
1.

2.

How to run jetty
*

Run jetty interactively
Start jetty in the background
Run several jetty instances in different modules
Run embedded jetty on working directory

*

Basically you can run jetty in two different modes:

Interactively: use s.th. like and have the jetty running within this shell, so that you see the output of jetty buildr yourproject:run-jetty
and your app
In the background: use and to start jetty in the background and deploy your app. buildr jetty:start buildr yourproject:deploy-app
The build is not blocking in this case and you can use your shell for different things.

Run jetty interactively
In your buildfile you define the jetty task within your project (here it's "webapp"):

require 'buildr/jetty'
require 'readline'

define "webapp" do

 task("jetty"=>[package(:war), jetty.use]) do |task|
 jetty.deploy("http://localhost:8080", task.prerequisites.first)
 Readline::readline('[Type ENTER to stop Jetty]')
 end

end

If you prefer to use to stop jetty instead of hitting you can replace the line with this:CTRL-C ENTER Readline::...

puts 'Press CTRL-C to stop Jetty'
trap 'SIGINT' do
 jetty.stop
end
Thread.stop

Then you can run your webapplication inside jetty:

$ buildr webapp:jetty

That's all

Start jetty in the background
In your buildfile you define the "deploy-app" task within your project (here it's "webapp"):

require 'buildr/jetty'

define "webapp" do

 task("deploy-app"=>[package(:war), jetty.use]) do |task|
 class << task ; attr_accessor :url, :path ; end
 task.url = "http://localhost:8080"
 task.path = jetty.deploy(task.url, task.prerequisites.first)
 end

end

Now, in one console do:

$ buildr jetty:start

Switch to a different console and do:

$ buildr webapp:deploy-app

Now the app is running and you can access it from the browser. The first console is effectively the Jetty log, and you kill Jetty at any time by going there
and hitting CTRL-C. The second console gives you a new prompt and you can run buildr deploy-app again, test the app using curl, etc.

Alternatively, in a single console:

$ buildr jetty:start &
$ buildr webapp:deploy-app

And again this free up the console so you can do more work while your app is running inside Jetty.

To stop the server:

$ buildr jetty:stop

Run several jetty instances in different modules
If you have a multi module project with several web applications (producing a) you might want to start them in different jetty instances (on different war
ports).

To achieve this you cannot use the default jetty singleton instance (as shown in the examples above) but you must create a new jetty instance for the
different web applications (or at least starting with the second). The following example demonstrates this:

define "myproj" do

 define "subprojA" do
 ...
 task("jetty"=>[package(:war), jetty.use]) do |task|
 jetty.deploy("http://localhost:8080", task.prerequisites.first)
 Readline::readline('[Type ENTER to stop Jetty]')
 end

 end

 define "subprojB" do

 myJetty = Buildr::Jetty.new("webapp", "http://localhost:8090")
 task("jetty"=>[package(:war), myJetty.use]) do |task|
 myJetty.deploy("http://localhost:8090", task.prerequisites.first)
 Readline::readline('[Type ENTER to stop Jetty]')
 end

 end

end

Now you can start both jetty instances in parallel.
Starting jetty for the first subproject:

$ buildr myproj:subprojA:jetty &

And after the subprojA jetty was started (or in a different console):

$ buildr myproj:subprojB:jetty

Run embedded jetty on working directory
The suggestions above will always have you run through a complete compile -> package -> deploy cycle, even if you are only editing Javascript files or did
a minor small change in a sub project, which gets annoying pretty fast. Use the embedded server and run it directly on your working directory instead to
save all that packaging time and to edit HTML in place.

Add a source file to start embedded jetty using your webapp configuration (Scala code here, but you can change that to Java easily):

import org.mortbay.jetty._
import org.mortbay.jetty.webapp.WebAppContext

object MyServer {
 def main(args: Array[String]) = {
 val server = new Server(8080)
 val webAppContext = new WebAppContext("src/main/webapp", "/")
 webAppContext.setConfigurationClasses(Array[String](
 "org.mortbay.jetty.webapp.WebInfConfiguration",
 "org.mortbay.jetty.webapp.WebXmlConfiguration"
))
 server.addHandler(webAppContext)
 server.start
 server.join
 }
}

Next add a run task inside of your project:

define "myproject" do

 desc 'Run application with embedded jetty'
 task :run => :compile do
 Java::Commands.java('MyServer', :classpath => compile.dependencies + [compile.target.to_s])
 end

end

This will set up your class path with the compile dependencies and run the java command with your server class.

Starting the application:

$ buildr myproject:run

That's it.

	How to run jetty

