NotifyBuilder

NotifyBuilder

Available from Camel 2.2

The Not i f yBui | der is a builder from the or g. apache. canel . bui | der package which allows you to build expressions and then test or wait for that
condition to occur. The expressions is based around notifications about Exchange being routed. So what does that mean? It means that you can build an
expressions which can tell you when Camel is finished with routing 5 messages etc.

You may want to use this when testing a route which you cannot or will not use Mocks.

Suppose we have a very simple route:

fron("j nms: queue: quot es")
.to("bean: quotes");

Now you want to test this route without using mocks or the likes. Imagine the route being more complex and a production ready route.
We want to test that it could process a message send to that queue. By using the NotifyBuilder we can build an expression which expresses when that
condition occurred.

Noti fyBuil der notify = new NotifyBuilder().whenDone(1).create();

/1 now use some APl to send a nessage etc. Maybe you cannot use Canel's Producer Tenpl ate
/1 now we want to wait until the nmessage has been routed and conpl et ed

bool ean done = notify. matches(10, Ti meUnit. SECONDS);
assert True(" Shoul d be done", done);

/1 now nmaybe use sone APl to see that the nmessage did as expected

This is a very basic example with a simple builder expression. What we said that we want it to match when any Exchange is done. The builder have many
more methods to set more complex expressions, which even can be stacked using and, or, not operations.

Methods

These methods is for building the expression:

Method

fronm(endpointUri)

fronRout e(rout el d)

filter(predicate)

wer eSent To
(endpointUri)

whenRecei ved(nunber)
whenDone(hunber)

whenDoneByl ndex
(i ndex)

whenConpl et e(nunber)
whenFai | ed(nunber)

whenExact | yDone
(nurber)

whenExact | yConpl et e
(nurber)

whenExact | yFai | ed
(nunber)

Description

Matches only when Exchanges are incoming from that particular endpoint. The endpoi nt Uri can be a pattern, which is
the same pattern matching used by Intercept.

Camel 2.4: Matches only when Exchanges are incoming from that particular route. The r out el d can be a pattern,
which is the same pattern matching used by Intercept.

Filters out unwanted Exchanges (only messages passing (true) the predicate is used).

Camel 2.9: Matches only when Exchanges has at any point been sent to the given endpoint. The endpoi nt Uri can be
a pattern, which is the same pattern matching used by Intercept.

Matches when X number or more messages has been received.
Matches when X number or more messages is done.

Camel 2.8: Matches when the N'th (index) message is done.

Matches when X number or more messages is complete.
Matches when X number or more messages is failed.

Matches when exactly X number of messages is done.

Matches when exactly X number of messages is complete.

Matches when exactly X number of messages is failed.

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Intercept
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Intercept
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Intercept

whenBodi esRecei ved
(bodi es)

whenExact Bodi esRecei v
ed(bodi es)

whenBodi esDone
(bodi es)

whenExact Bodi esDone
(bodi es)

whenAnyRecei vedMat che
s(predicate)

whenAl | Recei vedMat che
s(predicate)

whenAnyDoneMat ches
(predicate)

whenAl | DoneMat ches
(predicate)

whenRecei vedSati sfi ed
(nock)

whenRecei vedNot Sat i sf
i ed(nock)

whenDoneSat i sfi ed
(nmock)

whenDoneNot Sat i sfi ed
(nmock)

and
or

not

Matches when the message bodies has been received in the same order. This method is non strict which means that it
will disregard any additional received messages.

Matches when the message bodies has been received in the same order. This method is strict which means the exact
number of message bodies is expected.

Matches when the message bodies are done in the same order. This method is non strict which means that it will
disregard any additional done messages.

Matches when the message bodies are done in the same order. This method is strict which means the exact number of
message bodies is expected.

Matches if any one of the received messages matched the Predicate.

Matches only when all of the received messages matched the Predicate.

Matches if any one of the done messages matched the Predicate.

Matches only when all of the done messages matched the Predicate.

Matches if the Mock is satisfied for received messages. Is used for fine grained matching by setting the expectations on

the Mock which already have a great library for doing so.

Matches if the Mock is not satisfied for received messages. Is used for fine grained matching by setting the expectations
on the Mock which already have a great library for doing so.

Matches if the Mock is satisfied for messages done. Is used for fine grained matching by setting the expectations on the
Mock which already have a great library for doing so.

Matches if the Mock is not satisfied for messages done. Is used for fine grained matching by setting the expectations on
the Mock which already have a great library for doing so.

Appends an additional expressions using the and operator.
Appends an additional expressions using the or operator.

Appends an additional expressions using the not operator.

And these methods is for using the builder after creating the expression:

Method Description

create()
mat ches()

mat ches
(timeout

TinmeUnit)
mat chesM
ockWait T
ime

reset ()

Creates the builder expression. After you have created it you can use the mat ches methods.
Does the builder match currently. This operation returns immediately. This method is to be used after you have created the expression.

Wait until the builder matches or timeout. This method is to be used after you have created the expression.

Camel 2.6: Wait until the builder matches or timeout. The timeout value used is based on the highest result wait time configured on any
of mock endpoints being used. If no mock endpoint was used, then the default timeout value is 10 seconds. This method is convenient to
use in unit tests when you use mocks. Then you don't have to specify the timeout value explicit.

Camel 2.3: Resets the natifier.

We will most likely add additional methods in the future, so check out the Not i f yBui | der for latest and greatest methods.

Difference Between Done and Conpl et ed

The difference between done and conpl et ed is that done can also include failed messages, where as completed is only successful processed messages.

Examples

Noti fyBui | der notify

new Not i fyBuil der (cont ext)

.from("direct:foo").whenDone(5)

.create();

Here we want to match when the di r ect : f oo endpoint have done 5 messages.

https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock

You may also want to be notified when an message is done by the index, for example the very first message. To do that you can simply do:

Noti fyBuil der notify = new NotifyBuil der(context)
. whenDoneBy| ndex(0)
.create();

This ensures that the notifier only matches exactly when the first message is done.

If you use whenDone(1) instead, then the notifier matches when at least one message is done. There could be use cases where whenDone(1) would
match even if the first message hasn't been done yet, as other message in between could be done ahead of the first message. That is why whenDoneBy| n
dex was introduced in Camel 2.8 to support this scenario.

Noti fyBuil der notify = new NotifyBuil der(context)
.from"direct:foo").filter(body().contains("test")).whenDone(5)
.create();

Here we want to match when the di r ect : f oo endpoint have done 5 messages which contains the word 't est ' in the body.
The filter accepts a Predicate so you can use XPath, Bean, Simple and whatnot.

Noti fyBuil der notify = new NotifyBuil der(context)
from("jms:*"). whenDone(1)
.create();

Here we just say that at least one message should be done received from any JMS endpoint (notice the wildcard matching).

Noti fyBuil der notify = new NotifyBuil der(context)
. fronRout e(" nyCool Rout es*") . whenDone(3)
.create();

Here, we just say that at least three message should be done received from any of my Cool Rout es (notice the wildcard matching).

Noti fyBuil der notify = new Noti fyBuil der(context)
.from"direct:foo").whenDone(5)
.and().from("direct: bar").whenDone(7)
.create();

Here both 5 foo messages and 7 bar messages must be done. Notice the use of the and operator.

Noti f yBui | der notify = new Noti fyBuil der(context)
.from("direct:fo0").whenBodi esRecei ved("Hell o World", "Bye World")
.create();

Here we expect to receive two messages with Hel | o Wor| d and Bye Wor | d.

Noti fyBuil der notify = new Noti fyBuil der(context)
. whenAnyRecei vedMat ches(body() . cont ai ns(" Canel "))
.create();

Here we want to match when we have received a message which contains Camel in the body.

/1 lets use a nock to set the expressions as it got many great assertions for that

/1 notice we use nock: assert which does NOT exist in the route, its just a pseudo nane
MockEndpoi nt nmock = get MockEndpoi nt (" nock: assert™);

nock. expect edBodi esRecei vedl nAnyOrder ("Hel l o World", "Bye World", "H World");

Noti fyBuil der notify = new NotifyBuil der(context)
.from("direct:foo").whenRecei vedSati sfi ed(nock)
.create();

https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Simple

Now it bring powers to the table. We combine a mock with the builder. We use the mock to set fine grained expectations such as we should receive 3
messages in any order. Then using the builder we can tell that those messages should be received from the di r ect : f 00 endpoint. You can combine
multiple expressions as much as you like. However we suggest to use the mock for fine grained expectations that you may already know how to use. You
can also specify that the Exchanges must have been sent to a given endpoint.

For example in the following we expect the message to be sent to nock: bar

Not i f yBui | der notify = new NotifyBuil der(context)
.wer eSent To(" nock: bar")
.create();

You can combine this with any of the other expectations, such as, to only match if 3+ messages are done, and were sent to the nock: bar endpoint:

Noti fyBuil der notify = new Noti fyBuil der(context)
. whenDone(3) . wer eSent To(" nock: bar")
.create();

You can add additional wer eSent To's, such as the following two:

Noti fyBuil der notify = new NotifyBuil der(context)
.wereSent To("acti veny: queue: f 00") . wer eSent To("act i veny: queue: bar")
.create();

As well as you can expect a number of messages to be done, and a message to fail, which has to be sent to another endpoint:

Noti fyBuil der notify = new NotifyBuil der(context)
. whenDone(3) . wereSent To("acti veng: queue: goodOr der")
.and() . whenFai | ed(1).wereSent To("activenq: queue: badOr der ")
.create();

https://cwiki.apache.org/confluence/display/CAMEL/Exchange

	NotifyBuilder

