
NotifyBuilder

NotifyBuilder

Available from Camel 2.2

The is a builder from the package which allows you to build expressions and then test or wait for that NotifyBuilder org.apache.camel.builder
condition to occur. The expressions is based around notifications about being routed. So what does that mean? It means that you can build an Exchange
expressions which can tell you when Camel is finished with routing 5 messages etc.

You may want to use this when testing a route which you cannot or will not use s.Mock

Suppose we have a very simple route:

from("jms:queue:quotes")
 .to("bean:quotes");

Now you want to test this route without using mocks or the likes. Imagine the route being more complex and a production ready route.
We want to test that it could process a message send to that queue. By using the we can build an expression which NotifyBuilder expresses when that

.condition occurred

NotifyBuilder notify = new NotifyBuilder().whenDone(1).create();

// now use some API to send a message etc. Maybe you cannot use Camel's ProducerTemplate
// now we want to wait until the message has been routed and completed

boolean done = notify.matches(10, TimeUnit.SECONDS);
assertTrue("Should be done", done);

// now maybe use some API to see that the message did as expected

This is a very basic example with a simple builder expression. What we said that we want it to match when any Exchange is done. The builder have many
more methods to set more complex expressions, which even can be stacked using , operations., and or not

Methods

These methods is for building the expression:

Method Description

from(endpointUri) Matches only when s are incoming from that particular endpoint. The can be a pattern, which is Exchange endpointUri
the same pattern matching used by .Intercept

fromRoute(routeId) Camel 2.4: Matches only when s are incoming from that particular route. The can be a pattern, Exchange routeId
which is the same pattern matching used by .Intercept

filter(predicate) Filters out unwanted s (only messages passing (true) the predicate is used).Exchange

wereSentTo
(endpointUri)

Camel 2.9: Matches only when s has at any point been sent to the given endpoint. The can be Exchange endpointUri
a pattern, which is the same pattern matching used by .Intercept

whenReceived(number) Matches when X number or more messages has been received.

whenDone(number) Matches when X number or more messages is done.

whenDoneByIndex
(index)

Camel 2.8: Matches when the N'th (index) message is done.

whenComplete(number) Matches when X number or more messages is complete.

whenFailed(number) Matches when X number or more messages is failed.

whenExactlyDone
(number)

Matches when exactly X number of messages is done.

whenExactlyComplete
(number)

Matches when exactly X number of messages is complete.

whenExactlyFailed
(number)

Matches when exactly X number of messages is failed.

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Intercept
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Intercept
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Intercept

whenBodiesReceived
(bodies)

Matches when the message bodies has been received in the same order. This method is non strict which means that it
will disregard any additional received messages.

whenExactBodiesReceiv
ed(bodies)

Matches when the message bodies has been received in the same order. This method is strict which means the exact
number of message bodies is expected.

whenBodiesDone
(bodies)

Matches when the message bodies are done in the same order. This method is non strict which means that it will
disregard any additional done messages.

whenExactBodiesDone
(bodies)

Matches when the message bodies are done in the same order. This method is strict which means the exact number of
message bodies is expected.

whenAnyReceivedMatche
s(predicate)

Matches if any one of the received messages matched the .Predicate

whenAllReceivedMatche
s(predicate)

Matches only when all of the received messages matched the .Predicate

whenAnyDoneMatches
(predicate)

Matches if any one of the done messages matched the .Predicate

whenAllDoneMatches
(predicate)

Matches only when all of the done messages matched the .Predicate

whenReceivedSatisfied
(mock)

Matches if the is satisfied for received messages. Is used for fine grained matching by setting the expectations on Mock
the which already have a great library for doing so.Mock

whenReceivedNotSatisf
ied(mock)

Matches if the is satisfied for received messages. Is used for fine grained matching by setting the expectations Mock not
on the which already have a great library for doing so.Mock

whenDoneSatisfied
(mock)

Matches if the is satisfied for messages done. Is used for fine grained matching by setting the expectations on the Mock
 which already have a great library for doing so.Mock

whenDoneNotSatisfied
(mock)

Matches if the is satisfied for messages done. Is used for fine grained matching by setting the expectations on Mock not
the which already have a great library for doing so.Mock

and Appends an additional expressions using the operator.and

or Appends an additional expressions using the operator.or

not Appends an additional expressions using the operator.not

And these methods is for using the builder after creating the expression:

Method Description

create() Creates the builder expression. After you have it you can use the methods.created matches

matches() Does the builder match currently. This operation returns immediately. This method is to be used you have created the expression.after

matches
(timeout
,
TimeUnit)

Wait until the builder matches or timeout. This method is to be used you have created the expression.after

matchesM
ockWaitT
ime

Camel 2.6: Wait until the builder matches or timeout. The timeout value used is based on the configured on any highest result wait time
of mock endpoints being used. If no mock endpoint was used, then the default timeout value is seconds. This method is convenient to 10
use in unit tests when you use mocks. Then you don't have to specify the timeout value explicit.

reset() Camel 2.3: Resets the notifier.

We will most likely add additional methods in the future, so check out the for latest and greatest methods.NotifyBuilder

Difference Between and Done Completed

The difference between and is that done can also include failed messages, where as completed is only successful processed messages.done completed

Examples

NotifyBuilder notify = new NotifyBuilder(context)
 .from("direct:foo").whenDone(5)
 .create();

Here we want to match when the endpoint have done 5 messages.direct:foo

https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock

You may also want to be notified when an message is done by the index, for example the very first message. To do that you can simply do:

NotifyBuilder notify = new NotifyBuilder(context)
 .whenDoneByIndex(0)
 .create();

This ensures that the notifier only matches exactly when the first message is done.

If you use instead, then the notifier matches when at least one message is done. There could be use cases where would whenDone(1) whenDone(1)
match even if the first message hasn't been done yet, as other message in between could be done ahead of the first message. That is why whenDoneByIn

 was introduced in to support this scenario.dex Camel 2.8

NotifyBuilder notify = new NotifyBuilder(context)
 .from("direct:foo").filter(body().contains("test")).whenDone(5)
 .create();

Here we want to match when the endpoint have done 5 messages which contains the word ' ' in the body.direct:foo test
The filter accepts a so you can use , , and whatnot.Predicate XPath Bean Simple

NotifyBuilder notify = new NotifyBuilder(context)
 .from("jms:*").whenDone(1)
 .create();

Here we just say that at least one message should be done received from any JMS endpoint (notice the wildcard matching).

NotifyBuilder notify = new NotifyBuilder(context)
 .fromRoute("myCoolRoutes*").whenDone(3)
 .create();

Here, we just say that at least three message should be done received from any of (notice the wildcard matching).myCoolRoutes

NotifyBuilder notify = new NotifyBuilder(context)
 .from("direct:foo").whenDone(5)
 .and().from("direct:bar").whenDone(7)
 .create();

Here both foo messages and bar messages must be done. Notice the use of the operator.5 7 and

NotifyBuilder notify = new NotifyBuilder(context)
 .from("direct:foo").whenBodiesReceived("Hello World", "Bye World")
 .create();

Here we expect to receive two messages with and .Hello World Bye World

NotifyBuilder notify = new NotifyBuilder(context)
 .whenAnyReceivedMatches(body().contains("Camel"))
 .create();

Here we want to match when we have received a message which contains Camel in the body.

// lets use a mock to set the expressions as it got many great assertions for that
// notice we use mock:assert which does NOT exist in the route, its just a pseudo name
MockEndpoint mock = getMockEndpoint("mock:assert");
mock.expectedBodiesReceivedInAnyOrder("Hello World", "Bye World", "Hi World");

NotifyBuilder notify = new NotifyBuilder(context)
 .from("direct:foo").whenReceivedSatisfied(mock)
 .create();

https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Simple

Now it bring powers to the table. We combine a mock with the builder. We use the mock to set fine grained expectations such as we should receive 3
messages in any order. Then using the builder we can tell that those messages should be received from the endpoint. You can combine direct:foo
multiple expressions as much as you like. However we suggest to use the mock for fine grained expectations that you may already know how to use. You
can also specify that the s must have been sent to a given endpoint.Exchange

For example in the following we expect the message to be sent to mock:bar

NotifyBuilder notify = new NotifyBuilder(context)
 .wereSentTo("mock:bar")
 .create();

You can combine this with any of the other expectations, such as, to only match if 3+ messages are done, and were sent to the endpoint:mock:bar

NotifyBuilder notify = new NotifyBuilder(context)
 .whenDone(3).wereSentTo("mock:bar")
 .create();

You can add additional 's, such as the following two:wereSentTo

NotifyBuilder notify = new NotifyBuilder(context)
 .wereSentTo("activemq:queue:foo").wereSentTo("activemq:queue:bar")
 .create();

As well as you can expect a number of messages to be done, and a message to fail, which has to be sent to another endpoint:

NotifyBuilder notify = new NotifyBuilder(context)
 .whenDone(3).wereSentTo("activemq:queue:goodOrder")
 .and().whenFailed(1).wereSentTo("activemq:queue:badOrder")
 .create();

https://cwiki.apache.org/confluence/display/CAMEL/Exchange

	NotifyBuilder

