Stream caching

Stream caching

While stream types (like StreamSource, InputStream and Reader) are commonly used in messaging for performance reasons, they also have an important
drawback: they can only be read once. In order to be able to work with message content multiple times, the stream needs to be cached.

Streams are caching in memory. In Camel 2.0, large stream messages (over 64 Kb in Camel 2.11 or older, and 128 kb from Camel 2.12 onwards) will be
cached in a temporary file instead — Camel itself will handle deleting the temporary file once the cached stream is no longer necessary.

In Camel 2.0 stream cache is default disabled out of the box.

In Camel 1.x stream cache is default enabled out of the box.

@ StreamCache Affects your payload object

The StreamCache will affect your payload object as it will replace the Stream payload with a or g. apache. canel . St r eantCache object.
This St r eantCache is capable of being re-readable and thus possible to better be routed within Camel using redelivery or Content Based Router
or the likes.

However to not change the payload under the covers without the end user really knowing we changed the default in Camel 2.0 to disabled. So
in Camel 2.0 you have to explicit enable it if you want to use it.

If using Camel 2.12 onwards then see about StreamCachingStrategy further below which is the recommended way to configure stream caching
options.

Enabling stream caching

In Apache Camel, you can explicitly enable stream caching for a single route with the st r eantCachi ng DSL method:

from("jbi:service:http://foo. bar.org/ MyService")
. streantCachi ng()
.to("jbi:service: http://foo.bar.org/ MyQ her Servi ce");

In Spring XML you enable it by setting the st r eanCache="t r ue" attribute on the r out e tag.

<route streanCache="true">

<fromuri="jbi:service:http://foo.bar.org/ MService"/>
<to uri="jbi:service:http://foo.bar.org/ My\O her Servi ce"/>
</route>
Scopes

StreamCache supports the global and per route scope. So by setting the streamCache attribute on camelContext you can enable/disable it globally.

<canel Cont ext streanCache="true">

</ canel Cont ext >
The route scope is configured by the st r eanCache attribute on the <r out e> tag such as:

<route streanCache="true">

<fromuri="jbi:service:http://foo.bar.org/ MyService"/>
<to uri="jbi:service:http://foo.bar.org/ MyQ her Servi ce"/>
</route>

You can mix and match for instance you can enable it globally and disable it on a particular route such as:

https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router

<canel Cont ext streanCache="true">
<r out e>
<fromuri="jbi:service:http://foo. bar.org/ MyService"/>
<to uri="jbi:service:http://foo.bar.org/ MyQ her Servi ce"/>
</ rout e>

<route streanCache="fal se">
<fromuri="j ms: queue: f 00"/ >
<to uri="jns:queue: bar"/>
</route>

</ canel Cont ext >

Enabling from Java DSL

You can enable stream cache by setting the property on CamelContext, for instance in a RouteBuilder class:

cont ext . set St reanCache(true);

from("jbi:service:http://foo.bar.org/ MyService")
.to("jbi:service:http://foo.bar.org/ MyQt her Service");

Disable stream caching explicitly

If you have enabled stream caching globally on the CamelContext and you want to disable it for certain routes in a selective manner, you can use the
following syntax.

Spring DSL:

<canel Cont ext streantCache="true">
<route streanCache="fal se">
<fromuri="jetty:http://0.0.0.0:9090"/>
<to uri="file:target/incom ng"/>
</route>
</ canel Cont ext >

Java DSL:

cont ext . set St reanmCache(true);

from("jetty:http://0.0.0.0:9090"). noStreanCachi ng()
.to("file:target/inconing");

Streaming cache to files

When stream cache is enabled it will by default spool big streams to files instead of keeping them in memory. The default threshold is 64kb but you can
configure it with the following properties:

Property Default Description
CamelCachedOutputStr | 2kb Camel 2.9.4, 2.10.2, 2.11.0: Size in bytes of the buffer used in the stream.
eamBufferSize
CamelCachedOutputStr | 64kb or 64kb for Camel 2.11 or older. 128kb for Camel 2.12 onwards. Size in bytes when the stream should be spooled to disk instead
eamThreshold 128kb of keeping in memory. Use a value of 0 or negative to disable it all together so streams is always kept in memory regardless of
their size.
CamelCachedOutputStr | java.io. Base directory where temporary files for spooled streams should be stored.

eamOutputDirectory tmpdir

CamelCachedOutputStr | null Camel 2.11.0: If set, the temporary files are encrypted using the specified cipher transformation (i.e., a valid stream or 8-bit
eamCipherTransformati cipher name such as "RC4", "AES/CTR/NoPadding". An empty name " is treated as null).
on

You set these properties on the CamelContext as shown below, where we use a 1mb threshold to spool to disk for messages bigger than 1mb:

cont ext . get Properties().put(CachedQut put Stream TEMP_DI R, "/tnp/cachedir");

cont ext . get Properties(). put(CachedQut put Stream THRESHOLD, "1048576");

cont ext . get Properties(). put(CachedQut put Stream BUFFER_SI ZE, "131072");

/'l to enable encryption using RC4

/1 context.getProperties().put(CachedQutput Stream Cl PHER_TRANSFORMATI ON, "RC4");

And in XML you do

<canel Cont ext xm ns="http://canel . apache. org/ schema/ bl ueprint">

<!-- disable stream caching spool to disk -->

<properties>
<property key="Canel CachedQut put St reanQut put Di rectory" val ue="/tnp/cachedir"/>
<property key="Canel CachedCut put St reaniThreshol d" val ue="1048576"/ >
<property key="Canel CachedQut put St reanBufferSi ze" val ue="131072"/>

</ properties>

Disabling spooling to disk

You can disable spooling to disk by setting a threshold of 0 or a negative value.

/1 disable spooling to disk
cont ext . get Properties(). put(CachedQut put Stream THRESHOLD, "-1");

And in XML you do

<canel Cont ext xm ns="http://canel.apache. org/ schema/ bl ueprint">

<!-- disable stream caching spool to disk -->
<properties>

<property key="Canel CachedCQut put St reaniThreshol d" val ue="-1"/>
</ properties>

Using StreamCachingStrategy
Available as of Camel 2.12

Stream caching is from Camel 2.12 onwards intended to be configured using or g. apache. canel . spi . St reantCachi ngStr at egy.
The old kind of configuration using properties on the CamelContext has been marked as deprecated.

The strategy has the following options:

Option Default Description

spool Directory ${java.io.tnpdir} Base directory where temporary files for spooled streams should be stored. This option supports naming patterns as

/ canel / canel -t mp- documented below.
#uui d#
spool Chi per nul | If set, the temporary files are encrypted using the specified cipher transformation (i.e., a valid stream or 8-bit cipher

name such as "RC4", "AES/CTR/NoPadding". An empty name " is treated as null).

spool Threshol d ' 128kb Size in bytes when the stream should be spooled to disk instead of keeping in memory. Use a value of 0 or negative to
disable it all together so streams is always kept in memory regardless of their size.
spool UsedHeapM ' 0 A percentage (1 to 99) of current used heap memory to use as threshold for spooling streams to disk. The upper bounds

enoryThreshol d

is based on heap committed (guaranteed memory the JVM can claim). This can be used to spool to disk when running
low on memory.

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

spool UsedHeapM = Max
enoryLimt

anySpool Rul es fal se

buf f er Si ze 4096
renoveSpool Dir | true
ect or yWhenSt op

ping

statisticsEnab | fal se
| ed

SpoolDirectory naming pattern
The following patterns is supported:
#uuid# = a random UUID

#name# - same as #camelld#

If spool UsedHeapMenor yThr eshol d is in use, then whether the used heap memory upper limit is either Max or Commi
tted.

Whether any or all Spool Rul e}}s nust return {{true todetermine if the stream should be spooled or not. This
can be used as applying AND/OR binary logic to all the rules. By default its AND based.

Initial size if in-memory created stream buffers.

Whether to remove the spool directory when stopping CamelContext.

Whether utilization statistics is enabled. By enabling this you can see these statics for example with IMX.

#camelld# = the CamelContext id (eg the name)

#counter# - an incrementing counter

#bundleld# - the OSGi bundle id (only for OSGi environments)
#symbolicName# - the OSGi symbolic name (only for OSGi environments)
#version# - the OSGi bundle version (only for OSGi environments)
${env:key} - the environment variable with the key

${key} - the JVM system property with the key

A could of examples, to store in the java temp directory with a sub directory using the CamelContext name:

cont ext . get St reantCachi ngStrat egy() . set Spool Di rect ory"${j ava.i o.tnpdir}#name#/");

To store in KARAF_HOME/tmp/bundleld directory

cont ext . get St reantCachi ngStrat egy() . set Spool Di rect ory" ${ env: KARAF_HOVE} / t np/ bundl e#bundl el d#") ;

Using StreamCachingStrategy in Java

You can configure the St r eantCachi ngSt r at egy in Java as shown below:

cont ext . get StreantCachi ngStrat egy(). set Spool Di rectory"/tnp/cachedir");
cont ext . get StreantCachi ngStrat egy(). set Spool Threshol d(64 * 1024);

cont ext . get StreantCachi ngStrat egy().setBufferSize(16 * 1024);

/1 to enable encryption using RC4

/] context.getStreanCachi ngStrategy().set Spool Chi per("RC4");

And remember to enable Stream caching on the CamelContext or on routes

cont ext . set St reantCachi ng(true);

Using StreamCachingStrategy in XML

And in XML you do:

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

<camnel Cont ext streantCache="true" xm ns="http://canel.apache. org/ schena/bl ueprint">
<streantachi ng i d="nyCacheConfi g" bufferSize="16384" spool Directory="/tnp/cachedir" spool Threshol d="65536"/>

<rout e>
<fromuri="direct:c"/>
<to uri="nock:c"/>
</route>

</ canel Cont ext >

You can also define a <bean> instead of using the <streamCaching> tag:

And in XML you do

<I-- define a bean of type StreanCachi ngStrategy which Canel Context will automatic use -->
<bean id="streanBtrategy" class="org.apache.canel.inpl.DefaultStreantCachingStrategy">
<property nanme="spool Di rectory" val ue="/tnp/cachedir"/>
<property name="spool Threshol d" val ue="65536"/>
<property nanme="bufferSi ze" val ue="16384"/>
</ bean>

<!-- renmenber to enable stream caching -->
<canel Cont ext streantCachi ng="true" xm ns="http://canel.apache. org/schema/spring">

Using spoolUsedHeapMemoryThreshold

By default stream caching will spool only big payloads (128kb or bigger) to disk. However you can also set the spoolUsedHeapMemoryThreshold option
which is a percentage of used heap memory. This can be used to also spool to disk when running low on memory.

For example with:

<st reantachi ng i d="nyCacheConfi g" spool Di rectory="/tnp/ cachedir" spool UsedHeapMenoryThr eshol d="70"/>

Then notice that as spoolThreshold is default enabled with 128kb, then we have both thresholds in use (spoolThreshold and
spoolUsedHeapMemoryThreshold). And in this example then we only spool to disk if payload is > 128kb and that used heap memory is > 70%. The reason
is that we have the option any Spool Rul es as default f al se. That means both rules must be t r ue (eg AND).

If we want to spool to disk if either of the rules (eg OR), then we can do:

<streantachi ng i d="nyCacheConfi g" spool Directory="/tnp/cachedir" spool UsedHeapMenoryThr eshol d="70"
anySpool Rul es="true"/>

If we only want to spool to disk if we run low on memory then we can set:

<streantCachi ng i d="nyCacheConfi g" spool Directory="/tnp/cachedir" spool Threshol d="-1"
spool UsedHeapMenor yThr eshol d="70"/ >

... then we do not use the spoolThreshold rule, and only the heap memory based is in use.

By default the upper limit of the used heap memory is based on the maximum heap size. Though you can also configure to use the committed heap size
as the upper limit, this is done using the spool UsedHeapMenor yThr eshol d option as shown below:

<streantachi ng i d="nyCacheConfi g" spool Directory="/tnp/ cachedir" spool UsedHeapMenoryThr eshol d="70"
spool UsedHeapMenoryLim t="Commi tted"/>

Using custom SpoolRule implementations

You can implement your custom rules to determine if the stream should be spooled to disk. This can be done by implementing the interface or g. apache.
canel . spi . StreantCachi ngSt r at egy. Spool Rul e which has a single method:

bool ean shoul dSpool Cache(l ong | ength);

The length is the length of the stream.

To use the rule then add it to the St r eanCachi ngSt r at egy as shown below:

Spool Rul e nySpool Rule = ...
cont ext . get StreantCachi ngStrat egy() . addSpool Rul e(mySpool Rul e) ;

And from XML you need to define a <bean> with your custom rule

<bean i d="mySpool Rul e" cl ass="com f oo. MySpool Rul e"/ >

<streantCachi ng i d="nyCacheConfi g" spool Directory="/tnp/cachedir" spool Rul es="nySpool Rul e"/>

Using the spool Rul es attribute on <streamCaching>. if you have more rules, then separate them by comma.

<streantCachi ng i d="nyCacheConfi g" spool Directory="/tnp/cachedir" spool Rul es="nySpool Rul e, nyQ her Spool Rul e"/ >

How it works?

In order to determine if a type requires caching, we leverage the type converter feature. Any type that requires stream caching can be converted into an or
g. apache. canel . St reantCache instance.

https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter

	Stream caching

