
Testing

Testing

Testing is a crucial activity in any piece of software development or integration. Typically Camel Riders use various different wired together in technologies
a variety of with different together with different forms of and so its very easy for patterns expression languages Bean Integration Dependency Injection
things to go wrong! . Testing is the crucial weapon to ensure that things work as you would expect.

Camel is a Java library so you can easily wire up tests in whatever unit testing framework you use (JUnit 3.x (deprecated), 4.x, or TestNG). However the
Camel project has tried to make the testing of Camel as easy and powerful as possible so we have introduced the following features.

Testing Mechanisms

The following mechanisms are supported:

Name Component Description

Camel
Test

camel-test Is a standalone Java library letting you easily create Camel test cases using a single Java class for all your configuration
and routing without using , or for which does not require an in-depth knowledge of CDI Spring Guice Dependency Injection
Spring + Spring Test or Guice. Supports JUnit 3.x (deprecated) and JUnit 4.x based tests.

CDI
Testing

camel-
test-cdi

Provides a JUnit 4 runner that bootstraps a test environment using CDI so that you don't have to be familiar with any CDI
testing frameworks and can concentrate on the testing logic of your Camel CDI applications. Testing frameworks like Arquilli

 or , can be used for more advanced test cases, where you need to configure your system under test in a very an PAX Exam
fine-grained way or target specific CDI containers.

Spring
Testing

camel-
test-
spring

Supports JUnit 3.x (deprecated) or JUnit 4.x based tests that bootstrap a test environment using Spring without needing to
be familiar with Spring Test. The plain JUnit 3.x/4.x based tests work very similar to the test support classes in .camel-test

Also supports Spring Test based tests that use the declarative style of test configuration and injection common in Spring
Test. The Spring Test based tests provide feature parity with the plain JUnit 3.x/4.x based testing approach.

Note: is a new component from . For older Camel release use which has camel-test-spring Camel 2.10 camel-test
built-in .Spring Testing

Blueprin
t
Testing

camel-
test-
blueprint

Camel 2.10: Provides the ability to do unit testing on blueprint configurations

Guice camel-
guice

Deprecated

Uses to dependency inject your test classesGuice

Camel
TestNG

camel-
testng

Deprecated

Supports plain TestNG based tests with or without , or for which does not require an CDI Spring Guice Dependency Injection
in-depth knowledge of CDI, Spring + Spring Test or Guice.

From : this component supports Spring Test based tests that use the declarative style of test configuration and Camel 2.10
injection common in Spring Test and described in more detail under .Spring Testing

In all approaches the test classes look pretty much the same in that they all reuse the .Camel binding and injection annotations

Camel Test Example

Here is the :Camel Test example {snippet:lang=java|id=example|url=camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns
Notice how it derives from the Camel helper class but has no CDI, Spring or Guice dependency injection /FilterTest.java} CamelTestSupport

configuration but instead overrides the method.createRouteBuilder()

CDI Test Example

Here is the :CDI Testing example {snippet:lang=java|id=example|url=camel/trunk/components/camel-test-cdi/src/test/java/org/apache/camel/test/cdi
You can find more testing patterns illustrated in the example and the test classes that come with it./FilterTest.java} camel-example-cdi-test

Spring Test with XML Config Example

Here is the :Spring Testing example using XML Config {snippet:lang=java|id=example|url=camel/trunk/components/camel-spring/src/test/java/org/apache
Notice that we use on the test methods to force to automatically reload the /camel/spring/patterns/FilterTest.java} @DirtiesContext Spring Testing Came

 after each test method - this ensures that the tests don't clash with each other, e.g., one test method sending to an endpoint that is then reused lContext
in another test method.

Also note the use of to indicate that by default we should look for the to @ContextConfiguration on the classpathFilterTest-context.xml
configure the test case which looks like this:{snippet:lang=xml|id=example|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel
/spring/patterns/FilterTest-context.xml}

https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Dependency+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test
https://cwiki.apache.org/confluence/display/CAMEL/CDI
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Dependency+Injection
https://cwiki.apache.org/confluence/display/CAMEL/CDI+Testing
https://cwiki.apache.org/confluence/display/CAMEL/CDI+Testing
http://arquillian.org/
http://arquillian.org/
https://ops4j1.jira.com/wiki/display/PAXEXAM4
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Blueprint+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Blueprint+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Blueprint+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/CDI
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Dependency+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/CDI+Testing
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test-cdi/src/test/java/org/apache/camel/test/cdi/FilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml

Spring Test with Java Config Example

Here is the .Spring Testing example using Java Config

For more information see .Spring Java Config {snippet:lang=java|id=example|url=camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache
This is similar to the XML Config example above except that there is no XML file and instead the nested /camel/spring/javaconfig/patterns/FilterTest.java} Co

 class does all of the configuration; so your entire test case is contained in a single Java class. We currently have to reference by class ntextConfig
name this class in the which is a bit ugly. Please vote for to address this and make Spring Test work more cleanly @ContextConfiguration SJC-238
with Spring JavaConfig.

Its totally optional but for the implementation we derive from which is a helper Spring Java ContextConfig SingleRouteCamelConfiguration
Config class which will configure the for us and then register the we create.CamelContext RouteBuilder

Since you can use the with like Camel 2.11.0 CamelSpringJUnit4ClassRunner CamelSpringDelegatingTestContextLoader example using
:Java Config with CamelSpringJUnit4ClassRunner {snippet:lang=java|id=example|url=camel/trunk/components/camel-spring-javaconfig/src/test/java

/org/apache/camel/spring/javaconfig/test/CamelSpringDelegatingTestContextLoaderTest.java}

Spring Test with XML Config and Declarative Configuration Example

Here is a Camel test support enhanced :Spring Testing example using XML Config and pure Spring Test based configuration of the Camel Context {snippet:
Nlang=java|id=e1|url=camel/trunk/components/camel-test-spring/src/test/java/org/apache/camel/test/spring/CamelSpringJUnit4ClassRunnerPlainTest.java}

otice how a custom test runner is used with the annotation to support the features of through annotations on the test @RunWith CamelTestSupport
class. See for a list of annotations you can use in your tests.Spring Testing

Blueprint Test

Here is the :Blueprint Testing example using XML Config {snippet:lang=java|id=example|url=camel/trunk/components/camel-test-blueprint/src/test/java/org
Also notice the use of to indicate that by default we should look for /apache/camel/test/blueprint/DebugBlueprintTest.java} getBlueprintDescriptors

the to configure the test case which looks like this: in the packagecamelContext.xml {snippet:lang=xml|id=example|url=camel/trunk/components/camel-
test-blueprint/src/test/resources/org/apache/camel/test/blueprint/camelContext.xml}

Testing Endpoints

Camel provides a number of endpoints which can make testing easier.

Name Description

DataSet For load & soak testing this endpoint provides a way to create huge numbers of messages for sending to and asserting that Components
they are consumed correctly

Mock For testing routes and mediation rules using mocks and allowing assertions to be added to an endpoint

Test Creates a endpoint which expects to receive all the message bodies that could be polled from the given underlying endpointMock

The main endpoint is the endpoint which allows expectations to be added to different endpoints; you can then run your tests and assert that your Mock
expectations are met at the end.

Stubbing out physical transport technologies

If you wish to test out a route but want to avoid actually using a real physical transport (for example to unit test a transformation route rather than
performing a full integration test) then the following endpoints can be useful.

Name Description

Direct Direct invocation of the consumer from the producer so that single threaded (non-SEDA) in VM invocation is performed which can be useful
to mock out physical transports

SEDA Delivers messages asynchronously to consumers via a which is good for testing asynchronous transportsjava.util.concurrent.BlockingQueue

Stub Works like but does not validate the endpoint URI, which makes stubbing much easier.SEDA

Testing existing routes

Camel provides some features to aid during testing of existing routes where you cannot or will not use etc. For example you may have a production Mock
ready route which you want to test with some 3rd party API which sends messages into this route.

Name Description

NotifyB
uilder

Allows you to be notified when a certain condition has occurred. For example when the route has completed five messages. You can build
complex expressions to match your criteria when to be notified.

https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Java+Config
http://jira.springframework.org/browse/SJC-238
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/test/CamelSpringDelegatingTestContextLoaderTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/test/CamelSpringDelegatingTestContextLoaderTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://svn.apache.org/repos/asf/camel/trunk/components/camel-test-spring/src/test/java/org/apache/camel/test/spring/CamelSpringJUnit4ClassRunnerPlainTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Blueprint+Testing
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test-blueprint/src/test/java/org/apache/camel/test/blueprint/DebugBlueprintTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test-blueprint/src/test/resources/org/apache/camel/test/blueprint/camelContext.xml
https://cwiki.apache.org/confluence/display/CAMEL/DataSet
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Direct
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
https://cwiki.apache.org/confluence/display/CAMEL/Stub
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/NotifyBuilder
https://cwiki.apache.org/confluence/display/CAMEL/NotifyBuilder

Advice
With

Allows you to or an existing route using a style. For example you can add interceptors to intercept sending advice enhance RouteBuilder
outgoing messages to assert those messages are as expected.

https://cwiki.apache.org/confluence/display/CAMEL/AdviceWith
https://cwiki.apache.org/confluence/display/CAMEL/AdviceWith
https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder

	Testing

