason.

Generally, mod_jk will get fixed faster than mod_proxy_ajp due to its independent release cycle: the httpd folks might have a fix for a problem but it 
doesn't get released for a while due to testing of other components, etc. At this point, mod_proxy_ajp has (IMHO) reached a point of stability that 
this is less of an issue than it used to be.

At this stage, there is no reason for me to move any of my projects from mod_jk to mod_proxy_ajp but if I were starting from scratch, I might choose 
mod_proxy_ajp solely due to its binary availability and simple configuration. If the configuration became complicated to the extent that switching to 
mod_jk were a good option, then I'd move.

https://cwiki.apache.org/confluence/x/yiklBg
https://cwiki.apache.org/confluence/display/TOMCAT/UsefulLinks
https://tomcat.apache.org/connectors-doc/
https://httpd.apache.org/
https://cwiki.apache.org/confluence/display/TOMCAT/AJP+with+stunnel


As for performance, I have no data on that one way or another. I would suspect that mod_jk has a slight performance advantage because it has 
been especially designed for the purpose rather than mod_proxy_ajp which must support the mod_proxy API and might have a bit more plumbing 
code to accomplish that. I would be surprised if you could detect any performance difference between the two if you were to test them both faithfully 
and with compatible configurations. If anyone has relative performance data between mod_jk and mod_proxy_ajp, I'd be happy to read it._ 
(Source: )https://tomcat.markmail.org/message/u5v4aiejluzy7tde

What about mod_jserv, mod_jk2, mod_webapp (aka warp)?

All of these connectors have been abandoned long ago. Do not use any of them.

mod_jk2 sounds like it could be an updated version of mod_jk, it is not: it was an aborted effort whose features have been re-incorporated into mod_jk.

For historical purposes, and emphasis:

mod_jserv is unsupported and will not be supported in Tomcat 5 onward. mod_jserv was the original connector which supported the ajp protocol. 
Do not use mod_jserv.
Stay away from mod_webapp, aka warp. It is deprecated and unsupported due to lack of developer interest and there are better options such as 
jk and mod_proxy. It WILL NOT run on windows. Do not use mod_webapp or warp.
jk2 is a refactoring of mod_jk and uses the Apache Portable Runtime (apr). But due to lack of developer interest, it is unsupported. Do not use 
mod_jk2.

Why should I integrate Apache HTTP Server with Apache Tomcat? (or not)

There are many reasons to integrate Tomcat with Apache. And there are reasons why it should not be done too. Needless to say, everyone will disagree 
with the opinions here. With the performance of Tomcat 5 and 6, performance reasons become harder to justify. So here are the issues to discuss in 
integrating vs not.

Clustering. By using Apache as a front end you can let Apache act as a front door to your content to multiple Tomcat instances. If one of your 
Tomcats fails, Apache ignores it and your Sysadmin can sleep through the night. This point could be ignored if you use a hardware loadbalancer 
and Tomcat's clustering capabilities.
Clustering/Security. You can also use Apache as a front door to different Tomcats for different URL namespaces (/app1/, /app2/, /app3/, or virtual 
hosts). The Tomcats can then be each in a protected area and from a security point of view, you only need to worry about the Apache server. 
Essentially, Apache becomes a smart proxy server.
Security. This topic can sway one either way. Java has the security manager while Apache has a larger mindshare and more tricks with respect to 
security. I won't go into this in more detail, but let Google be your friend. Depending on your scenario, one might be better than the other. But also 
keep in mind, if you run Apache with Tomcat - you have two systems to defend, not one.
Add-ons. Adding on CGI, perl, PHP is very natural to Apache. Its slower and more of a kludge for Tomcat. Apache also has hundreds of modules 
that can be plugged in at will. Tomcat can have this ability, but the code hasn't been written yet.
Decorators! With Apache in front of Tomcat, you can perform any number of decorators that Tomcat doesn't support or doesn't have the 
immediate code support. For example, mod_headers, mod_rewrite, and mod_alias could be written for Tomcat, but why reinvent the wheel when 
Apache has done it so well?
Speed. Apache is faster at serving static content than Tomcat. But unless you have a high traffic site, this point is useless. But in some scenarios, 
tomcat can be faster than Apache httpd. So benchmark YOUR site. Tomcat can perform at httpd speeds when using the proper connector 
(APR with sendFile enabled). Speed should not be considered a factor when choosing between Apache httpd and Tomcat
Socket handling/system stability. Apache has better socket handling with respect to error conditions than Tomcat. The main reason is Tomcat 
must perform all its socket handling via the JVM which needs to be cross platform. The problem is socket optimization is a platform specific 
ordeal. Most of the time the java code is fine, but when you are also bombarded with dropped connections, invalid packets, invalid requests from 
invalid IP's, Apache does a better job at dropping these error conditions than JVM based program. (YMMV)

At boot, is order of start up (Apache HTTP Server vs Apache Tomcat) important?

No. This way either Apache HTTPd or Apache Tomcat can be restarted at any time independently of one another.

Is there any way to control the content of automatically generated mod_jk.conf-auto? I need my own 
specific commands added to it.

There really is no need to. Just copy the automatically generated mod_jk.conf-auto and edit it manually to your preference. None of production tomcat 
installations really use mod_jk.conf-auto as it is.

How do I bind to a specific IP address?

Each Connector element allows an  property. See the  or the .address HTTP Connector docs AJP Connector docs

Where can I download a binary distribution of my connector?

You cannot: you need to download the source and compile it for your platform. The source distributions are available from the . Note that standard location
JPackage.org has RPM distributions for the connectors as well as tomcat itself: JPackage.org

I'm having strange UTF-8 issues with my request parameters.

See Character Encoding

https://tomcat.markmail.org/message/u5v4aiejluzy7tde
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html
https://tomcat.apache.org/tomcat-7.0-doc/config/ajp.html
https://tomcat.apache.org/download-connectors.cgi
http://www.jpackage.org/
https://cwiki.apache.org/confluence/display/TOMCAT/Character+Encoding


How do I configure Apache Tomcat connectors for a heavy load site?

See Performance and Monitoring

https://cwiki.apache.org/confluence/display/TOMCAT/Performance+and+Monitoring
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