
Scaling Sling Development
STATUS: PROPOSAL

Motivation
Apache Sling is a highly modular project, consisting of 290+ modules as of . As such, there is extra work associated with releases and 06 Mar 2019
keeping tabs on community contributions compared to more monolithic projects. Additionally, onboarding new contributors is a process that should be
simplified. Removing barriers from contribution is a great way to allow contributors to focus on getting actual contributions done, rather than finding out how
to contribute.

This document lists a number of perceived pain points for Sling contributors, developers and release managers and proposes solutions to improve the
situation.

PRB-CONTRIB: slow turnaround for pull requests

Pull requests are often slowly validated and merged, mainly due to lack of reviewer time. Besides reviewing the code there is also a need of running the
build, integrating in the Sling Starter and running the integration tests. This often becomes time consuming for reviewers and causes delays for the
contributors.

Currently pull requests are validated by:

running the Maven build
running an incremental SonarQube analysis

Enhanced pull request validation would include:for bundles included in the Sling starter

deployment of current SNAPSHOT in the latest Sling Starter
execution of Sling ITs against the latest Sling Starter + module SNAPSHOT from pull request

Additionally, pull request validation should be enhanced to also report code coverage changes.

This would increase confidence of reviewers and reduce turnaround time for pull requests.

David Bosschaert rightly points out that

it can often happen that people who could apply pull requests simply missed them because they were busy looking elsewhere. One
thing that sometimes helps in such cases is to simply ping someone directly involved in the specific area and ask them if they have
time to merge the PR. I tend to think that the personal approach (rather than an automated email) sometimes has more effect.

To spot those stale PRs we can consider building a dashboard of open pull requests. Alternatively, an automated email once per week to dev@sling
mightalso work (or might get ignored).

Stefan Seifert added that if we decide to send emails we should

make sure that those PRs which were added since the last mail report are listed separately from the old ones to easily spot what is
new.

PRB-RELEASE: manual work for Sling releases

The Sling lists a large number of manual steps that are required to perform a release. Many of these must be run by the release management page
release manager, since by definition releases are individual acts in the Apache Software Foundation. However, the steps can be automated or simplified
by tooling.

Step Tools Automation potential Status

Staging release
candidates

Maven,
GPG

Small, iusually a single Maven command.
Requires access to developer's Maven
credentials and GPG keys

Not planned

Starting the vote Email,
Jira

Medium, boilerplate text where
placeholders are replaced

 - SLING-8392 Create sub-command to manage the Jira update when promoting a

 release RESOLVED

 - SLING-8311 Investigate creating a Sling CLI tool for development task

 automation RESOLVED

https://cwiki.apache.org/confluence/display/~davidb@apache.org
https://cwiki.apache.org/confluence/display/~sseifert
https://sling.apache.org/documentation/development/release-management.html
https://issues.apache.org/jira/browse/SLING-8392
https://issues.apache.org/jira/browse/SLING-8311

1.
2.

Counting the votes Email Medium, reading emails and composing a
release result mail

 - SLING-8311 Investigate creating a Sling CLI tool for development task

 automation RESOLVED

Promotion - dist.
apache.org

SVN Mediu, adding/removing files from SVN,
fixing checkums (-md5,+sha512)

Planned

 - SLING-8699 Create sub-command to moving artifacts to dist.apache.org OPEN

Promotion - register
with Apache
Reporter Service

HTTP Large, script already exists

 - SLING-8311 Investigate creating a Sling CLI tool for development task

 automation RESOLVED

Promotion - push to
Maven Central

HTTP Medium, interaction with Nexus

 - SLING-8338 Create sub-command to manage the Nexus stage repository

 release when promoting a release OPEN

Promotion - update
site

Git Large - modifications are mostly automatic,
a pull request can be automatically issued

Planned

 - SLING-8393 Create sub-command to update the Sling website when a release is

 made OPEN

Jira Update Jira Large - releasing current version, releasing
new version, closing issues fixed in current
version.

 - SLING-8392 Create sub-command to manage the Jira update when promoting a

 release RESOLVED

Sling Starter update Git Large - a pull request can be created when
outdated Sling bundles are found in the
Launchpad

Planned

 - SLING-8394 Create sub-command to update the Sling starter when a release is

 made RESOLVED

The proposed solution comes with two parts:

A Sling-Dev CLI tool that automates tasks that must be manually performed by the developer: Email generation, Jira management, etc.
A Sling Bot that will automatically issue pull requests for the website and starter repositories.

David Bosschaert has suggested that

It would also be interesting to see if we can get an automated process to move released binaries to dist so that non-PMC members
who have done a release don’t depend on PMC members for that step.

An investigation for a tool has started at - SLING-8311 Investigate creating a Sling CLI tool for development task automation RESOLVED

PRB-ONBOARD: lack of developer onboarding for Sling developers

When contributors approach Sling, especially from an AEM background, there is a lack of transparency regarding what Sling development practices are:

code conventions
automated tests
local testing (Sling starter vs Quickstart, Composum vs CRX DE Lite,initial content in bundles vs content packages)

Note that while content packages are usable with the Sling Starter, we store the initial content in bundles.

These should be better explained as part of an 'onboarding' contributors page

PRB-GHDOC: documentation on the website is disconnected from the one on Github

There are currently no links from the GitHub projects to the website and sometimes the documentation is maintained in one place and sometimes in
another. This is not consistent and lacks usability.

We should have ways of

linking from the GitHub repository to the site documentation (if exists)
linking from the site documentation to the GitHub repository

Additionally, it would be interesting to find out if we can reuse the same documentation for modules there it makes sense, i.e. self-contained ones.

https://issues.apache.org/jira/browse/SLING-8311
http://dist.apache.org
http://dist.apache.org
https://issues.apache.org/jira/browse/SLING-8699
https://issues.apache.org/jira/browse/SLING-8311
https://issues.apache.org/jira/browse/SLING-8338
https://issues.apache.org/jira/browse/SLING-8393
https://issues.apache.org/jira/browse/SLING-8392
https://issues.apache.org/jira/browse/SLING-8394
https://cwiki.apache.org/confluence/display/~davidb@apache.org
https://issues.apache.org/jira/browse/SLING-8311

	Scaling Sling Development

