
1.
2.
3.
4.

KnownIssues
FAQ / Known Issues
Permalink to this page: https://cwiki.apache.org/confluence/x/DColBg

Questions

What are the known issues in any given Tomcat version?
What are the known issues with the Oracle JRE?
What are the known issues with the OpenJDK?
I'm using the Java ImageIO to dynamically serve images and get strange Exceptions from time to time. Is this a bug in Tomcat?

Answers

What are the known issues in any given Tomcat version?

To determine the known issues for any given Tomcat version, you'll need to review the following:

The currently open bugs and enhancement requests in Bugzilla
The latest (from svn) change log entries for all newer versions

See chapter on Tomcat web site.Looking for known issues

What are the known issues with the Oracle JRE?

jps.exe and jvisualvm.exe cannot detect tomcat using jdk1.6.0_23 onwards — Fixed in Java 1.6.0_25.

What are the known issues with the OpenJDK?

There have been reports that java.util.logging does not work properly in OpenJDK 1.7.0.9 and OpenJDK6 1.6.0_32. The symptom is "java.
" errors when you start Tomcat. See these threads from lang.ClassNotFoundException: 1catalina.org.apache.juli.FileHandler

 and . This issue was absent in earlier versions and should be fixed in a later version of those JDKs.March 2013 July 2013

I'm using the Java ImageIO to dynamically serve images and get strange Exceptions from time to time.
Is this a bug in Tomcat?

Imagine you have a servlet which dynamically generates images and serves them via javax.imageio.ImageIO. To write the image to the OutputStream,
perhaps you are doing something like this:

 protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {
 BufferedImage img = createMyImage(); // makes a BufferedImage

 response.setContentType("image/png");
 try (OutputStream out = response.getOutputStream()) { // try-with-resources
 ImageIO.write(img, "PNG", out);
 } catch (IOException ex) {
 // Client aborted connection
 }
 }

Now, although there shouldn't be any Exception logged (because the IOException which occurs when the client aborted the connection is ignored), you
see strange Exceptions in Tomcat's log which may belong to other Servlets/JSP (at least with Sun/Oracle JVM on Windows), saying that the response has
already been committed, although you didn't write anything to it at that time. For example:

13.07.2011 00:13:51 org.apache.catalina.core.StandardWrapperValve invoke
SEVERE: Servlet.service() for servlet [myApp.MyServlet] in context with path [] threw exception
java.lang.IllegalStateException: Cannot create a session after the response has been committed
 at org.apache.catalina.connector.Request.doGetSession(Request.java:2734)
 ...

or maybe you use the ISAPI Redirector for IIS on Windows, and get these logs:

https://cwiki.apache.org/confluence/x/DColBg
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=109445158#KnownIssues-TomcatIssues
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=109445158#KnownIssues-OracleJREIssues
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=109445158#KnownIssues-OpenJDKIssues
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=109445158#KnownIssues-ImageIOIssues
https://tomcat.apache.org/bugreport.html#Looking_for_known_issues
https://bz.apache.org/bugzilla/show_bug.cgi?id=50518
https://marc.info/?t=136253269400001&r=1&w=2
https://marc.info/?t=137371445700004&r=1&w=2

[Tue Jul 12 06:04:49.812 2011] [4124:2444] [error] ajp_connection_tcp_get_message::jk_ajp_common.c (1296):
wrong message format 0xdaed from 127.0.0.1:8019

Is this a bug in Tomcat?

Actually, it's a bug (or at least a strange behavior) in the Java ImageIO. When the ImageIO writes to an OutputStream and gets an IOException during
writing, it could happen that some later time, when the ImageWriter is garbage-collected, the flush() method is called on that OutputStream. Tomcat
recycles OutputStream objects to save resources, so it could be that when flush() is called from the ImageIO, the particular OutputStream object already
belongs to another Response, which can produce the above errors, when the Servlet tries to get a Session for example, or can generally lead to broken
responses.

See also or this .here Bug report

So how to resolve the errors?

To resolve this, I'm using an OutputStream decorator class which decorates Tomcat's OutputStream and prevents any flush() calls. Additionally, when
close() is called on that Stream, it nulls-out the reference to Tomcat's OutputStream and prevents any other operations:

https://nerd.dk/blogs/bug-tomcat-or-java2d
https://bz.apache.org/bugzilla/show_bug.cgi?id=37516

/**
 * A OutputStream which can be used to write Images
 * with the ImageIO in servlets.
 */
public class MyImageIOOutputStream extends OutputStream {

 private OutputStream out;
 private volatile boolean isActive = true;

 public MyImageIOOutputStream(OutputStream out) {
 this.out = out;
 }

 @Override
 public void close() throws IOException {
 if (isActive) {
 isActive = false; // deactivate
 try {
 out.close();
 } finally {
 out = null;
 }
 }
 }

 @Override
 public void flush() throws IOException {
 if(isActive) {
 out.flush();
 }
 // otherwise do nothing (prevent polluting the stream)
 }

 @Override
 public void write(byte[] b, int off, int len) throws IOException {
 if (isActive)
 out.write(b, off, len);
 }

 @Override
 public void write(byte[] b) throws IOException {
 if (isActive)
 out.write(b);
 }

 @Override
 public void write(int b) throws IOException {
 if (isActive)
 out.write(b);
 }
}

Now you just have to use this Decorater class instead of using Tomcat's OutputStream directly:

 response.setContentType("image/png");
 try (OutputStream out = new MyImageIOOutputStream(response.getOutputStream())) {
 ImageIO.write(img, "PNG", out);
 } catch (IOException ex) {
 // Client aborted connection
 }

and the errors should be gone away.

An alternative would be to write the Image contents to a ByteArrayOutputStream, and using its writeTo() method to write the contents to the Servlet's
Response. However that would require some additional memory, as the contents have to be buffered.

Are there any other corresponding cases of this bug?

The third party PDF generating software module PD4ML has had a corresponding problem when calling the render() methods in class org.zefer.pd4ml.
PD4ML with response.getOutputStream() as argument. That causes the response stream to be closed from a finalizer() method of a class called
PD4Device. When using an Apache/Tomcat connector, this unexpected stream close from the finalizer thread has occationally caused responses to be
sent to wrong requestor (request/response mix up). The workarounds described above for ImageIO works perfectly in this case too.

A general way to protect the response output streams from misbehaving web applications is to set the system property org.apache.catalina.connector.
RECYCLE_FACADES=true, since that makes Tomcat create new stream instances for each request (of course at the cost of performance).

PD4ML has fixed this bug in their latest releases, but sites using older versions of the library can still be affected. PD4ML version 3.2.3 definitely has this
flaw, but the currently latest version 3.8.0 is fixed. The release notes document gives no clues where in between the problem was fixed, and the vendor
was not able to tell either in .this bug report

https://pd4ml.com/support/pdf-generation-troubleshooting-f4/pd4device-finalize-closes-output-stream-and-causes-mixup-t543.html

	KnownIssues

