How to run jetty

*

® Run jetty interactively

® Start jetty in the background

® Run several jetty instances in different modules
® Run embedded jetty on working directory

Basically you can run jetty in two different modes:

1. Interactively: use s.th. like bui | dr your proj ect: run-j etty and have the jetty running within this shell, so that you see the output of jetty
and your app

2. In the background: use bui I dr jetty:start andbuil dr yourproject: depl oy- app to start jetty in the background and deploy your app.
The build is not blocking in this case and you can use your shell for different things.

Run jetty interactively

In your buildfile you define the jetty task within your project (here it's "webapp"):
require "buildr/jetty’
require 'readline'

define "webapp" do

task("jetty"=>[package(:war), jetty.use]) do |task]|
jetty.deploy("http://Iocal host: 8080", task.prerequisites.first)
Readl i ne: :readline(' [Type ENTER to stop Jetty]"')

end

end
If you prefer to use CTRL- Cto stop jetty instead of hitting ENTER you can replace the Readl i ne: : . .. line with this:

puts 'Press CTRL-C to stop Jetty'
trap 'SIG NT' do
jetty.stop
end
Thr ead. st op

Then you can run your webapplication inside jetty:
$ buildr webapp:jetty

That's all

Start jetty in the background

In your buildfile you define the "deploy-app" task within your project (here it's "webapp"):

require 'buildr/jetty’

define "webapp" do

task("depl oy-app"=>[package(:war), jetty.use]) do |task]

class << task ; attr_accessor :url, :path ; end

task.url = "http://1ocal host: 8080"

task.path = jetty. depl oy(task.url, task.prerequisites.first)
end

end

Now, in one console do:
$ buildr jetty:start

Switch to a different console and do:
$ buil dr webapp: depl oy- app

Now the app is running and you can access it from the browser. The first console is effectively the Jetty log, and you kill Jetty at any time by going there
and hitting CTRL-C. The second console gives you a new prompt and you can run buildr deploy-app again, test the app using curl, etc.

Alternatively, in a single console:

$ buildr jetty:start &
$ buil dr webapp: depl oy- app

And again this free up the console so you can do more work while your app is running inside Jetty.

To stop the server:

$ buildr jetty:stop

Run several jetty instances in different modules

If you have a multi module project with several web applications (producing a war) you might want to start them in different jetty instances (on different
ports).

To achieve this you cannot use the default jetty singleton instance (as shown in the examples above) but you must create a new jetty instance for the
different web applications (or at least starting with the second). The following example demonstrates this:

define "nyproj" do
define "subproj A" do

task("jetty"=>[package(:war), jetty.use]) do |task]|
jetty.deploy("http://1ocal host: 8080", task.prerequisites.first)
Readl i ne::readline(' [Type ENTER to stop Jetty]')

end

end
define "subprojB" do

nmyJdetty = Buildr::Jetty. newm "webapp”, "http://Iocal host:8090")
task("jetty"=>[package(:war), myJetty.use]) do |task]|
nmyJetty. depl oy("http://1 ocal host: 8090", task.prerequisites.first)
Readl i ne::readline(' [Type ENTER to stop Jetty]')
end

end

end

Now you can start both jetty instances in parallel.
Starting jetty for the first subproject:

$ buildr nyproj:subprojAjetty &
And after the subprojA jetty was started (or in a different console):

$ buildr nmyproj:subprojB:jetty

Run embedded jetty on working directory

The suggestions above will always have you run through a complete compile -> package -> deploy cycle, even if you are only editing Javascript files or did
a minor small change in a sub project, which gets annoying pretty fast. Use the embedded server and run it directly on your working directory instead to
save all that packaging time and to edit HTML in place.

Add a source file to start embedded jetty using your webapp configuration (Scala code here, but you can change that to Java easily):

import org.nortbhay.jetty. _
import org.nortbhay.jetty.webapp. WebAppCont ext

obj ect MyServer {
def main(args: Array[String]) = {

val server = new Server (8080)

val webAppCont ext = new WebAppCont ext (" src/ mai n/ webapp", "/")

webAppCont ext . set Confi gurati onCl asses(Array[String] (
"org.nortbay.jetty. webapp. Wbl nf Confi guration",
"org. nortbay.jetty. webapp. WebXm Confi gur ati on"

)

server . addHandl er (webAppCont ext)

server.start

server.join

Next add a run task inside of your project:

define "nyproject"” do
desc 'Run application with enbedded jetty'
task :run => :conpile do
Java: : Commands. j ava(' MyServer', :classpath => conpile.dependencies + [conpile.target.to_s])
end

end

This will set up your class path with the compile dependencies and run the java command with your server class.

Starting the application:

$ buildr nyproject:run

That's it.

	How to run jetty

